
The complex macrophage and its role in 
inflammation

‘We can only see a short distance ahead,  
but we can see plenty there that needs to be done.’

Alan Turing

Macrophages are a key cell type involved in all stages of 
the inflammatory response and have diverse functions 

that are important in the response to injury or infection 
and the resolution of inflammation. Significantly, under 
certain circumstances, macrophages can also propagate 
injury. Macrophages have a front-line role in host 
defense, where they respond directly to microbes and 
host danger signals far more sensitively than non-profes-
sional innate immune cells. As professional antigen 
present ing cells they are also an important link between 
the activation and the coordination of the adaptive 
immune system.

The response of a macrophage to tissue damage or 
pathogen insult is mediated by pattern recognition recep-
tors that trigger pathways leading to the production of 
pro-inflammatory cytokines and chemokines. Typically, 
this happens either through Toll-like receptor pathways, 
leading to production of tumor necrosis factor (TNF)-α, 
interleukin (IL)-6 and IL-12, or inflammasome-activation 
pathways, leading to production of IL-1β and IL-18. 
These and other associated outputs orchestrate the influx 
of further inflammatory cells and reactive oxygen and 
nitrogen species that promote microbial killing and 
phagocytosis.

Notably, activated macrophages can mediate inflamma-
tory diseases during, for example, an acute infection (for 
example, sepsis) or via chronic autoimmune inflamma-
tion (such as atherosclerosis, rheumatoid arthritis or 
glomerulonephritis). Inappropriate activation under these 
circumstances can only be understood by investi gat ing 
how temporal intracellular and intercellular molecular 
behavior relates to local and systemic pheno types. Sepsis 
remains an important medical problem, with high 
mortality and still no effective targeted therapies [1], so 
there is a great need for new, systems-level insights into 
how normally protective immune responses develop into 
life-threatening diseases. Athero sclerosis has similar 
systems-level traits, as a wide variety of immune and 
metabolic system components are asso ciated with the 
pathogenesis of plaques [2].

Macrophages infiltrate tissues following most forms of 
injury, including infection, ischemia and trauma, and most 
types of autoimmune inflammation, such as rheuma toid 
arthritis, glomerulonephritis, diabetes mellitus, cardio-
vascular disease and multiple sclerosis (for a recent 
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review, see [3]). Hence, they are key participants in nearly 
all forms of inflammatory injury and often function as 
regulatory hubs under these circumstances. They are, 
therefore, an attractive choice for in silico modeling and 
the development of computational methods targeted at 
enhancing inflammation research.

As a regulatory hub, macrophages have important roles 
in the regulation and resolution of inflammation. In skin 
wounds, switching the phenotype of infiltrating macro-
phages to express heme oxygenase 1 is associated with 
the resolution of inflammation, and inhibition of heme 
oxygenase 1 delays wound healing. Resolution of inflam-
mation also requires removal of apoptotic cells and other 
debris. Macrophage uptake of apoptotic cells, including 
neutrophils, results in an anti-inflammatory phenotype 
marked by production of IL-10, transforming growth 
factor (TGF)-β and anti-inflammatory lipoxins [4]. All of 
these functions provide therapeutically relevant starting 
points for developing predictive multi-scale models.

Here, we highlight the potential of in silico modeling of 
macrophage biology as an important tool for 
understanding the complexity of inflammatory injury 
and repair.

The in silico macrophage
In silico analysis brings together comprehensive data 
from the literature and high-throughput studies. It can 
produce not only static pictures of the interactions along 
pathways, but, following conversion to a dynamic mathe-
matical model, can also, more powerfully, yield a 
predictive picture of the mechanisms controlling pheno-
type. However, the caveat to this is that a model can only 
be as good as the data that are used to build it.

Statistical analyses of genome-wide transcriptional 
activity and protein abundance have been used to infer 
the critical genes and pathways involved in the response 
to specific cellular challenges (for example, [5,6]). Signifi-
cantly, however, such research synthesis efforts collect-
ively produce static relationship-based graphs with only 
tentative descriptions of pathway function. In isolation, 
such graphs cannot distinguish between causal and 
correlated activity. Macrophage resources have also been 
compiled and are presented in several websites [7-9]. As 
a consequence of these efforts, significant portions of the 
cellular pathways of macrophages have been compiled 
from the published literature and presented as maps 
[10-12]. It is recognized, however, that ensuring 
coherence of cell types, treatments, experimental 
methods and statistically robust data across the primary 
studies is a challenge.

Developing more detailed process diagrams of inter-
actions [12] and implementing formal dynamic net work 
models (for example, [13]) using time variables and 
canonical enzyme kinetics can enable the investigation of 

causal pathway dynamics. In this scenario, process 
diagrams or biochemical reaction networks can be trans-
lated into nonlinear differential equation models 
describing temporal changes of protein or gene expres-
sion concentrations. It is important to note that, 
inherently, biological pathways and their networks are 
nonlinear systems and, as such, their behavior cannot be 
described with a simple linear relationships between all 
components. For this reason dynamical systems model-
ing is an essential applied mathematical tool for under-
standing the behavior of complex systems over time [14]. 
Such models allow a wide range of questions to be 
addressed, such as how the long-term behavior of the 
system depends on initial activation conditions; how the 
coordinate regulation of a biosynthesis pathway influ-
ences the flux of intermediate metabolites; and to what 
extent and how crosstalk between pathways retains 
specificity and avoids unwanted interference.

As examples, NF-κB signaling oscillation [15], lipid 
metabolism [16] and circadian oscillation [17] have all 
been effectively dynamically modeled using systems of 
ordinary differential equations that are relevant to macro-
phage function. Directly modeling pathway dynamics is 
complicated by the need for high-quality temporal data 
describing pathway activity and high-confidence para-
meter values, which can be directly obtained only from 
highly structured experimental data. Thus, quantitatively 
accurate pathway models are relatively rare. There are 
complementary modeling approaches that minimize 
these requirements, such as logic-based Boolean 
approaches (for a review of this approach, see [18,19]). 
However, these come with restrictions on the subtlety of 
behavior they can predict.

Several studies have modeled the macrophage at the 
level of the cell population. Its role in colonic inflamma-
tion [20], tumor growth and suppression (for example, 
[21]) and diabetes [22] have been explored in silico, and 
more speculative ideas from other fields, such as critical 
ordering in complex systems, have been explored using 
the macrophage as a test system [23].

Ultimately, in silico models could improve our under-
standing of how the molecular function of the macro-
phage dynamically generates the cellular function of 
macrophage activation, and this may lead to predictions 
of how best to intervene in order to modulate macro-
phage behavior (Figure 1).

The manipulated macrophage
So far, two principal approaches have been taken to 
manipulating macrophage function in vivo. The first has 
been to use genetic transduction of bone-marrow-
derived cells. Macrophages and their progenitor stem 
cells can be transduced with recombinant viruses with 
high efficiency [24]. The second approach has been to use 
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ex vivo stimulation by cytokines. Treatments such as 
these have a ‘polarizing’ effect on cellular phenotype, 
resulting in cells with functional characteristics appro-
priate to the clinical context and the treatment required 
[25]. In the future, microRNA mimics, small molecules 
and synthetic regulatory circuits could all conceivably be 
introduced as therapeutic devices based on the 

predictions of in silico models (as schematically outlined 
in Figure 1).

As well as being amenable to ex vivo manipulation, 
macrophages can also preferentially localize to the site of 
injury following in vivo administration. In experimental 
immune-mediated glomerulonephritis, transduced macro-
phages expressing IL-4, IL-10 or the IL-1 receptor 
antagonist reduced inflammation and subsequent fibrosis 
[24,26]. Macrophages expressing such anti-inflammatory 
cytokines are known as alternatively activated and the 
injection of alternatively activated macrophages has been 
used to effectively treat experimental colitis [27]. Thus, 
across a range of disease model settings, exogenously 
administered manipulated macrophages can have 
beneficial therapeutic effects.

Other related types of cells may also have therapeutic 
potential - for example, myeloid-derived suppressor cells 
(MDSCs), a heterogeneous group of cells that can down-
regulate T-cell-mediated immune responses. MDSC 
activity is important in supporting tumor growth [28] 
and suppressing tumor-associated immunity [29]. Thus, 
studies of MDSCs may provide insight into approaches to 
the downregulation of unwanted immune activity.

Concluding remarks and future prospects
Macrophages are highly flexible and adaptive cells of the 
immune system and are exquisitely sensitive to activation 
from a resting state by the direct sensing of pathogen and 
host danger signals in their microenvironment. The 
innate immune response and subsequent inflammatory 
reactions involve the macrophage initiating a complex 
gene expression program following activation. In silico 
modeling could enable studies of the molecular, genetic 
and proteomic function of the macrophage in relation to 
inflammation across multiple scales: molecular pathways 
in cell-autonomous immunity, intercellular communica-
tion pathways in tissue inflammation, and whole-
organism response pathways in systemic disease.

One potential scenario is depicted in Figure 1. This 
illustrates how clinical research in inflammation and 
macro phage cell biology is moving towards the thera-
peutic clinical administration of modified macrophages 
(Figure 1a). In parallel (Figure 1b), laboratory studies are 
increasingly using high-throughput quantitative analyses 
of macrophage molecular function. Although still in its 
infancy, in silico simulation (Figure 1c) has a potentially 
key role in linking the laboratory and clinical areas by 
contributing a systems approach for precisely predicting 
the right mode of treatment to manipulate the macro-
phage phenotype for maximal therapeutic benefit. 
Although it might seem optimistic to imagine such a role 
for in silico simulation, we would argue that this is not 
too far in the future. Such progress, however, will require 
the refinement of techniques, the convergence of 

Figure 1. Schematic diagram of how in silico macrophage 
modeling could be integrated with existing laboratory and 
therapeutic approaches. (a) Existing protocols can already 
reprogram patient macrophages ex vivo to treat inflammatory 
disease. Macrophages are taken from the patient; healthy 
macrophages are isolated; cytokines and/or chemokines are used to 
reprogram them; and they are then introduced back into the patient. 
(b) Laboratory investigations of high-throughput pathway-based 
analyses of multiple phenotypes are well established. The results of 
these analyses could be integrated with in silico simulations (c) to 
predict effective treatments, such as small molecules or microRNAs. 
Testing these on macrophages isolated from patients (dashed arrow) 
in an iterative manner or ‘systems loop’ could be used to validate the 
in silico model. In this way, new, personalized phenotypic markers 
and macrophage reprogramming treatments (involving a single 
modification or a combination of modifications to cells) could be 
identified, and the therapeutic potential of the ex vivo cells will 
thereby be markedly enhanced.
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disciplines and the development of expertise in trans la-
tion between disciplines if this vision is to become a 
reality.

Ultimately, in silico methods could supplant the finan-
cial and ethical cost associated with experimental bench 
work. However, near-term efforts will require the co-
development of experimental and in silico models, enab-
ling us to work with the underlying complexity to gain 
more insightful answers to the questions we pose than 
would be possible at the bench alone.

The opportunity is now emerging to harness in silico 
approaches to better understand macrophage biology in 
inflammatory diseases. Undoubtedly, this will accelerate 
the future exploitation of macrophage behavior in 
inflammatory disease.
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