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Introduction

Estrogens are an important regulator of development, 
growth, and differentiation of the normal mammary gland. 
In addition, it is well documented that endogenous estro-
gens play a major role in the development and progression 
of breast cancer.1 The mammary cell proliferation signals 
are mediated in part by the estrogen receptors (ERs), which 
belong to the nuclear receptor superfamily of ligand- 
activated transcription factors that control physiological 
and pathological processes, largely by regulating gene tran-
scription.2 Besides the classic ligand-dependent mechanism 
of ER action in which the hormone-receptor complex regu-
lates gene transcription through its interaction with estro-
gen response DNA element (ERE), the ERs can also 
regulate gene transcription interacting with other promoter 
elements such as AP1,3 SP1,4 and CREs.5 Recently, alterna-
tive ER signaling via direct association with and activation 
of many signal transduction pathways has been described.6,7 
Two known subtypes of ER exist, ER-α and ER-β, which 

have distinct tissue and cell patterns of expression.8 In this 
study, ER specifically refers to ERα.

The expression of ER in breast tumors is frequently used 
to group breast cancer patients in a clinical setting, both as 
a prognostic indicator and in predicting the likelihood of 
response to treatment with antiestrogen, such as tamoxi-
wlonger disease-free interval and overall survival than 

Supplementary material for this article is available on the Genes & Cancer 
Web site at http://ganc.sagepub.com/supplemental.

1Department of Cell Biology, Center for Vascular Biology, University of 
Connecticut School of Medicine, Farmington, CT, USA
2Department of Genome Sciences, University of Washington, Seattle, 
WA, USA
*These 2 authors contributed equally.
†These authors share senior authorship.

Corresponding Author:
David K. Han, Department of Cell Biology, Center for Vascular Biology, 
University of Connecticut School of Medicine, 263 Farmington Avenue, 
Farmington, CT 06030; email: han@nso.uchc.edu

Differential Protein Expression Profiles in 
Estrogen Receptor–Positive and –Negative 
Breast Cancer Tissues Using Label-Free 
Quantitative Proteomics

Karim Rezaul1,*, Jay Kumar Thumar1,*, Deborah H. Lundgren1,
Jimmy K. Eng2, Kevin P. Claffey1,†, Lori Wilson1,†, and David K. Han1,†

Abstract
Identification of the proteins that are associated with estrogen receptor (ER) status is a first step towards better understanding of the hormone-dependent 
nature of breast carcinogenesis. Although a number of gene expression analyses have been conducted, protein complement has not been systematically 
investigated to date. Because proteins are primary targets of therapeutic drugs, in this study, we have attempted to identify proteomic signatures that 
demarcate ER-positive and -negative breast cancers. Using highly enriched breast tumor cells, replicate analyses from 3 ERα+ and 3 ERα− human breast 
tumors resulted in the identification of 2,995 unique proteins with ≥2 peptides. Among these, a number of receptor tyrosine kinases and intracellular 
kinases that are abundantly expressed in ERα+ and ERα− breast cancer tissues were identified. Further, label-free quantitative proteome analysis revealed 
that 236 proteins were differentially expressed in ERα+ and ERα− breast tumors. Among these, 141 proteins were selectively up-regulated in ERα+, and 95 
proteins were selectively up-regulated in ERα− breast tumors. Comparison of differentially expressed proteins with a breast cancer database revealed 98 
among these have been previously reported to be involved in breast cancer. By Gene Ontology molecular function, dehydrogenase, reductase, cytoskeletal 
proteins, extracellular matrix, hydrolase, and lyase categories were significantly enriched in ERα+, whereas selected calcium-binding protein, membrane 
traffic protein, and cytoskeletal protein were enriched in ERα− breast tumors. Biological process and pathway analysis revealed that up-regulated proteins 
of ERα+ were overrepresented by proteins involved in amino acid metabolism, proteasome, and fatty acid metabolism, while up-regulated proteins of 
ERα− were overrepresented by proteins involved in glycolysis pathway. The presence and relative abundance of 4 selected differentially abundant proteins 
(liprin-α1, fascin, DAP5, and β-arrestin-1) were quantified and validated by immunohistochemistry. In conclusion, unlike in vitro cell culture models, the in 
vivo signaling proteins and pathways that we have identified directly from human breast cancer tissues may serve as relevant therapeutic targets for the 
pharmacological intervention of breast cancer.
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patients with tumors that lack ERα expression (ERα−).10,11 
Generally ERα− breast carcinomas are less well differenti-
ated and tend to be more aggressive clinically than ER- 
positive breast tumors.12-15 However, the association 
between ERα expression and hormonal responsiveness is 
complex: approximately 30% of ERα+ tumors are not hor-
mone responsive, while 5% to 15% of ERα− tumors respond 
to hormonal therapy.16 The molecular basis for the differ-
ences between ERα+ and ERα− tumors and relationship of 
ER to the hormone-responsive phenotype is believed to 
include genetic and/or epigenetic aberrations occurring at 
the level of ER signaling.

These findings have prompted investigators to identify 
genes that are differentially expressed in ERα+ and ERα− 
breast carcinomas in an attempt to better understand the 
molecular basis for the phenotypic differences between these 
classifications of tumors. Using cDNA microarray technique, 
gene expression profiles have been used to distinguish tumor 
class not evident by traditional methods.17,18 In breast cancer, 
DNA microarray analysis has demonstrated that ERα+ and 
ERα− breast cancer has unique molecular profiles, has iden-
tified several distinct molecular subclasses, and has been 
used to predict prognosis.19-23 Although information exists on 
the mRNA expression signatures of specific breast cancer 
subtypes, very little data are available regarding the protein 
expression signatures in ERα+ and ERα− breast cancer tis-
sues. Because messenger RNA (mRNA) levels do not neces-
sarily correlate with protein abundance,1,24 comparing protein 
expression profiles of ERα+ and ERα− breast cancers is 
needed. Protein-level information is crucial for the functional 
understanding and the ultimate translation of molecular 
knowledge into clinical practice. For example, identification 
of receptors and intracellular protein kinases will likely allow 
better selection of drug targets highly expressed in human 
breast cancer tissues.

The major aim of this study was to identify differential 
proteins expressed in ERα+ and ERα− breast tumors in 
order to understand the proteomic phenotype of each. A 
major hurdle of tissue proteomics analysis is the variability 
among tissue samples due to the heterogeneity of cancer 
tissues, which can contain a mixture of cancer cells as well 
as inflammatory, vascular, and connective tissue cells. 
Many published studies have provided proteomics data 
without addressing this important issue. Laser capture 
microdisesction (LCM) is an attractive but labor-intensive 
solution that allows the harvesting of pure cell subpopula-
tions from frozen and fixed tissues.1,25,26 To address these 
very important issues, we have adopted the following steps: 
1) use of tissue coring of frozen tumor samples to selec-
tively separate tumor cell populations from surrounding 
connective tissue, 2) large-scale protein identification from 
isolated cancer tissues using 1-dimensional electrophoresis 
combined with liquid chromatography/tandem mass spec-
trometry (GeLC-MS/MS), 3) quantitative analysis to  
estimate differential expression of identified proteins in 

ERα+ and ERα− breast cancer using the spectral count 
label-free method with PaGE t statistic analysis, and 4) 
validation of the quantification data on selected proteins 
using orthogonal methods to support the proteomics data.

In this study, we have analyzed differential protein 
expression profiles of ERα+ and ERα− breast cancer 
tumors. In total, 2,995 unique proteins were identified from 
3 ERα+ and 3 ERα− breast cancer tissues by GeLC-MS/
MS. Of these proteins, 1,791 (59.8%) proteins were com-
mon to both groups, and 676 (22.6%) and 528 (17.6%) pro-
teins were unique to ERα+ and ERα− groups, respectively. 
In addition, we report the identification of 65 kinases that 
are expressed in human breast cancer tissues. The statistical 
tool PaGE was used to identify proteins whose expression 
levels were significantly and differentially regulated 
between ERα+ and ERα− breast cancer tumors. Signifi-
cantly expressed identified proteins were mapped by means 
of Protein Analysis THrough Evolutionary Relationship 
(PANTHER) GO classification and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) biochemical pathway to 
obtain biological interpretations of the proteomic data. Sev-
eral proteins identified in the present study have not been 
previously identified in human breast cancer tumors. Our 
identification of differentially expressed protein profiles of 
ERα+ and ERα− human breast tumors may facilitate bio-
marker discovery for disease diagnosis and elucidation of 
potential therapeutic targets.

Results
Breast Cancer Tissue Proteomics by GeLC-MS/MS

The overall strategy of this study is outlined in Figure 1. The 
first step was to isolate breast cancer cell–enriched tissue 
regions for large-scale proteomic analysis. After obtaining 
malignant breast tissue specimens from patients during surgical 
procedure, a frozen tissue block for each tumor specimen was 
prepared by cutting a section and staining it with H&E to local-
ize cancer cell–rich foci within the tissue block (Fig. 1). The 
areas enriched in cancer cells with minimal stromal and extra-
cellular components were cored with a 2- to 3-mm dermal punch 
biopsy needle. Subsequently, cored breast cancer tissues were 
lysed, and 40 μg of tissue protein lysate obtained from 3 ERα+ 
and 3 ERα− cancer patients were separated by 1-dimensional 
(1D) sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE). Repeated LC-MS/MS analysis of 6 breast cancer 
tissue samples (3 ERα+ and 3 ERα−) resulted in the identifica-
tion of a total 2,995 unique proteins with at least 2 or higher 
scoring peptides (Suppl. Table S1). The total number of proteins, 
the number of unique peptides identified per sample, and the 
false discovery rate (FDR) are shown in Table 1. Supplementary 
Table S2 details the information on all of these proteins identi-
fied for each sample, including the number of unique peptides 
identified per protein, peptide sequence, precursor ion mass, 
and charge state. Supplementary Table S3 seperates the total 
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Figure 1. A schematic diagram showing the outline of the experimental methods used in the current study. Human breast cancer cells were 1) isolated 
by histological identification of homogenous cancer cell–enriched regions, and 2) isolated with a core biopsy needle from adjacent connective tissues, 
inflammatory cells, and stroma. Protein extracts were then analyzed by 1-dimensional gel electrophoresis, in-gel trypsin digestion, and tandem mass 
spectrometry. Bioinformatics tools (SEQUEST, PaGE t statistic) were used to identify and quantify the proteins, and immunohistochemistry (IHC) methods 
were used to validate selected proteins.

Table 1.  Summary of Human Breast Cancer Tissue Proteomic Data

Sample ID Total Peptides Unique Peptides Unique Proteinsa Reverse Peptide Hits Forward Peptide Hits FDR (%)b

ERα+ve 1 34,389 11,042 2,035 34 11,008 0.31
ERα+ve 2 31,897 10,156 1,860 40 10,116 0.4
ERα+ve 3 20,754 7,150 1,312 14 7,136 0.2
ERα−ve 1 25,729 10,311 1,848 48 10,263 0.47
ERα−e 2 29,130 8,969 1,607 18 8,951 0.2
ERα−ve 3 14,392 5,609 996 0 5,609 0

aFiltering criteria for protein identification: Xcorr 1.9 (1+), 2.2 (2+), 3.7 (3+), and ΔCn ≥0.1. The files used to compute false discovery rate (FDR) were 
searched against concatenated forward and reverse human databases.
bFDR calculation: number of reverse peptide hits × 100/number of forward peptide hits.

identified proteins into the 2,467 and 2,319 proteins identified 
from the ERα+ and 3 ERα− groups, respectively. Among the 
identified proteins, 1,791 proteins (59.8%) were common to 
both groups, and 676 (22.6%) and 528 (17.6%) proteins were 
unique to ERα+ and ERα− groups, respectively (Fig. 2A). To 
obtain an overview of cellular distribution of the identified pro-
teins, the identified proteins were classified according to 

cellular components of Gene Ontology (GO) annotation. With 
regard to “cellular component,” a majority of the proteins were 
assigned to the cell (84.8%), while 2,378 (79.40%) proteins 
were mapped to the intracellular, 1,999 (66.70%) proteins to 
the cytoplasm, 949 (31.70%) proteins to the membrane, 886 
(29.60%) proteins to the nucleus, 270 (9.00%) proteins to the 
extracellular region, 147 (4.90%) proteins to the extracellular 
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space, 85 (2.80%) proteins to the chromosome, 60 (2.00%) 
proteins to the proteinaceous extracellular matrix, and 49 
(1.63%) proteins to the cell surface (Fig. 2B). The distributions 
of proteins were not biased towards a specific cell 
compartment.

Identification of Proteins Differentially Expressed in 
ERα+ and ERα− Breast Tumor
Spectral count (SC), defined as the total number MS/MS 
spectra confidently assigned to a protein, is known to pro-
vide a semiquantitative measure of protein abundance.31-34 
SC has been used to detect biologically significant differen-
tial protein expression under multiple experimental condi-
tions.31-34 We used this abundance measure to statistically 
analyze the differences in protein expression both within 
and between ERα+ and ERα− groups. To characterize the 
ERα+ and ERα− subtypes, we first identified the proteomes 
of 3 ERα+ and 3 ERα− breast tumor samples individually. 
Approximately 2,000 proteins were identified from each of 
the 2 ERα+ and ERα− samples, while considerably fewer 
proteins were identified from the third sample of each 
group. These third samples were omitted from statistical 

analysis because their low protein numbers could not be 
corrected by normalization.83

In order to identify differential protein expression 
between ERα+ and ERα− groups, we first analyzed differ-
ential protein expression within ERα+ and ERα− groups 
using the SC approach. The semiquantitative measure of 
protein abundance was calculated by normalizing the SCs 
of each protein in a given sample relative to the total SCs in 
that sample. The differential expression analysis within the 
ERα+ groups (ERα+ 1 v. ERα+ 2) and ERα− groups (ERα− 
1 v. ERα− 2) predicted a significant number of differential 
regulated proteins at the PaGE confidence level of ≥0.80 
(Suppl. Tables S6a and S6b). We next compared differential 
protein expression between ERα+ 1 v. ERα− groups. The 
analysis predicted 236 differentially regulated proteins at a 
confidence level of ≥0.8 (Appendix and Suppl. Table S5). 
Note that the PaGE analysis uses permutations to compare 
within-group variation to between-group variation and 
reports only those differences which are significantly 
greater between than within groups.

Functional Analysis of Differentially Expressed 
Proteins in ERα+ and ERα− Breast Tumors
In order to derive biological meaning of differentially 
expressed proteins in ERα+ and ERα− breast tumors, these 
proteins were grouped according to their reported biological 
processes and molecular functions using the PANTHER clas-
sification (www.pantherdb.org).35 PANTHER uses the bino-
mial statistics tools to compare our gene list to a reference list 
(NCBI: Homo sapiens genes) to determine statistically sig-
nificant overrepresentation of functional groups of genes. We 
individually uploaded the 141 proteins up-regulated in ERα+ 
and 95 proteins up-regulated in ERα− breast cancer tissue 
samples and compared their enrichment in functional catego-
ries as defined by PANTHER GO annotation (Fig. 3). Detailed 
information of the molecular function and biological pro-
cesses is provided in Supplementary Tables S7a and S7b.

Similarly, we have analyzed which cellular pathways 
enriched in ERα+ and ERα− breast tumors using 2 indepen-
dent Web-based annotation tools PANTHER and GENE-
CODIS. Both bioinformatics tools commonly identified 
ubiquitine proteasome pathway highly enriched in ERα+ 
and glycolysis pathway in ERα− breast tumor. The 
detail-enriched pathways along with the number of proteins 
identified in each pathway are shown in Table 2.

Validation of Observed Proteomic Changes Using 
Tissue Microarrays
To validate the changes in proteins observed by this pro-
teomic profiling, and to determine the cellular location of 
the proteins, immunohistochemistry (IHC) was performed 
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Figure 2.  (A) Venn diagram representation of the overlap of identified 
proteins from ERα+ and ERα− breast cancer tissues. Proteins identified 
from 3 ERα+ and 3 ERα− samples were combined for this comparison. (B) 
Gene Ontology (GO) annotation of 2,995 breast cancer tissue proteins 
by cellular component. Allocation of breast cancer tissue proteins by cell 
components demonstrated the majority belonged to the cell (n = 2,927), 
while the minority resided in the external cell surface (n = 49).
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on 27 breast cancer tissue blocks as well as on a breast can-
cer tissue microarray comprising 33 patient samples. Three 
representative proteins, DAP5 (elf-4G2/p97), fascin, and 
liprin-α1, were chosen based on their biological function 
and antibody availability (Figs. 4-6). In addition, to evalu-
ate the reliability of SC-based quantitative analysis, 
β-arrestin-1, whose quantitative change was around 2-fold 
with marginal confidence levels of 0.80, was also chosen 
for IHC validation.

Fascin, an actin bundling motility-associated protein, is 
normally expressed in neuronal and mesenchymal cells and is 
low or absent in epithelia.41 However, striking up-regulation 
of fascin has been reported in several human epithelial tumors 
including breast, colon, lung, and ovarian carcinomas.42-47 A 
recent study has suggested that expression of fascin correlates 
with hormone receptor–negative breast cancer, and overex-
pression may contribute to a more aggressive clinical 
course.41 DAP5 (p97 or eIF4G2) is abundantly expressed in 
proliferating cells and is recruited to the ribosome following 
growth factor stimulation. Down-regulation of DAP5 levels 
by RNA interference decreases the rate of global protein 
translation and inhibits cell proliferation.48 Liprin-α1 was 
identified as a binding protein of leukocyte common 
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Figure 3.  Bar graph representations of the distribution of significantly 
enriched (P < 0.05) differentially expressed human breast cancer proteins 
according to their (A) molecular function and (B) biological process. 
Categorizations were based on information provided by the online 
resource PANTHER classification system.

Table 2.  Enriched Biological Pathways Identified in ERα+ and 
ERα− Breast Cancer Samples

Pathway Description
No. of 

Proteins P  Value

PANTHER pathwaysa (P < 0.05)
  ERα+
    Ubiquitin proteasome pathway 6 1.62E-03
  ERα−
    Glycolysis 3 2.32E-02
KEGG pathwaysb (P < 0.01)
  ERα+
    Valine, leucine, and isoleucine degradation 4 0.00060627
    Proteasome 4 0.00060627
    Fatty acid metabolism 4 0.00150812
    Nucleotide sugars metabolism 3 0.00350383
    Citrate cycle (TCA cycle) 2 0.00398715
    Pyruvate metabolism 3 0.00677828
    Glutathione metabolism 3 0.00730146
    Pathogenic Escherichia coli infection (EPEC) 3 0.00764619
    Lysine degradation 3 0.00925342
  ERα−
    Glycolysis/gluconeogenesis 4 0.000985959
    Galactose metabolism 3 0.00109219
    Starch and sucrose metabolism 3 0.00359079

Note: TCA = Trycarboxylic acid cycle.
aThe significant cellular pathways (PANTHER classification) enriched in 
ERα+ and ERα− breast cancer samples (P < 0.05).
bThe significant cellular pathways (Kyoto Encyclopedia of Genes and 
Genomes [KEGG]) enriched in ERα+ and ERα− breast tissue samples (P 
< 0.01).

antigen-related (LAR) family receptor tyrosine phosphatases 
and colocalized with LAR at focal adhesion.49 Liprin-α1 also 
interacts with the inhibitor of growth 4 (ING4), a candidate 
tumor suppressor that plays a major role in gene regulation, 
cell-cycle control, apoptosis, and angiogenesis. ING4 regu-
lates cell motility by interacting with liprin-α1.50 β-Arrestin-1, 
which regulates many aspects of 7 transmembrane receptor 
(7TMR) signaling and function, has also been shown to serve 
as an adaptor protein, which brings Mdm2, an E3-ubiquitin 
ligase, to the IGF-1R, leading to its proteasome-dependent 
destruction.51 RNA interference–mediated suppression of 
β-arrestin-1 in human melanoma cells ablated IGF-1R– 
stimulated ERK signaling and prolonged the G1 phase of the 
cell cycle.52 These data suggest that β-arrestin–dependent 
ERK signaling through IGF-1R regulates cell cycle progres-
sion and may be an important regulator of the growth of nor-
mal and malignant cells.51,52

Representative IHC staining patterns for liprin-α1 and 
β-arrestin-1 are shown in Figure 5. For both proteins, stain-
ing in the serial sections of ERα+ invasive ductal carci-
noma showed prominent immunoreactivity in the cancerous 
epithelial cells, while the stromal cells showed much 
weaker staining (Fig. 4A and B). In contrast, staining in the 
serial sections of invasive ERα− ductal carcinomas showed 
much weaker immunoreactivity in the cancerous epithelial 
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cells (Fig. 4C and D). Semiquantitative analysis showed 
higher numbers of samples with high-grade expression of 
both of these proteins in ERα+ tumors (11 of 20 for 
liprin-α1, and 10 of 20 for β-arrestin-1) compared to ERα− 
breast cancers (4 of 13 for liprin-α1, and 5 of 13 for 
β-arrestin-1) (Table 3). Higher magnification of selected 
regions showed lack of staining in the nucleus, consistent 
with the predicted localization of both of these proteins in 
the membrane and cytoplasmic fractions (Fig. 4A and B). 
Higher power magnification of liprin-α1 and β-arrestin-1 
staining in an ERα− sample revealed a variable cell-to-cell 
expression pattern, where some cells stained detectable 
levels while others showed no immunoreactivity at all 
(Fig. 4C and D).

Based on semiquantitative IHC analysis, it was observed 
that fascin is more frequently expressed at a higher intensity 
(grade 3 and 4) in ERα− breast cancer samples (7 of 13 in 
ERα− v. 8 of 20 in ERα+) (Table 3). We have also observed 
that fascin was expressed on angiogenic vessels within the 
cancer tissues, which indicates a potential role for this pro-
tein in cancer angiogenesis. DAP5 antibody showed intense 

cytoplasm and nuclear staining among the ERα− cancer 
cells compared to ERα+ cells, where cytoplasm-staining 
intensity was low (Fig. 6). Semiquantitative IHC analysis 
showed higher expression of DAP5 among ERα− breast 
cancer (7 of 13) compared to ERα+ tumors (2 of 20) (Table 
3). These experimental observations further support the 
findings of our differential expression proteomics derived 
from ERα+ and ERα− breast cancer tissues.

Development of Multiple Reaction 
Monitoring (MRM) for Candidate Biomarker 
Quantification and Validation

Identification of 2,995 proteins from ERα+ and ERα− breast 
cancer tissue provided in this study will serve as a valuable 
resource for the research community interested in using 
these proteins as biomarkers for risk assessment and stratifi-
cation in breast cancer. The proteotypic peptides (peptides 
that are preferentially observed for a protein are called pro-
teotypic), charge states, and differential regulation between 

Figure 4. Validation of β-arrestin-1 and liprin-α1 by immunohistochemistry (IHC) on human breast cancer tissues. Anti–β-arrestin-1 (A) and anti–liprin-
α1 antibodies staining (B) show intense cytosolic staining (red arrow). Unstained nuclei counterstained with hematoxylin are indicated in ERα+ breast 
cancer tissues (black arrows). In ERα− cancer tissues, β-arrestin-1 (C) and liprin-α1 (D) staining intensities are much weaker compared to ERα+ cancer 
cells. Magnification, 10x; inserted image magnification, 40x.
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the ERα+ and ERα− breast cancers that we are reporting in 
this paper can now be used to develop mass spectrometry–
based multiple reaction monitoring (MRM) assays. Recently, 
MRM mass spectrometry (MRM-MS)–based quantitative 
technique has been applied for quantitative conformation of 
known or candidate biomarkers in the complex tissue sam-
ples.84 A proteotypic peptide is selected as a surrogate for the 
protein of interest and analyzed by MRM-MS in targeted 
fashion. Development of MRM assays enables a seamless 
and rapid transition from hypothesis generation to valida-
tion.84 The MRM-MS–based techniques can be applied to 
semiquantitatively test whether a number of candidate mark-
ers were truly overrepresented in the ERα+ and ERα− breast 
cancer tissues as predicted by the label-free SC analysis. 
Specifically, a number of candidates can be chosen from the 
list of the differentially expressed proteins (Appendix and 
Suppl. Table S2), and optimum transition can be automati-
cally chosen for highly confidently identified peptides origi-
nating from the protein candidates by interrogating the 
LC-MS/MS data.

Discussion

Breast cancer is among the most heterogeneous of human 
cancers, and effective treatment strategy will require com-
prehensive molecular characterization for the purpose of 
target identification of breast cancer tissues. The ER status 
of the breast cancer tumor is determined from its protein 
level and has long been used as a means to classify the 
group of patients that will benefit from hormone therapy. 
However, ER status based on protein expression does  
not give a verification of the functional activity of ER-
dependent signaling pathways. In previous studies, global 
gene expression of breast tumor demonstrated that ER sta-
tus of breast tumors is associated with distinct gene expres-
sion profiles involving a large number of genes.19-23 To gain 
more comprehensive understanding of breast cancer pro-
gression, it is critical to combine the protein expression pat-
tern with global mRNA expression. Proteins are the major 
effectors of most biological processes and are also the most 
suitable molecules for use as biomarkers, prognostic risk 

Figure 5. Validation of differential fascin expression by immunohistochemistry (IHC) on human breast cancer tissue. ERα− cancer tissues show intense 
expression of fascin (A), whereas ERα+ tissues (C) show only few scattered areas of positive staining (black arrows). Fascin antibody also stained the 
endothelial lining of angiogenic vessels (D, red arrows) and dendritic cells near lymphoid aggregates (B, red arrow) within the cancer tissues. Magnification, 
10x; inserted image magnification, 40x. (E) Control immunostaining (mouse IgG as primary antibody with hematoxylin as counterstain).
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Table 3.  Semiquantitative Analysis of Immunohistochemistry on Tumor Tissue Array of ER+ and ER– Patients

Spectral Count ERα+ (n = 20)a,b ERα− (n = 13)a,b

Name of Proteins ERα+ ERα−
PaGE t

(confidence) Low High Low High

DAP5 0.5 5 0.948 18 (90.0%) 2 (10.0%) 6 (46.1%) 7 (53.9%)
Fascin 0.5 5.17 0.971 12 (60.0%) 8 (40.0%) 6 (46.1%) 7 (53.9%)
β-Arrestin-1 2.6 0.3 0.802 10 (50.0%) 10 (50.0%) 8 (61.5%) 5 (39.5%)
Liprin-α1 3.84 0.5 0.978 9 (45.0%) 11 (55.0%) 9 (69.0%) 4 (31.0%)

aSemiquantitative grading of immunohistochemistry staining intensity. Low grade (1 and 2): grade 1 = very weak but distinguishable staining above the 
background in less than 50% of low power microscopic field (10x and 20x), grade 2 = mild intensity and clearly stronger intensity than grade 1 and 
more than 50% positive for low power microscopic field; high grade (3 and 4): grade 3 = moderate intensity.
bEach microarray tumor spot was stained 2 times.

Figure 6. Validation of differential expression of DAP5 by immunohistochemistry (IHC) on human breast cancer tissues. ERα− breast cancer shows 
intense expression of DAP5 (A and C, 10x and 40x, respectively), while ERα+ breast cancer shows less intense and scattered expression of DAP5 (B and 
D, 10x and 40x, respectively). In ERα− tissues, DAP5 antibody stained both cytosolic (blue arrow) and nuclear regions (red arrows), and nuclear staining 
is variable with both DAP5-negative (black arrow, staining blue with hematoxylin) and -positive (red arrows, staining brown with DAB) nuclei.

factors, and therapeutic targets. The profiling of protein 
expression from pathological tissues provides a rough sur-
vey of the pathological, metabolic, oncogenic, and meta-
static status. The principle objective of our present study 
was to identify differentially expressed proteins associated 
with ER status that may serve as a useful resource for basic 
and translational cancer research.

Surgical tumor specimens are not homogeneous in their 
cellular composition and include various cell populations 
such as stroma cells, fibroblasts, and lymphocytes in addi-
tion to cancer cells. Moreover, the proportion of tumor cells 
in clinical samples varies significantly. These issues may 
compromise the protein expression data associated with ER 
that is expressed specifically in the epithelial cells. To isolate 
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pure cancer cell populations from tumors, the currently 
available LCM dissection method is very labor intensive, 
and obtaining the amount of protein necessary for proteomic 
analysis is not easily achievable.25 Moreover, isolating pure 
cells by LCM requires clear histology to identify cancer 
cells from connective tissue cells. Such clear histology is 
possible using formalin-fixed, paraffin-embedded (FFPE) 
tissues with minimal staining with hematoxylin, but the 
problem of protein decrosslinking of formalin-fixed tissues 
for further proteomic analysis still exists. Even though there 
are numerous published studies claiming to analyze FFPE 
tissues for proteomics using various antigen retrieval meth-
ods, data obtained by such methods are not comparable to 
those obtained from fresh cell lysates or frozen samples in 
terms of quantitative and qualitative peptide/protein identifi-
cation.25,27 On the other hand, using frozen samples for LCM 
compromises the quality of the histology, which is a major 
limiting factor for confident isolation of pure cells for large-
scale proteome analysis. In order to carry out proteomic 
analysis of frozen breast cancer tissues, we have isolated the 
nearly pure cancer cell populations from the surrounding 
connective tissues using a tissue coring method.

In this study, we applied GeLC-MS/MS proteomic tech-
nology to compare the proteomes of ERα+ and ERα− breast 
cancer tumors. In total, we identified the expression of 2,995 
unique proteins and quantified 236 differentially expressed 
proteins between ERα+ and ERα− breast cancer tumors. We 
compared 2,995 identified breast cancer proteins from this 
study with the protein list publicly available in the Genes-
to-System Breast Cancer (G2SBC) Database (http://www.
itb.cnr.it/). The G2SBC Database is a bioinformatics 
resource that collects and integrates data about genes, tran-
scripts, and proteins that are altered in breast cancer cells. 
The G2SBC Database has reported a list of 2,036 genes with 
at least one evidence of their association with breast cancer. 
Therefore, we converted 2,995 protein identifications (IDs) 
to 2,850 gene IDs with the help of an in-house–developed 
ID conversion tool and then compared with 2,036 breast 
cancer genes in the G2SBC Database. This analysis allowed 
the identification of 721 common proteins/genes involved 
in breast cancer, suggesting that our results support and add 
significantly to what is already known in the literature about 
genes involved in breast carcinogenesis.

Among 721 known breast cancer proteins, we have iden-
tified the cell-adhesion integrins, as well as integrins α 2 
and 5 and β 1, 2, 4, and 5. Similarly, multidrug resistance 
proteins (ABCD3), signaling molecules, cell surface recep-
tors, kinases (protein kinase B), and transcription factors 
were also detected in this study. Furthermore, identification 
of the most abundant receptor tyrosine kinases and intracel-
lular kinases that are expressed in human breast cancer tis-
sues provides a new dimension for therapeutic strategies. 
For example, from our analysis, we know that epidermal 
growth factor receptor (EGFR), vascular endothelial growth 

factor receptor 2 (VEGFR2/KDR), insulin-like growth fac-
tor1 receptor (IGF1R), and ephrins (EPHB3 and EPHB4) 
are the most abundant receptor tyrosine kinases expressed 
in breast cancer tissue samples. Similarly, we have identi-
fied over 60 most abundant kinases that are expressed in the 
breast cancer tissue samples (Suppl. Table S8). Therefore, 
the list that we have uncovered will be useful for therapeu-
tic strategy to target kinase-signaling network in breast can-
cer and help design future therapeutic strategies.

Systematic comparison of proteomic and cDNA micro-
arrays is challenging for several reasons. One reason is that 
most published microarray studies are focused on reporting 
cDNAs that are differentially expressed but not the compre-
hensive list of expressed cDNAs. In contrast, proteomic 
reports rely on detected proteins, which favor high abun-
dant proteins expressed in a particular tissue being ana-
lyzed. Therefore, when one compares these 2 datasets, very 
little overlap is found with little or no apparent utility. A 
good example is the study in which the proteomic analysis 
of ductal carcinoma in situ (DCIS) of the human breast was 
compared to the published nucleic microarray studies26; 
very little concordance between the proteomic and microar-
ray datasets was uncovered. Similarly, in our previous 
study, when we systematically compared the protein pro-
teomic dataset from prostate tissues with a number of pub-
lished cDNA microarray datasets, we found very little 
overlap between the mRNAs and proteins.27 A second rea-
son for the discordance between proteomic and cDNA stud-
ies is the source of tissue being analyzed. Most cancers 
have heterogeneous distribution of cancerous cells and 
matrix components; comparing datasets from 2 different 
sources may not generate useful data. Supporting this 
notion, when we compared the proteomic dataset with the 
microarray dataset from the same leukemia cells, we found 
98% overlap between these 2 datasets. Therefore, charac-
terization of proteomes and mRNAs from the same ERα+ 
and ERα− breast cancer tissues is required for meaningful 
comparison. Comparing our proteomic datasets with micro-
array data generated from the same source of samples is 
beyond the scope of the current study.

It is interesting to note that differential protein expres-
sion can be found within or between ERα+ and ERα− breast 
cancer groups. Differential regulation within the 2 ERα+ 
(294 proteins) or the 2 ERα− (411 proteins) breast cancers 
could be observed due to several reasons: 1) the cell-to-
matrix component ratio variation from these samples, 2) 
underlying genetic or epigenetic differences in patient sam-
ples within the same group, and 3) differences in the stage 
of cancer during the multistep carcinogenesis. These results 
point out the complexity of each cancer sample even within 
the same type as defined by the ER status and question the 
underlying logic of tamoxifen treatment.

In addition to the identification of differentially  
regulated proteins within ERα+ and ERα− breast cancers, we 
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also compared the ERα+ and ERα− groups to identify high-
confidence differential regulation (Suppl. Table S4). Of 236 
differentially expressed proteins, 98 proteins matched with 
the list of 721 common proteins from 2,036 proteins docu-
mented to be involved in breast cancer (discussed earlier). It 
is interesting that the expression level of the remaining 485 
proteins (721 minus 236) may not associate with a change of 
ER status. In fact, most of the proteins that account for func-
tional differences between ERα+ and ERα− breast cancer 
have not previously been known to be regulated by ER. The 
proteins associated with ERα− status are of particular interest 
because they may reveal the biological cause of the distinct 
behavior of these tumors and provide potential targets for 
drug development. Among the 236 differentially expressed 
proteins, 141 proteins were significantly up-regulated in the 
ERα+ breast tumors, which included several previously iden-
tified such as IGF1R, CORO1A, MAPT, PPFIA1, OGN, 
NUMA1, KRT8, KRT18, KRT19, GSTM3, GSTM1, 
SLC9A3R1, SELENBP1, HEBP1, CLU, CA1, CA2, APN, 
MX1, and FASN, as well as many other potential marker pro-
teins for this phenotype. One example is the protein STAMP1 
(PTPLAD1), which encodes 6 transmembrane proteins 
and has been reported to have a key role in both normal pros-
tate physiology and the progression of prostate cancer.38 In 
the ERα− breast tumors, 95 proteins were specifically up-
regulated, and these also included proteins previously reported 
to be involved in breast cancer such as S100A8, S100A9, 
SLC2A1, FABP7, CTSD, CTSB, SFN, ANX1, ENO1, MSN, 
TPM2, LGALS3, LGALS1, FSCN1, RTN4, GTF2I, FBLN1, 
CALU, TFRC, HK2, and CES1 (Appendix). One interesting 
protein specifically highly up-regulated in this tumor was 
peripherin (PRPH), which is an intermediate filament, 
involved in growth and development of the peripheral ner-
vous system, and is produced by neurons and the β cells of the 
islets of Langerhans. Recently, malignant melanomas and 
some melanocytic nevi have been shown to express periph-
erin.39 These differential protein expression patterns may 
reflect levels of activation of distinct signaling pathways.

We next systematically determined if estrogen-responsive 
pathways are differentially expressed between ER-positive 
and -negative breast cancer tissues. Analysis of differentially 
expressed proteins (genes) by PANTHER GO categories 
offers a global view of the biological meaning of this pro-
teomic dataset. In our analysis, we identified enriched GO cat-
egories in both ERα+ and ERα− breast cancer tumors. By GO 
biological processes, the genes related to amino acid metabo-
lism, cell structure, cell structure and motility, lipid, fatty acid 
and steroid metabolism, other metabolisms, carbohydrate 
metabolism, intracellular protein traffic, and protein metabo-
lism and modification were significantly enriched (P < 0.05) in 
ERα+ breast tumor samples. In contrast, significantly enriched 
biological processes among the up-regulated genes in ERα− 
breast tumors include those involved in glycolysis, intracellu-
lar protein traffic, protein metabolism and modification, 
carbohydrate metabolism, and cell motility (Fig. 3A).

Similarly, proteins that are significantly enriched (P < 
0.05) for the molecular function category in ERα+ breast 
tumors include dehydrogenase, oxidoreductase, lyase, cyto-
skeletal protein, acyltransferase, transferase, reductase, acet-
yltransferase, hydrolase extracellular matrix, intermediate 
filament, and miscellaneous function. Significantly enriched 
molecular functions among the up-regulated genes in ERα− 
breast tumors include selected calcium binding proteins and 
calmodulin-related proteins (Fig. 3B).

Fatty acid synthase (FAS) is a multienzyme complex 
catalyzing the synthesis of long-chain fatty acids from  
acetyl-CoA and malonyl-CoA. In most normal human tis-
sues, however, FAS is generally expressed at low levels 
because cells preferentially use circulating dietary fatty 
acids for the synthesis of new structural lipids.53 High levels 
of FAS expression have been found in many human cancers 
including breast cancer. Recently, a number of studies have 
pointed to the potential importance of FAS in breast cancer. 
Two studies have shown that FAS expression in malignant 
breast tumors is associated with a 4-fold increase in risk of 
death. In one of these, there was a 9-fold increased risk of 
death when high levels of FAS expression occurred together 
with a high proliferative index (>17%).54,55

A total of 17 cytoskeletal-associated proteins with  
diverse biological functions were significantly up-regulated 
in ERα+ breast tumors (Suppl. Table S7a). Among the most 
highly up-regulated proteins were coronin-1A (CORO1A), 
microtubule-associated protein tau (MAPT), type I cyto-
skeletal 18 (KRT18), type I cytoskeletal 19 (KRT19), type II 
cytoskeletal 8 (KRT8), and Src substrate cortactin (CTTN). 
Interestingly, most of these proteins are known to be respon-
sive to estrogen. Our finding of coronin-1A, which is 
increased in ERα+ breast tumor tissues, supports the emerg-
ing link between actin remodeling and breast cancer devel-
opment. This protein is not only involved in actin 
polymerization/depolymerization but is also related to the 
invasion and migration of malignant tumor cells, which 
may be prerequisite for breast cancer development and pos-
sibly for lymph node metastasis. Cortactin,56 as a regulator 
of actin cytoskeleton organization, is involved in many of 
these processes. For instance, many observations revealed 
that cells overexpressing cortactin show enhanced cell 
migration, invasion, and increased metastatic potential in 
vivo.57,58 Furthermore, down-regulation of cortactin in 
highly invasive cells in vitro using small RNA interference, 
deletion mutants, or microinjection of antibodies resulted in 
a decreased invasive potential.59-61

In contrast, many PANTHER GO categories including 
selected calcium-binding protein (S100A8, S100A9), mem-
brane traffic protein, and cytoskeletal protein were signifi-
cantly up-regulated in ERα− breast cancer tumors. The 
S100 protein family is the largest family of calcium-binding 
proteins in which most members are overexpressed in cer-
tain types of cancers such as breast cancer, lung cancer,  
gastric cancer, prostate cancer, and skin cancer.62 More 
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specifically, S100A8 and S100A9 seem to be overexpressed 
in mammary ductal carcinomas.63 S100A8 and S100A9 
naturally form a stable heterocomplex. Immunohistochemi-
cal investigations have examined the relationship between 
both S100A8 and S100A9 proteins and the pathological 
parameters that reflect the aggressiveness of carcinoma in 
invasive ductal carcinoma of the breast. Coexpression of 
both proteins was associated with poor tumor differentia-
tion, invasion, and metastasis.63 A recent study has shown 
that S100A9 expression was strongly associated with poor 
prognosis and suggested that this negative impact could be 
due to the tight correlation between S100A9 and other path-
ological factors closely associated with the basal subtype 
such as ER negativity and high grade. However, in this 
study, prognostic value was not simultaneously evaluated 
by the expression of S100A8 and S100A9.64 In our study, 
identification of both S100A8 and S100A9 proteins in 
ERα− breast tumors is consistent with the role of these pro-
teins in aggressiveness, but their putative role in the tumor 
phenotype needs further experimental evaluation.

Rho kinases, also termed Rho-associated coiled-coiled–
containing protein kinases (ROCK1 and ROCK2), are  
serine/threonine protein kinases that are activated when 
bound to the GTP-bound form of the small GTPase RhoA or 
RhoC. The small GTPase Rho/Rho-associated kinase 
(ROCK) pathway is involved in cell migration, invasion, 
cell-cell adhesion, actomyosine contraction, cytokinesis, and 
mitosis.65-68 Rho GTPases were required for Ras-mediated 
oncogenic transformation. Several members of the small 
GTPase Rho family, RhoA, RhoC, RhoH, Rac1, and CDC42, 
are overexpressed in several cancer types.69 In vitro studies, 
as well as animal experiments, suggest that interruption of 
the Rho/Rho kinase pathway with specific ROCK inhibitors 
(Y-27632, Wf-536, fasudil) inhibits invasiveness of several 
animal and human cancer cells.70-73 These results indicate 
that Rho kinases play an essential role in tumor cell invasion 
and metastasis and suggest that the Rho kinases are potential 
therapeutic targets. The fact that fasudil is approved for 
human use and is tolerated without serious adverse reaction 
makes it an attractive anticancer drug candidate for the pre-
vention of cancer metastasis.

Pathway analysis has allowed identifying groups of pro-
teins (genes), which are organized into metabolic and signal-
ing pathways relevant to the oncogenesis or progression of 
cancer. The 2 different and independent tools used, PAN-
THER and GENECODIS, result in similar findings: ubiqui-
tine proteasome pathway (PSMC4, PSMD6, PSMD7, 
PSMC6) and glycolysis pathway (HK2, PFKP, ENO1, 
LDHA) are the most significantly altered in ERα+ and ERα− 
breast cancer tumors, respectively. An increase in lactate 
dehydrogenase A (LDHA), which is known to play an active 
role in anaerobic glycolysis, reflects the hypoxic condition 
known to be present in proliferating cancer cells.74-76 In addi-
tion to increased glycolysis, we also detected high-level 
expression of glucose transporter 1, SLC2A1 (GLUT1), in 

ERα− breast cancer tumors. This is in agreement with other 
studies in various cancers including breast cancer.77 The cru-
cial importance of the glycolytic phenotype is emphasized by 
the studies demonstrating that increased glucose uptake coin-
cides with the transition from premalignant lesions to inva-
sive cancer.78 Glucose uptake in cancer cells is increased by 
activation of the oncogene Akt (protein kinase B).79 Activa-
tion of Akt increases transcription and plasma membrane 
localization of glucose transporter GLUT1 (glucose trans-
porter 1), the glucose transporter expressed in most cell 
types.80,81 Kinase activity of Akt is often increased in breast 
and ovarian cancers and appears to be associated with poor 
prognosis.81 Tumor cells with constitutively active Akt are 
highly dependent on glucose as an energy source because 
active Akt can block fatty acid oxidation.

The fatty acid metabolism pathway (ALDH7A1, HADH, 
CPT1A, and CPT2) was also very significantly enriched in 
ERα+ breast cancer tumor samples in both KEGG pathway 
and PANTHER GO biological process categories. This 
observation is consistent with the 2 independent gene 
expression studies that have reported high expression of 
many genes involved in fatty acid/lipid metabolism and 
degradation in the luminal A phenotype (ER positive), 
known to be associated with a relatively good prognosis.82 
This proteomic finding, together with gene expression data, 
may indicate a cross-talk between fatty acid metabolism 
and estrogen signaling in the pathogenesis of hormone-
dependent breast cancer. These findings, together with a 
number of known estrogen-responsive cytoskeleton genes 
described above, suggest that known estrogen-responsive 
genes are enriched in ERα+ breast cancer tissues.

In summary, the 1D GeLC-MS/MS method coupled to 
label-free quantification (spectral count) is a very useful 
technique for identification of novel protein(s) involved in 
mammary tumorigenesis. Our approach in protein expres-
sion profiling using microscopically isolated breast tumor 
cells has identified differentially expressed proteins associ-
ated with ER. The mechanisms which regulate these dis-
tinct protein expression patterns remain to be investigated 
and are of importance for future breast cancer research. In 
conclusion, unlike in vitro cell culture models, the in vivo 
signaling proteins and pathways that we have identified 
directly from human breast cancer tissues may serve as 
pathologically relevant therapeutic targets for the pharma-
cological intervention of breast cancer.

Materials & Methods
Breast Cancer Tissues and Histology Experiment

Frozen human breast cancer tissues were obtained from 
John Dempsey Hospital (University of Connecticut Health 
Center) from 6 patients (3 ERα−, 3 ERα+) for proteomic 
analysis. Additional archival FFPE breast cancer tissues for 
IHC-based validation experiments were obtained from 
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BPAS Hospital (27 samples), Surat, India, and from the 
University of Connecticut Health Center (33 samples). 
Each paraffin and frozen block was cut in 5 μm thickness, 
and serial sections were marked. Samples were examined 
by H&E, and the ER status was determined by standard 
IHC protocols (details in IHC sections). All experiments on 
human tissues were performed with deidentified samples 
and approved by the Internal Review Board (IRB) of the 
University of Connecticut Health Center.

Core Sampling of Frozen Cancer Tissues
Cancer tissues were directly cored from the frozen tissue 
blocks with a 2- to 3-mm dermal core biopsy punch after 
obtaining the full histological orientation from H&E stain-
ing to precisely locate the malignant cell–rich regions and 
separate them from surrounding connective tissues. Frozen 
tissue blocks were cut in 5-μm-thick sections before and 
after the procedure to evaluate the accuracy of the tissue 
biopsy procedure (Fig. 1). The coring procedure minimizes 
the tissue heterogeneity, as we can select cancer epithelial 
cell–rich regions from breast cancer tissues.

Sample Preparation and In-Gel Digestion
Proteins from biopsy tissues were extracted in lysis buffer 
(150 mM NaCl, 10 mM Tris-HCl, 1% Triton X-100, 5 mM 
EDTA, and protease inhibitors) using a tissue polytron dis-
rupter; DNA and insoluble aggregates were removed by 
high-speed centrifugation in a microfuge tube (14,000xg 
for 15 minutes). Protein gel electrophoresis (SDS-PAGE) 
was performed on 40 μg of tissue lysate for each sample 
and staining gels with Coomassie blue dye–visualized pro-
tein bands. After fixation and destaining, each lane was 
excised into 15 gel slices, and in-gel trypsin digestion was 
performed as described previously.25 Samples were then 
resuspended in buffer A (5% ACN, 0.4% acetic acid, 
0.005% heptafluorobutyric [HFBA] acid in water) and 
stored at –20°C until further analysis.

Liquid Chromatography Tandem Mass Spectrometry 
(LC-MS/MS Analysis)
The analysis of protein digests was performed on an LTQ (a 
2-dimensional ion trap) instrument equipped with a com-
mercial nanospray source (Thermo Finnigan, San Jose, 
CA). Samples were loaded by a microautosampler (Famos, 
LC Packings, Sunnyvale, CA) onto an 11 cm × 100-μm 
fused silica capillary column packed with reverse C

18
 mate-

rial (5-μm, 100-Å Magic beads, Michrom Bioresources, 
Auburn, CA). The solvent system was delivered by an 
HP1100 pump (Agilent Technologies, Palo Alto, CA). Pep-
tides were eluted with a gradient from 100% buffer A to 
80% buffer B (0.4% acetic acid, 0.005% HFBA in ACN) in 

85 minutes. Each survey scan was followed by 5 MS/MS 
scans of the most intense ions. Dynamic exclusion features 
were enabled to maximize the fragmentation of less abun-
dant peptide ions. The samples loading, delivery, and scan 
function were controlled by the Xcalibur software (Thermo 
Finnigan). Each sample was analyzed 3 times for a total of 
270 LC-MS/MS runs on all 6 breast cancer tissue samples 
(3 ERα+ and 3 ERα−).

Database Searching and Analysis
All LC-MS/MS runs were processed in the following way as 
described previously.25,27 All the mass spectrometry raw 
files were converted to .dat files using Xcalibur software 
(version 1.4 SR1, Thermo Finnigan). Peak lists were auto-
matically extracted using the extract .ms program with 
default parameters, except that filtering was turned off. All 
the .dat files were searched against a local copy of the non-
redundant human protein database (56,709 entries) from the 
NCI (National Institutes of Health, Advanced Biomedical 
Computing Center) using the SEQUEST algorithm 
(SEQUEST-PVM version 27 [revision 0]).27-29 SEQUEST 
parameters were as follows: all the filtering thresholds were 
off; mass tolerance of 1.5 Da for precursor ions and 0.5 Da 
for fragment ions; full tryptic constraint allowing one missed 
cleavage; and allowing oxidization (+16 Da) of methionine. 
The database search results were processed using the 
INTERACT program25,27-29 and filtered with the following 
criteria: Xcorr cut-off values of 1.9, 2.2, and 3.7 for 1+, 2+, 
and 3+ peptides, respectively; ΔCn ≥0.1. False-positive rates 
were estimated by searching against a concatenated forward 
and reverse human protein database.30 PeptideProphet and 
ProteinProphet software tools were used to analyze identi-
fied proteins to detect redundancies and to generate a nonre-
dundant protein list (Suppl. Table S1).

Detection of Differential Regulation, PaGE Analysis
PaGE,31 a software package developed for the statistical 
analysis of microarray data, was used with SC32-34 to detect 
differential regulation in this study. PaGE uses a permutation 
approach to compare within-condition versus between-con-
dition variability and to control the estimated false discovery 
rate at a level specified by the user. We downloaded the Perl 
implementation of PaGE available at http://www.cbil.upenn.
edu/PaGE/. Prior to use in this study, we extensively tested 
the PaGE algorithm on large-scale replicated datasets with 
no differential regulation (3,600+ proteins), as well as SILAC 
datasets of 1,000+ proteins with known 2-, 4-, and 8-fold up-
regulation. A confidence level of 0.8, corresponding to a false 
discovery rate of 0.2, performed well with both the null pop-
ulations, where it showed high specificity, and the regulated 
populations, where it showed high sensitivity (>90%). In the 
current study, we applied the PaGE t statistic to our unlogged, 
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normalized data using a confidence level of 0.8. Input to the 
PaGE analysis (Suppl. Table S4) consisted of 6 replicates of 
ERα+ samples (3 technical replicates each of samples 1 and 
2) and 6 replicates of ERα− samples (3 technical replicates 
each of samples 1 and 2). Missing values were replaced by 
zeros and included in the analysis. SCs were normalized to 
compensate for overall variations in total SC between ER+ 
and ER– samples (Suppl. Table S4). The number of proteins 
identified in the samples ERα+ 3 and ERα− 3 was so much 
lower than in the remaining samples that total SC differences 
could not be corrected through normalization. Therefore, 
samples ERα+ 3 and ERα− 3 were omitted from the statisti-
cal analysis. A similar rationale has been reported previously 
for omitting one replicate from the statistical analysis of dif-
ferential protein expression.83

Following the PaGE analysis, 2 additional filtering steps 
were applied to the putative list of regulated proteins to 
remove ratios commonly occurring by chance among null 
populations. First, those proteins with <2-fold change were 
removed. Second, all ratios with a maximum (numerator, 
denominator) <3 and all ratios with a maximum (numerator, 
denominator) <4 that showed <3-fold change were removed. 
These final filtering steps eliminated commonly occurring 
false-positive ratios encountered in our own extensive com-
parisons of 14 publicly available replicate sets of the human 
Jurkat cell line.29

Immunohistochemistry (IHC)
For histological examination and classification of the tissue 
samples, H&E staining was performed according to stan-
dard procedure.25,27 For IHC, sections were sequentially 
blocked with 3% H

2
O

2
, 5% normal serum (Vector Laborato-

ries) matching the host of the secondary antibody, and  
avidin/biotin-blocking solution (Vector Laboratories) for 30 
minutes at room temperature. Tissue sections were incu-
bated in antigen retrieval buffer (10 mM sodium citrate, 
0.05% Tween 20, pH 6) at 100°C for 30 minutes. Primary 
antibodies against human fascin (1:50, mouse monoclonal, 
Abcam), DAP5 (1:100, mouse monoclonal, Sigma), 
liprin-α1 (1:200, chicken polyclonal, Abcam), and 
β-arrestin-2 (1:100, rabbit polyclonal, Abcam) were used for 
immunostaining. Tissues were incubated with primary anti-
bodies at 4°C overnight in a humidified chamber. Tissues 
were then incubated with the following secondary antibod-
ies at room temperature for 2 hours: horse antimouse (1:200, 
Vector Laboratories), goat antirabbit (1:200, Vector Labora-
tories), and goat antichicken (1:300, Vector Laboratories). 
Sections were developed by DAB substrate (Vector Labora-
tories) and counterstained with hematoxylin for microscopic 
visualization. IHC scoring was performed as described  
previously27 under the light microscope using the following 

criteria: low grade (1 and 2): grade 1 = very weak but distin-
guishable staining above the background (secondary anti-
body alone) in less than 50% in a low power microscopic 
field, grade 2 = mild intensity and clearly stronger intensity 
than grade 1 and more than 50% positive in a power micro-
scopic field; grade (3 and 4): grade 3 = moderate intensity 
and much stronger than grade 2, grade 4 = strongest  
intensity of staining in greater than 75% of area. Cancer 
samples from 60 patients (27 archival FFPE tissues and a 
microarray with 33 cancer specimens) were stained. For 
semiquantitative analysis, only the 33 microarray spots  
were utilized because final ER status information was not 
available for all samples analyzed. Each IHC experiment 
was repeated twice, and representative sections are shown 
(Figs. 4-6).

Pathway Analysis and Functional Classification
For functional analysis, UniProt ID of all identified pro-
teins was mapped into gene name using an ID conversion 
tool developed in house. Proteins were functionally classi-
fied based on the PANTHER system (http://www.pant-
herdb.org). PANTHER is a unique resource that classifies 
genes and proteins by their function using published sci-
entific experimental evidence and evolutionary relation-
ships abstracted by curators with the goal of predicting 
function even in the absence of direct experimental evi-
dence. Compared to GO, the PANTHER protein classifi-
cation system provides a more simplified ontology of 
specific protein function and classifies more protein  
than GO.35

GENECODIS, a publicly accessible Web-based tool 
(http://genecodis.dacya.ucm.es), was used to classify GO 
cellular component of the identified proteins and also 
KEGG pathways analysis of differentially expressed pro-
teins. Using GENECODIS 2.0,36,37 we also submitted the 
differentially expressed proteins to the KEGG pathway 
database, which consists of graphical diagrams of biochem-
ical pathways, including most of the known metabolic and 
regulatory pathways.40 The GENECODIS tool uses hyper-
geometric statistic analysis to determine which GO or 
KEGG pathways were significantly enriched in the test 
population as compared to the human genome.36,37
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Appendix. List of 236 Differentially Expressed Proteins in Breast Cancer Tumor Predicted from Spectral Count

Swiss-Prot IDa Gene Name Protein Name c0b c1b c1/c0 Confidence 

P31146 CORO1A Coronin-1A 7.67 0.3 0.04 0.974

P50416 CPT1A Carnitine O-palmitoyltransferase I 10.5 0.5 0.05 0.877
P10636 MAPT Microtubule-associated protein τ 6 0.3 0.05 0.99

Q8TD06 AGR3 Breast cancer membrane protein 11 6.34 0.3 0.05 0.99

P45954 ACADSB Short/branched chain specific acyl-CoA dehydrogenase 5.17 0.3 0.06 0.941

O95154 AKR7A3 Aflatoxin B1 aldehyde reductase member 3 5.17 0.3 0.06 0.935

O75477 ERLIN1 SPFH domain-containing protein 2 precursor 5.5 0.3 0.06 0.974

Q13268 DHRS2 Dehydrogenase/reductase SDR family member 2 5 0.3 0.06 0.984

Q00796 SORD Sorbitol dehydrogenase 5.5 0.3 0.06 0.967
Q9Y365 STARD10 PCTP-like protein; StAR-related lipid transfer protein 10 5 0.3 0.06 0.99

O76074 PDE5A cGMP-specific 3′,5′-cyclic phosphodiesterase 4.84 0.3 0.07 0.873

P20774 OGN Mimecan precursor; osteoglycin 5.17 0.34 0.07 0.99

P22033 MUT Methylmalonyl-CoA mutase, mitochondrial 4.5 0.3 0.07 0.989

Q9Y570 PPME1 Protein phosphatase methylesterase 1 4.5 0.3 0.07 0.967

Q14894 CRYM NADP-regulated thyroid-hormone–binding protein 4.17 0.3 0.08 0.856

Q9ULA0 DNPEP Aspartyl aminopeptidase 4 0.3 0.08 0.878

P13164 IFITM1 Interferon-induced transmembrane protein 1 3.84 0.3 0.08 0.881

Q9HCC0 MCCC2 Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial 4.17 0.3 0.08 0.976

O95861 BPNT1 PAP-inositol-1,4-phosphatase 3.34 0.3 0.09 0.924

O75955 FLOT1 Flotillin-1 3.34 0.3 0.09 0.959

Q08380 LGALS3BP Galectin-3–binding protein precursor 13.7 1.17 0.09 0.967

Q8TCU6 PREX1 Phosphatidylinositol 3,4,5-trisphosphate–dependent Rac ex-
changer 1 protein

3.34 0.3 0.09 0.976

Q8N335 GPD1L Glycerol-3-phosphate dehydrogenase 1-like protein 3.67 0.3 0.09 0.934

P43155 CRAT Carnitine O-acetyltransferase 3 0.3 0.1 0.871

P08069 IGF1R Insulin-like growth factor 1 receptor precursor 3.17 0.3 0.1 0.828

Q03252 LMNB2 Lamin-B2 3.17 0.3 0.1 0.98

P98164 LRP2 Low-density lipoprotein receptor–related protein 2 precursor 3.17 0.3 0.1 0.849
O15296 ALOX15B Arachidonate 15-lipoxygenase type II 3 0.3 0.1 0.881

P09110 ACAA1 3-ketoacyl-CoA thiolase, peroxisomal 3.34 0.34 0.1 0.862

Q86VP6 CAND1 Cullin-associated NEDD8-dissociated protein 1 3.17 0.3 0.1 0.99

Q9P035 PTPLAD1 Stamp1 3 0.3 0.1 0.99
O60888 CUTA Protein CutA precursor 3 0.3 0.1 0.978

P43686 PSMC4 26S protease regulatory subunit 6B 3.17 0.34 0.11 0.97

Q9Y263 PLAA Phospholipase A-2–activating protein 5.84 0.67 0.12 0.984
Q9NUJ1 ABHD10 Abhydrolase domain–containing protein 10, mitochondrial 3 0.34 0.12 0.991
Q14376 GALE UDP-glucose 4-epimerase 4 0.5 0.13 0.86

A0MZ66 KIAA1598 Shootin-1 5.5 0.67 0.13 0.981

Q13136 PPFIA1 Liprin-α1 3.84 0.5 0.14 0.978

P23786 CPT2 Carnitine O-palmitoyltransferase 2, mitochondrial 3.34 0.5 0.15 0.978

P14324 FDPS Farnesyl pyrophosphate synthetase 3.34 0.5 0.15 0.882
P20810 CAST Calpastatin; calpain inhibitor 4.5 0.67 0.15 0.974

P29590 PML Probable transcription factor PML 3.34 0.5 0.15 0.83
Q05707 COL14A1 Collagen type xiv (fragment) 31.5 4.67 0.15 0.99

O95202 LETM1 Leucine zipper-EF-hand–containing transmembrane protein 1 9.17 1.34 0.15 0.988

Q05707 COL14A1 Collagen α-1(XIV) chain 34.5 4.84 0.15 0.991

P00505 GOT2 Aspartate aminotransferase, mitochondrial 5.34 0.84 0.16 0.894

P35573 AGL Glycogen debranching enzyme 12.5 2 0.16 0.915

Q14980 NUMA1 Nuclear mitotic apparatus protein 1 22.7 3.5 0.16 0.935
P09417 QDPR Dihydropteridine reductase 7.17 1.17 0.17 0.989

P09467 FBP1 Fructose-1,6-bisphosphatase 1 10.3 1.67 0.17 0.965

P05787 KRT8 Keratin, type II cytoskeletal 8 55.5 9.34 0.17 0.984

Q15008 PSMD6 26S proteasome non-ATPase regulatory subunit 6 3.67 0.67 0.19 0.984

(continued)
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Q13228 SELENBP1 Selenium-binding protein 1 14.5 2.67 0.19 0.959

Q71U36 TUBA1A Tubulin α-1A chain 9.67 1.84 0.19 0.99

P21266 GSTM3 Glutathione S-transferase μ 3 7.84 1.5 0.2 0.988

P05783 KRT18 Keratin, type I cytoskeletal 18 17.7 3.5 0.2 0.921

Q14166 TTLL12 Tubulin-tyrosine ligase–like protein 12 3.34 0.67 0.2 0.983

Q14247 CTTN Src substrate cortactin; oncogene EMS1 13.8 2.84 0.21 0.99

O60812 HNRPCL1 Heterogeneous nuclear ribonucleoprotein C–like 1 5.17 1.17 0.23 0.966

Q9Y2Z0 SUGT1 Suppressor of G2 allele of SKP1 homolog 3 0.67 0.23 0.819

Q7Z4W1 DCXR L-xylulose reductase 3.5 0.84 0.24 0.97

P42345 FRAP1 Mammalian target of rapamycin; mTOR 3.5 0.84 0.24 0.989

P09488 GSTM1 Glutathione S-transferase μ 1 5 1.17 0.24 0.983

O14745 SLC9A3R1 Ezrin-radixin-moesin–binding phosphoprotein 50 4.17 1 0.24 0.911

P36957 DLST Dihydrolipoyllysine-residue succinyltransferase component of 2-oxogluta-
rate dehydrogenase complex, mitochondrial 

3.34 0.84 0.25 0.881

Q16401 PSMD5 26S proteasome non-ATPase regulatory subunit 5 5.34 1.34 0.25 0.915

Q14157 UBAP2L Ubiquitin associated protein 2–like 4 1 0.25 0.959

O94874 KIAA0776 UPF0555 protein KIAA0776 3.34 0.84 0.25 0.83
P12110 COL6A2 Collagen α-2 9.84 2.5 0.26 0.985

P50851 LRBA Lipopolysaccharide-responsive and beige-like anchor protein 20.3 5.17 0.26 0.991
P35237 SERPINB6 Serpin B6; placental thrombin inhibitor 10.7 2.84 0.27 0.828

Q9NRV9 HEBP1 Heme-binding protein 1 6.84 1.84 0.27 0.97
P49419 ALDH7A1 Aldehyde dehydrogenase family 7 member A1 4.17 1.17 0.28 0.856

P55265 ADAR Double-stranded RNA-specific adenosine deaminase 4.17 1.17 0.28 0.951

Q96FQ6 S100A16 S100 calcium-binding protein a16 3 0.84 0.28 0.943

Q9UBE0 SAE1 SUMO-1–activating enzyme subunit 1 3.67 1 0.28 0.819

P24752 ACAT1 Acetyl-CoA acetyltransferase, mitochondrial 4.17 1.17 0.28 0.85

Q9H3U1 UNC45A Smooth muscle cell–associated protein 1; SMAP-1 4.84 1.34 0.28 0.978

P08727 KRT19 Keratin, type I cytoskeletal 19 32.2 9.17 0.29 0.97

P51665 PSMD7 26S proteasome non-ATPase regulatory subunit 7 3.5 1 0.29 0.862

P01019 AGT Angiotensinogen precursor; angiotensin-1 4 1.17 0.3 0.94

Q86V88 MDP1 Magnesium-dependent phosphatase 1 4.5 1.34 0.3 0.962

P12111 COL6A3 Collagen α-3 83.3 25.3 0.31 0.981

Q9UBQ7 GRHPR Glyoxylate reductase/hydroxypyruvate reductase 9.17 2.84 0.31 0.921

P42858 HD Huntingtin; Huntington disease protein 3.84 1.17 0.31 0.885

O75165 DNAJC13 DnaJ homolog subfamily C member 13 4.67 1.5 0.33 0.889

Q9UM54 MYO6 Myosin-6; myosin VI 16.7 5.5 0.33 0.99

P46459 NSF N-ethylmaleimide–sensitive fusion protein 7.17 2.34 0.33 0.984

P05161 ISG15 Interferon-induced 17-kDa protein precursor 7.67 2.5 0.33 0.849

Q9UBF2 COPG2 Coatomer subunit γ-2 3 1 0.34 0.959

P12270 TPR Nucleoprotein TPR 9 3 0.34 0.941

P10909 CLU Clusterin precursor 4.34 1.5 0.35 0.956

Q14789 GOLGB1 Golgin subfamily B member 1 10.7 3.84 0.36 0.959

P12268 IMPDH2 Inosine-5′-monophosphate dehydrogenase 2 5.67 2 0.36 0.941

P20700 LMNB1 Lamin-B1; C:lamin filament 4.17 1.5 0.36 0.97

O94903 PROSC Proline synthetase–cotranscribed bacterial homolog protein 4.17 1.5 0.36 0.894

P40763 STAT3 Signal transducer and activator of transcription 3 9.5 3.34 0.36 0.984

Q5VYK3 KIAA0368 Proteasome-associated protein ECM29 homolog 7.84 2.84 0.37 0.936

P00918 CA2 Carbonic anhydrase 2 6.67 2.5 0.38 0.807

O95865 DDAH2 NG,NG-dimethylarginine dimethylaminohydrolase 2 4.84 1.84 0.38 0.989

P62495 ETF1 Eukaryotic peptide chain release factor subunit 1 4.5 1.67 0.38 0.843

P35580 MYH10 Myosin-10; myosin heavy chain, nonmuscle Iib 15.5 5.84 0.38 0.909

Swiss-Prot IDa Gene Name Protein Name c0b c1b c1/c0 Confidence 
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Swiss-Prot IDa Gene Name Protein Name c0b c1b c1/c0 Confidence 

Appendix. (continued)

O60701 UGDH UDP-glucose 6-dehydrogenase 9.67 3.67 0.38 0.936

Q16836 HADH Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial 6 2.34 0.39 0.963
P22234 PAICS Multifunctional protein ADE2 4.34 1.67 0.39 0.807
Q9Y277 VDAC3 Voltage-dependent anion-selective channel protein 3 4.67 1.84 0.4 0.898

P12109 COL6A1 Collagen α-1 9 3.67 0.41 0.963

P00915 CA1 Carbonic anhydrase 1 8.84 3.67 0.42 0.889

P04792 HSPB1 Heat-shock protein β-1; heat shock 27-kDa protein 23 9.5 0.42 0.97

P02545 LMNA Lamin-A/C; 70-kDa lamin 29.2 12 0.42 0.941

Q9HC38 GLOD4 Glyoxalase domain–containing protein 4 4 1.67 0.42 0.954
Q9BXN1 ASPN Asporin precursor, PLAP-1 4.67 2 0.43 0.882
P21810 BGN Biglycan precursor; bone/cartilage proteoglycan I 26.7 11.3 0.43 0.889

Q08257 CRYZ Quinone oxidoreductase; NADPH:quinone reductase 5.5 2.34 0.43 0.828

Q9Y230 RUVBL2 RuvB-like 1; 49-kDa TATA box-binding protein-interacting protein 7 3 0.43 0.853

Q7Z6Z7 HUWE1 HECT, UBA, and WWE domain-containing protein 1 16.2 6.84 0.43 0.966

Q13126 MTAP S-methyl-5-thioadenosine phosphorylase 4.17 1.84 0.44 0.967

Q13263 TRIM28 Transcription intermediary factor 1-β; TIF1-β 10 4.5 0.45 0.966
P22695 UQCRC2 Ubiquinol-cytochrome-c reductase complex core protein 2 4.5 2 0.45 0.849
Q9NSE4 IARS2 Isoleucyl-tRNA synthetase, mitochondrial 6.34 2.84 0.45 0.915

P62841 RPS15 40S ribosomal protein S15 4.84 2.17 0.45 0.957

Q9NY33 DPP3 Dipeptidyl-peptidase 3 9.84 4.5 0.46 0.915

P58107 EPPK1 Epiplakin; 450-kDa epidermal antigen 29.5 13.7 0.47 0.882

P20591 MX1 Interferon-induced GTP-binding protein Mx1 18.8 8.84 0.47 0.825
Q32MZ4 LRRFIP1 Leucine-rich repeat flightless-interacting protein 12 5.34 2.5 0.47 0.882

Q9H2M9 RAB3GAP2 Rab3-gap regulatory domain 4.67 2.17 0.47 0.915

Q96CN7 ISOC1 ISOC1 protein 5 2.34 0.47 0.958

P07585 DCN Decorin precursor; bone proteoglycan II 27.7 13.2 0.48 0.878

Q16822 PCK2 Phosphoenolpyruvate carboxykinase [GTP], mitochondrial 4.17 2 0.48 0.962

P62333 PSMC6 26s protease regulatory subunit s10b 4.17 2 0.48 0.867

P52272 HNRNPM Heterogeneous nuclear ribonucleoprotein M 14.7 7 0.48 0.983

P05090 APOD Apolipoprotein D precursor 6.17 3 0.49 0.849

Q16531 DDB1 DNA damage-binding protein 1 5.17 2.5 0.49 0.805

P49327 FASN Fatty acid synthase 50 24.3 0.49 0.98

P07954 FH Fumarate hydratase, mitochondrial 9.34 4.5 0.49 0.838

P36969 GPX4 Phospholipid hydroperoxide glutathione peroxidase 4.5 2.17 0.49 0.941

Q86UP2 KTN1 Kinectin; kinesin receptor; CG-1 antigen 10.3 5 0.49 0.976

Q9UQE7 SMC3 Structural maintenance of chromosome 3 7.17 3.5 0.49 0.918

O00429 DNM1L Dynamin-1–like protein 8.67 4.17 0.49 0.964

Q93009 USP7 Ubiquitin carboxyl-terminal hydrolase 7 7 3.5 0.5 0.935

Q92616 GCN1L1 GCN1-like protein 1; HsGCN1 18.7 9.34 0.5 0.943

P24539 ATP5F1 ATP synthase b chain, mitochondrial precursor 2.5 5 2 0.965

Q13442 PDAP1 28-kDa heat- and acid-stable phosphoprotein 2.17 4.34 2 0.901

P26447 S100A4 S100 calcium-binding protein a4 2.34 4.67 2 0.831

P67936 TPM4 Tropomyosin α 4 chain 2.67 5.34 2 0.935

P42704 LRPPRC Hypothetical protein flj43793 2.34 4.67 2 0.932

P07195  LDHB L-lactate dehydrogenase b chain 5 10.2 2.04 0.967
Q10567 AP1B1 Adapter-related protein complex 1 β 1 subunit 8.84 18.5 2.1 0.946

P27824 CANX Calnexin precursor 4.67 9.84 2.11 0.933
P13473 LAMP2 Lysosome-associated membrane glycoprotein 2 precursor 2.5 5.34 2.14 0.81

P18621 RPL17 60s ribosomal protein l17 2.5 5.34 2.14 0.973

P26641 EEF1G Elongation factor 1-γ 2 4.34 2.17 0.879

P07951 TPM2 Tropomyosin β chain 2.34 5.17 2.22 0.862

(continued)



Differentially expressed proteomes of ER+ and ER– breast cancers / Rezaul et al.	 267

P26038 MSN Moesin 8 17.8 2.23 0.973

Q15363 TMED2 Cop-coated vesicle membrane protein p24 precursor 1.84 4.17 2.28 0.876
P54886 ALDH18A1 H δ 1-pyrroline-5-carboxylate synthetase 4.84 11 2.28 0.92

P00338 LDHA L-lactate dehydrogenase a chain 11.2 25.5 2.29 0.98

Q7L576 CYFIP1 Cytoplasmic FMR1-interacting protein 1 6.17 14.2 2.3 0.973

P06733 ENO1 α Enolase 26.8 61.8 2.31 0.92
P02792 FTL Ferritin light chain 5.17 12.3 2.39 0.959

Q709C8 VPS13C Vps13c-2b protein 2.17 5.17 2.39 0.902
Q8TCT9 HM13 Histone h2b 2.67 6.5 2.44 0.858

Q16851 UGP2 UTP-glucose-1-phosphate uridylyltransferase 1 3.34 8.17 2.45 0.881

P61026 RAB10 Ras-related protein rab-10 2.84 7 2.48 0.946

Q01813 PFKP 6-phosphofructokinase, type c 2.5 6.34 2.54 0.831

O43399 TPD52L2 Tumor protein d54 2.67 6.84 2.57 0.87

P07339 CTSD Cathepsin D precursor 12.2 31.5 2.59 0.973

P04083 ANXA1 Annexin A1; annexin I 10.5 27.7 2.64 0.98

Q16555 DPYSL2 Dihydropyrimidinase-related protein-2 3.67 9.67 2.64 0.973

P21291 CSRP1 Cysteine and glycine-rich protein 1 2.17 5.84 2.7 0.869

Q15084 PDIA6 Protein disulfide-isomerase A6 precursor 5.17 14 2.71 0.973
Q9NP72 RAB18 Ras-related protein Rab-18 2.17 6 2.77 0.92

P12235 SLC25A4 ADP/ATP translocase 1; adenine nucleotide translocator 1 2.17 6.17 2.85 0.966

O14579 COPE Coatomer subunit ε 2.17 6.17 2.85 0.976

P62807 HIST1H2BI Histone h2b.a 5.5 16.3 2.97 0.959

Q9NZ01 GPSN2 Synaptic glycoprotein SC2 1.67 5 3 0.918

O95573 ACSL3 Long-chain-fatty-acid-CoA ligase 3 1.5 4.5 3 0.933
O15173 PGRMC2 Membrane-associated progesterone receptor component 2 1.17 3.5 3 0.922

P54577 YARS Tyrosyl-tRNA synthetase 1.17 3.5 3 0.964

P04844 RPN2 Ribophorin II 5 15.3 3.07 0.971

P17931 LGALS3 Galectin-3 2.17 6.67 3.08 0.978

P15880 RPS2 40s ribosomal protein s2 1.17 3.67 3.15 0.902

Q9BVK6 TMED9 Glycoprotein 25l2 precursor 1 3.17 3.17 0.819
P27797 CALR Calreticulin precursor 3 9.67 3.23 0.911

Q86UX7 URP2 Unc-112–related protein 2 (kindlin-3) 3 9.67 3.23 0.878

P43490 PBEF1 Nicotinamide phosphoribosyltransferase 3.5 11.3 3.24 0.941

Q92896 GLG1 Golgi apparatus protein 1 precursor 1.34 4.34 3.25 0.945

P78347 GTF2I Btk-associated protein-135 1.17 3.84 3.29 0.853

P39656 DDOST Olichyl-diphosphooligosaccharide-protein glycosyltransferase 48-kDa 
subunit precursor 

1.17 3.84 3.29 0.918

Q9NQC3 RTN4 Reticulon-4; neurite outgrowth inhibitor; nogo protein 1.17 3.84 3.29 0.884

P29966 MARCKS Myristoylated alanine–rich C-kinase substrate 2.84 9.5 3.36 0.98

P00352 ALDH1A1 Aldehyde dehydrogenase 1a1 1.34 4.5 3.38 0.848

Q8NC51 SERBP1 Plasminogen activator inhibitor 1 RNA–binding protein 1 3.5 3.5 0.958

P31947 SFN 14-3-3 protein σ (stratifin) 3 10.7 3.56 0.841
P62158 CALM1 Calmodulin 1.67 6 3.6 0.933

Q9NZT1 CALML5 Calmodulin-like protein 5 1.84 6.67 3.64 0.973

Q99439 CNN2 Calponin-2 1.5 5.67 3.78 0.965

Q9HC35 EML4 Echinoderm microtubule-associated protein-like 4 1.67 6.34 3.8 0.913

O75947 ATP5H ATP synthase D chain, mitochondrial 0.84 3.5 4.2 0.906

P11413 G6PD Glucose-6-phosphate 1-dehydrogenase 1.5 6.34 4.23 0.965

P08779 KRT16 Keratin, type I cytoskeletal 16 2.67 11.7 4.38 0.94
O75116 ROCK2 Rho-associated protein kinase 2 0.67 3 4.5 0.959
Q9Y2J8 PADI2 Protein-arginine deiminase type-2 2 10.5 5.25 0.946

O60841 EIF5B Eukaryotic translation initiation factor 5B; eIF-5B 0.84 4.5 5.4 0.918

P06737 PYGL Glycogen phosphorylase, liver form 1.5 8.5 5.67 0.833

Swiss-Prot IDa Gene Name Protein Name c0b c1b c1/c0 Confidence 
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O43852 CALU Calumenin precursor 0.67 3.84 5.75 0.913

Q02809 PLOD1 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 precursor 1 5.84 5.84 0.973

Q9UJS0 SLC25A13 Calcium-binding mitochondrial carrier protein aralar2 0.5 3 6 0.841

P16435 POR NADPH-cytochrome P450 reductase 0.5 3.17 6.34 0.906

P09382 LGALS1 Galectin-1 1.5 10 6.67 0.948

P23142 FBLN1 Fibulin-1 precursor 1.67 11.8 7.1 0.893

P41219 PRPH Peripherin 0.5 3.67 7.34 0.941

P02786 TFRC Transferrin receptor protein 1 1 8 8 0.973

O43491 EPB41L2 Band 4.1–like protein 2 0.67 6.34 9.5 0.96

P02746 C1QB Complement c1q subcomponent, b chain precursor 0.3 3 10 0.819

P78344 EIF4G2 Eukaryotic translation initiation factor 4 γ 2; eIF-4G 2 0.5 5 10 0.948
P46977 STT3A Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 

STT3A
0.34 3.34 10 0.976

Q16658 FSCN1 Fascin; 55-kDa actin-bundling protein 0.5 5.17 10.3 0.971

P52789 HK2 Hexokinase-2 0.34 3.67 11 0.98
P06702 S100A9 S100 calcium-binding protein A9 2.5 29 11.6 0.934

Q96HE7 ERO1L ERO1-like protein α precursor 0.5 6 12 0.973

P05109 S100A8 S100 calcium-binding protein A8 0.3 4.17 13.9 0.825

P00488 F13A1 Coagulation factor xiii a chain precursor 1.84 25.8 14.1 0.881

P06312 IGKV4-1 Ig κ chain v-iv region precursor 0.3 4.34 14.5 0.98

P04179 SOD2 Superoxide dismutase [mn], mitochondrial precursor 0.3 4.67 15.6 0.98
P01861 IGHG4 Ig γ-4 chain c region 0.3 4.84 16.1 0.817
Q16719 KYNU Kynureninase 0.3 4.84 16.1 0.81

P02511 CRYAB α Crystallin B chain 0.3 5.34 17.8 0.902

P11166 SLC2A1 Solute carrier family 2, facilitated glucose transporter member 1 0.3 5.5 18.3 0.98

Q14956 GPNMB Putative transmembrane protein nmb precursor 0.3 5.5 18.3 0.819
P01860 IGHG3 Ig γ-3 chain c region 0.3 6 20 0.879
P31944 CASP14 Caspase-14 precursor 0.3 6.84 22.8 0.819
P07858 CTSB Cathepsin B precursor 0.3 7.34 24.5 0.902
O15540 FABP7 Fatty acid–binding protein, brain 0.3 12.2 40.6 0.977
Q9Y6R7 FCGBP IgGFc-binding protein 0.3 42.3 141 0.833
P23141 CES1 H liver carboxylesterase 1 precursor 0.3 51.3 171 0.838

Note: Proteins with bold type indicate that they were once involved in breast cancer.
aIdentifications (IDs) from Uniprot database.
bc0 and c1 represent mean spectral count (SC) for ERα+ and ERα– samples, respectively; zero (0) was replaced with nine tenths of lowest mean 
value, which is 0.3.
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