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Abstract

Hematopoiesis is a process capable of generating millions of cells every second, as distributed in many cell types. The process is regulated by a 
number of transcription factors that regulate the differentiation along the distinct lineages and dictate the genetic program that defines each mature 
phenotype. Myc was first discovered as the oncogene of avian leukemogenic retroviruses; it was later found translocated in human lymphoma. From 
then on, evidence accumulated showing that c-Myc is one of the transcription factors playing a major role in hematopoiesis. The study of genetically 
modified mice with overexpression or deletion of Myc has shown that c-Myc is required for the correct balance between self-renewal and differentiation 
of hematopoietic stem cells (HSCs). Enforced Myc expression in mice leads to reduced HSC pools owing to loss of self-renewal activity at the 
expense of increased proliferation of progenitor cells and differentiation. c-Myc deficiency consistently results in the accumulation of HSCs. Other 
models with conditional Myc deletion have demonstrated that different lineages of hematopoietic cells differ in their requirement for c-Myc to regulate 
their proliferation and differentiation. When transgenic mice overexpress c-Myc or N-Myc in mature cells from the lymphoid or myeloid lineages, 
the result is lymphoma or leukemia. In agreement, enforced expression of c-Myc blocks the differentiation in several leukemia-derived cell lines 
capable of differentiating in culture. Not surprising, MYC deregulation is recurrently found in many types of human lymphoma and leukemia. Whereas 
MYC is deregulated by translocation in Burkitt lymphoma and, less frequently, other types of lymphoma, MYC is frequently overexpressed in acute 
lymphoblastic and myeloid leukemia, through mechanisms unrelated to chromosomal translocation, and is often associated with disease progression.
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Overview of Hematopoiesis

Hematopoiesis is a process capable of 
generating 300 millions of cells per min-
ute in the bone marrow of an adult 
human. These cells belong to many cell 
types, which widely differ in biological 
functions and number in the blood. All 
these morphologically, phenotypically, 
and functionally distinct cell types arise 
from pluripotent hematopoietic stem 
cells (HSCs) that are capable of self-
renewal and differentiation through 
life.1,2 The self-renewal and quiescence 
of hematopoietic stem cells are con-
trolled by a highly orchestrated integra-
tion of environmental signals, most of 
which originate from the stem cell 
niche.3–5 The so-called long-term HSCs 
(LT-HSCs) have the ability to self-renew 
and sustain hematopoiesis.4 This fraction 
of HSCs remains largely quiescent or 
even dormant throughout the lifetime of 
an organism. LT-HSCs differentiate into 
multipotent progenitors (MPPs), which 
are cells with diminished self-renewal 
that can give rise to common lymphoid 
progenitors (CLPs) and common 

myeloid progenitors, which in turn  
differentiate to produce T- or B-lympho-
cyte precursors and granulocyte/monocyte 
precursors (GMPs) or megakaryocyte/ 
erythroid precursors (MEPs), respec-
tively.6 These multipotent progenitors 
undergo several steps of differentiation 
that give rise to committed progenitors 
and, ultimately, the diverse mature blood 
cells (Figure 1). The myeloid lineage 
includes erythrocytes, megakaryocytes 
producing platelets, different subclasses of 
granulocytes (neutrophils, eosinophils, 
basophils), monocytes–macrophages, and 
mast cells. The lymphoid lineage consists 
of T cells, B cells, and natural killer cells. 
Dendritic cells can be derived from either 
the myeloid or lymphoid pathway.

Hematopoietic cell differentiation is 
controlled by intercellular and intracel-
lular signaling mechanisms that target 
transcriptional regulators that in turn 
establish complex transcriptional net-
works. Therefore, lineage commitment 
relies on the timely activation of appro-
priate transcription factors and the silenc-
ing of inappropriate ones.7 Comprehensive 
reviews have dealt with the transcriptional 

control in the development of erythroid,8,9 
myeloid,10 B-cell,11 and T-cell12 lineages. 
Moreover, the hematopoietic system 
must respond to important loss of tissue 
(i.e., by bleeding after injuries) to replenish 
the lost cells in the appropriate relative 
numbers. This means that hematopoiesis 
must be exquisitely regulated by a large 
group of cytokines by cell–cell interac-
tions in the bone marrow niche, and by 
the concerted activity of transcription 
factors. The data accumulated over 
recent years in cell and animal models 
indicate that c-Myc is one of the pivotal 
transcription factors regulating hemato-
poiesis. Figure 1 shows a schematic 
overview of hematopoiesis and the 
involvement of c-Myc in the process.
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MYC Roles in Hematopoietic 
Cell Differentiation in Culture

Gene expression deregulation owing to 
chromosome aberrations or epigenetic 

alterations in hematopoietic stem cells or 
multipotent progenitors gives rise to differ-
ent hematopoietic malignancies. Immortal-
ized cell lines derived from leukemias or 
lymphomas have been extensively used as 

suitable model systems to study hemato-
poietic cell differentiation. Myeloid leu-
kemia cell lines are arrested at different 
stages of maturation and can be induced 
to differentiate into several pathways that 
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Figure 1.  Classical model of hematopoiesis and the involvement of c-Myc in the process. Hematopoiesis begins at the level of pluripotent 
hematopoietic stem cells, which diverge into myeloid and lymphoid multipotent progenitors. These cells differentiate into committed progenitors and, 
finally, mature blood cells. T cells and B cells undergo further maturation in secondary lymphoid organs, such as spleen, lymph nodes, and mucosa-
associated lymphoid tissues. Several leukemia-derived cell lines (MEL, K562, HL60, U937, M1), used as models to study c-Myc functions, are shown 
at their approximate stage of differentiation. Some reported effects of c-Myc on the differentiation of hematopoietic lineages are indicated in the boxes. 
Black nuclei indicate higher Myc expression. See the text for details and references. LT-HSC = long-term hematopoietic stem cells; MPP = multipotent 
progenitor; DN = double-negative T cell (CD4-, CD8-); DP = double-positive T cell; BCR = B-cell receptor; NKT = natural killer T cells.
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resemble normal counterparts, depend-
ing on their differentiation potential 
(e.g., multipotent K562 cells, bipotent 
HL60 cells, or unipotent U937 cells; see 
Figure 1). These hematopoietic models, 
among others, have helped to highlight 
the importance of c-Myc on cellular pro-
cesses such as proliferation, differentia-
tion, and apoptosis.

Inhibition of cell differentiation was 
one of the first biological effects described 
for c-Myc (reviewed in Reference 13). In 
1986, three reports showed that c-Myc 
blocked the chemically induced erythroid 
differentiation of Friend murine erythro-
leukemia cells.14–16 In the same year, it 
was reported that B-lymphocyte develop-
ment was impaired in young Eµ-Myc 
transgenic mice before the onset of lym-
phoma.17 Since then, c-Myc ectopic 
expression has been found to inhibit dif-
ferentiation in a number of cell lines and 
primary cells, and about half of them are 
hematopoietic cell lines (Table 1). How-
ever, inhibition of differentiation is not a 
universal c-Myc activity. For instance, in 
the tripotent cell line K562, we found that 
whereas c-Myc impairs AraC-induced 
erythroid differentiation,18 it does not 
impair TPA-induced myelomonocytic 
differentiation or staurosporine-induced 
megakaryocytic differentiation.19 Consis-
tent with those results, c-Myc-dominant 
inhibitory mutants enhance erythroid but 
not megakaryocytic differentiation.20

In genetically defined models where 
erythroid differentiation is induced by 
p27KIP1, c-Myc blocks differentiation.21 In 
this model, c-Myc impairs the upregulation 

of many erythroid-specific genes, as well 
as that of transcription factors that deter-
mine erythroid lineage differentiation 
(including GATA1 and NFE2); but, strik-
ingly, it does not reverse the proliferation 
arrest and the repression of CDK activity 
mediated by p27KIP1. This suggests that 
c-Myc operates through the regulation of 
several or many genes, which is to be 
expected in view of the broad changes in 
the gene expression profile induced by 
c-Myc. In a complementary approach 
using the leukemia K562 and U937 cells, 
it was shown that c-Myc is not downreg-
ulated when cells are growth arrested but 
not differentiated.22,23 All together, the 
available data indicate that c-Myc can 
block differentiation of hematopoietic 
cell models in culture through mecha-
nisms distinct from those involved in cell 
cycle progression.

MYC Expression in Hematopoietic
Progenitors and HSCs
The involvement of c-Myc in hemato-
poiesis regulation was soon suggested 
by 3 avenues: First, all three oncogenic 
Myc retroviruses originally isolated 
induced chicken hematopoietic tumors, 
which were a type of myeloid leukemia 
(myelocytomatosis)24; second, MYC 
deregulation was first observed in 
Burkitt lymphoma as well as in chemi-
cally induced murine plasmacytomas25; 
and, third, inhibition of hematopoietic 
cell differentiation in culture was one of 
the first biological effects of c-Myc. 
Later on, the development of several 

mice models with targeted mutation of 
c-Myc confirmed its important role in 
hematopoiesis. We briefly review the 
conclusions drawn from several of these 
models.

There is a differential expression of 
Myc family members in hematopoietic 
lineages: c-Myc and N-Myc transcripts 
are coexpressed at similar levels in LT-
HSCs26 and are detected in most progen-
itor subsets. In contrast, L-Myc mRNA 
is not expressed in any stem/progenitor 
cells, and it is only modestly expressed 
in CLPs, megakaryocytes, and macro-
phages (3%–5% of total Myc). Note that 
no hematopoietic cell type expresses 
only N-Myc or L-Myc without c-Myc.26 
The pervasive c-Myc expression in the 
hematopoietic system seems to be in 
correspondence with the absolute preva-
lence of c-Myc deregulation in human 
leukemia and lymphoma, as compared 
with the other family members (see 
below).

The expression of c-Myc at the pro-
tein level in hematopoietic progenitors 
and mature lineages was studied in a 
mouse line where the endogenous Myc 
locus was replaced with an allele encod-
ing a GFP-c-Myc fusion protein. These 
MycG/G mice were viable and showed an 
apparently normal hematopoiesis.27 The 
highest expression of c-Myc (i.e., 
c-Myc–GFP in this model) was detected 
in the myeloerythroid progenitor frac-
tion of the adult bone marrow, a cell 
population that originates directly from 
Lin−Sca1+c-Kit+ (LSK) cells and is 
actively proliferating.28 Adult LSK cells 

Table 1.  Leukemia-Derived Cell Lines Showing c-Myc-Mediated Inhibition of Differentiation

Hematopoietic Cell Cell Type (Species) Differentiation Type (Inducer) c-Myc Effect References

MEL Erythrocytic cells (mouse) Erythroid (DMSO) Inhibition of differentiation 14–16
U937 Monoblastic cells (human) Macrophage (TPA) Inhibition of differentiation 135, 136
HL60 Promyelocytic cells (human) Granulocytic MYC antisense induces differentiation 137, 138
HL60 Promyelocytic cells (human) Monocytic MYC inhibitor induces differentiation 139
K562 Multipotential myeloid cells (human) Erythroid (AraC) (p27KIP1) Inhibition of differentiation 18, 140
K562 Multipotential myeloid cells (human) Erythroid Max and dominant negative MYC mu-

tants induce differentiation
20

J774 Myelomonocytic cells (mouse) Monocytic (LPS, TPA) Inhibition of differentiation 141
M1 Myeloblastic cells (mouse) Macrophage (IL6) Inhibition of differentiation; MYC anti-

sense induces differentiation
142, 143

1137 Myeloblasts (mouse) Granulocytic Repression of MYC induces differentiation 144
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include LT-HSCs and MPPs.4,5 Interest-
ingly, those LSK cells with lower c-Myc 
expression (i.e., GFP expression) corre-
sponded to LT-HSCs (the more primitive 
and undifferentiated population), whereas 
the LSK expressing more c-Myc corre-
sponded to MPPs.28 Note that the abun-
dance of c-Myc protein was substantially 
greater in fetal liver LSK cells than in 
adult LSK cells,28 which seems in con-
cordance with the fact that fetal liver 
HSCs actively proliferate during embry-
onic days 12.5 to 14.5.29 Interestingly, 
Myc mRNA is already expressed at sig-
nificant levels in LT-HSCs, but the 
increase in c-Myc protein expression 
(i.e., c-Myc-GFP) from LT-HSCs into 
MPPs is not observed at the mRNA 
level.26 This suggests that the protein 
changes are due to posttranscriptional 
mechanisms, which complicates the 
interpretation of previous data obtained 
measuring mRNA levels.

MYC Roles in Hematopoietic 
Stem Cells: Lessons from 
Targeted Mutation in 
HSCs in Mice
Mice embryos in which both Myc alleles 
have been mutated by gene targeting in 
ES cells fail to thrive and die before 
midgestation (embryonic day ~10.5). 
Myc-deficient embryos are much smaller 
and exhibit several defects, with the 
impaired hematopoiesis and angiogene-
sis being the most prominent and repro-
duced in different models.30–32 Whether 
deletion of Myc impairs vasculogenesis 
is controversial.30,33 There are data that 
strongly suggest that defective hematopoi-
esis is the main reason for Myc-dependent 
embryonic lethality of Myc-deficient 
embryos. First, Myc-deficient embryos 
survive up to embryonic day 10.5, coin-
cident with the onset of fetal liver hema-
topoiesis. Second, when Myc deletion 
was generated in the epiblast (i.e., with 
wild-type placenta), it was shown that 
Myc is specifically required for yolk sac 
primitive and intraembryonic definitive 
hematopoietic development, although 
nonhematopoietic defects—such as 
abnormalities of the heart, pericardium, 

and neural tube; delay in embryo turn-
ing; and small embryo size—were virtu-
ally absent in these embryos.33,34 Finally, 
embryos lacking Myc in hematopoietic 
lineages (deleted in cells expressing the 
hematopoietic gene Vav1) phenocopied 
those lacking Myc in the entire embryo, 
although they survived until embryonic 
day 11.5 to 12.5 (i.e., 1 to 2 days longer 
than the complete null embryo).33

Although the above complete Myc null 
mouse demonstrates a role of c-Myc in 
hematopoiesis at an early stage, there is 
more controversy to the precise role of 
c-Myc in the process. This question has 
been addressed by conditional knockouts 
targeting Myc in hematopoietic precur-
sors. The conditional deletion of Myc in 
the bone marrow (and most other tissues) 
achieved by the postnatal induction of  
the Cre gene in MxCre; Mycflox/flox mice 
results in severe cytopenia and accumula-
tion of LT-HSCs.35 It has been suggested 
that this accumulation is caused not by 
alterations in HSC self-renewal or sur-
vival but rather by a failure to initiate nor-
mal stem cell differentiation, likely caused 
by increased HSC–niche adhesion.35 

Consistent with the phenotype of 
Myc knockouts, enforced Myc expres-
sion in HSCs results in lower HSC num-
bers,35 accompanied with reduced 
expression of N-cadherin and integrins. 
In this scenario, high c-Myc levels 
would lead to detachment of the HSCs 
from their bone marrow niche, reduced 
self-renewal activity, and increased pro-
liferation and differentiation of the Myc-
expressing HSCs, thus exhausting the 
pool of LT-HSCs.35 Murine HSCs 
(Lin−Sca1+ cells) retrovirally transduced 
with a Myc-ER gene consistently 
showed extended proliferation in culture 
when treated with the c-Myc activator 
(hydroxytamoxifen).36 In agreement 
with this c-Myc effect, the bone marrow 
of mice deficient for p27KIP1 and Mxd1 
(formerly Mad1) genes has an expanded 
pool of quiescent HSCs, which is con-
sistent with the phenotype observed in 
Myc−/− mice owing to the well-known 
activity of both proteins as c-Myc 
antagonists.37

Other investigators, using the same 
mice model, observed that c-Myc loss in 
adult bone marrow results in the tran-
sient accumulation of HSCs, followed 
by the progressive loss of bone marrow 
cells, which is maximal at 8 weeks after 
Myc deletion.38 Perinatal deletion of 
Myc (again using the Mx-Cre system) 
results in the accumulation of a popula-
tion of HSCs with the phenotype Lin-
negative, Sca1+-c-Kit− cells (versus the 
c-Kit-positive found in wild-type HSCs). 
These cells are deficient in differentia-
tion, and it is suggested that they reflect 
a potential primitive progenitor.38

Myc-deficient HSCs produced by 
either perinatal or adult excision by the 
Cre-Mycflox/flox model fail to engraft in 
recipient mice in a competitive or non-
competitive setting. This demonstrates 
that the accumulated Myc-deficient HSCs 
are functionally defective, and the impaired 
hematopoiesis can be attributed to an 
intrinsic defect of the Myc-deficient cell 
rather than to an aberrant microenviron-
ment in the bone marrow.35,38

The results commented above refer to 
c-Myc effects in HSC biology. As 
already mentioned, both c-Myc and 
N-Myc mRNAs are expressed at similar 
levels in HSCs, so it is interesting to 
compare the effects of both Myc genes 
and their concomitant deletion in HSCs. 
The deletion of N-Myc alone does not 
seem to affect HSCs or hematopoiesis, 
but the simultaneous deletion of Myc 
and N-Myc results in HSCs that prolifer-
ate less than c-Myc−/− HSCs and undergo 
cell death, meaning that N-Myc plays a 
role in HSC survival.26 Interestingly, 
replacement of Myc by N-Myc in mice 
results in normal development, hemato-
poietic, and lymphoid differentiation.39

The c-Myc role in HSCs has been 
confirmed in mice with targeted muta-
tion of the ubiquitin ligase Fbw7, which 
is the major (and, probably, the only) 
ubiquitin ligase for Myc in HSCs.28 Fur-
thermore, Fbw7 deletion in bone marrow 
and fetal liver HSCs results in elevated 
expression of c-Myc, accompanied with 
a reduced fraction of LT-HSCs.28,40 This 
is fully consistent with the accumulation 
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in LT-HSCs observed in Myc-deficient 
mice described above.26,35,38 Moreover, 
concomitant Myc deletion rescues the 
effect of Fbw7 deficiency, expanding the 
number of HSCs.28 Collectively, these 
investigations indicate that enforced 
c-Myc leads to loss of self-renewal activ-
ity at the expense of differentiation, 
whereas c-Myc deficiency results in 
increased HSC self-renewal and accu-
mulation of HSCs. In summary, in the 
HSC population, c-Myc controls the bal-
ance between hematopoietic stem cell 
self-renewal and differentiation.

MYC in the Differentiation of 
Lymphoid Cells In Vivo
MYC involvement in the lymphoid lin-
eage development has received much 
attention because of its heavy involve-
ment in human lymphoma. Both N-Myc 
and c-Myc mRNA are expressed during 
the maturation and expansion of the ear-
liest B-cell precursors (pro–B cells) into 
pre–B cells. Thereafter, only c-Myc is 
expressed in mature B cells after B-cell 
activation.41–43 Myc expression consis-
tently increases in response to B-cell 
receptor (BCR) stimulation in vitro.44,45 
In mice, pro–B cells and pre–B cells 
proliferate in response to cytokines such 
as IL-7 produced by bone marrow stro-
mal cells, and this response is enhanced 
in pre–B cells from Eµ-Myc mice.46

This is confirmed by measuring GFP-
Myc protein in the lymphoid compart-
ment of the GFP-Myc cell line described 
above. Flow cytometry studies showed 
that c-Myc expression is dynamically 
regulated in developing and mature B 
and T lymphocytes in vivo. Despite the 
broad cellular effects of c-Myc, one 
study showed a close correlation between 
GFP-c-Myc levels and proliferation, 
both in lymphocyte differentiation and 
upon activation of mature lymphocytes, 
suggesting that c-Myc is required to pro-
mote proliferation of lymphocytes.27

As commented below, transgenic 
mice overexpressing MYC (the human 
ortholog) in B cells via the Eµ enhancer 
develop lymphoma with relatively long 
latencies. During the prelymphomatous 

state, the constitutive c-Myc expression 
results in a higher number of pre–B cells 
and a lower number of mature B cells, 
but the B cells are able to mature rela-
tively normally despite the presence of 
deregulated c-Myc.17

In contrast, mice deficient in c-Myc 
in early B-lymphocyte precursors (pro–
B stage) have impaired B-cell differen-
tiation (Moreno de Alboran, personal 
communication). Conditional deletion 
of Myc in mature B cells results in the 
impaired proliferation of Myc null B 
lymphocytes in response to CD40 and 
IL-4.47 N-Myc expression from the Myc 
locus is capable of driving B- and T- 
lymphocyte differentiation in knock-in 
mice.39 One step further, the conditional 
deletion of both c-Myc and N-Myc, 
using CD19-cre mice, inhibits B-cell 
development at the transition from pro–
B cell to pre–B cell (i.e., the stage at 
which the combined signaling from the 
pre-BCR and IL-7 normally induce 
c-Myc and N-Myc expression).46 The 
data indicate that Myc stimulates B-cell 
differentiation and expansion at least 
from the pre-BCR stage.

As in the case of B cells, c-Myc and 
N-Myc are expressed in immature T lym-
phocytes, but c-Myc is the only Myc gene 
expressed after the pro–T cell stage and in 
mature T cells.27,41,43 In parallel with the 
B-cell scenario, c-Myc is upregulated 
upon T-cell receptor stimulation.42,48

Based on 2 different models, it has 
been shown that Myc−/− T cells (in Lck-
Cre Mycflox/flox mice) cannot populate the 
adult thymus and that subsequent thy-
mocyte maturation is ineffective: The 
cells fail to proliferate normally at  
the late double-negative CD4−CD8− 
stage, but this is not required for the pro-
gression from double-negative into 
double-positive (CD4+CD8+) cells.42,49 
However, conditional ablation of Myc in 
double-positive thymocytes (in CD4Cre 
Mycflox/flox mice) impairs natural killer 
T-cell (NKT) development arresting 
intrathymic NKT proliferation upon 
agonist selection, whereas conventional 
T-cell development is not affected.50,51

In response to infections, human B 
lymphocytes transiently pass through the 

germinal center, where antigen-specific B 
cells suffer somatic hypermutation, class 
switch recombination, and clonal expan-
sion.52 In Burkitt lymphoma, which is the 
hallmark of Myc-dependent neoplasia in 
humans, B-cell differentiation into plasma 
cells is impaired. c-Myc overexpression 
in Burkitt lymphoma cells induces a con-
stitutive centroblast-like phenotype in the 
ganglia germinal center, thus blocking the 
differentiation into mature B cells. This 
effect may be in part mediated by the 
MYC-dependent upregulation of the ger-
minal center–specific transcription factor 
Bcl6.53 Thus, c-Myc seems to impair the 
differentiation program as the primary 
cause of this lymphoma.

MYC in the Differentiation of 
Myeloid Cells In Vivo
The expression of Myc genes in the 
myeloid progenitors has merited less 
attention than that of lymphoid progeni-
tors, but the effects of Myc deletion in the 
myeloid compartment have been recently 
reported in the c-Myc conditional knockout 
mice.54 Besides the reduced lymphocyte 
number discussed above, adult c-Myc−/− 
mice show significant thrombocytosis, 
severe anemia, and grossly decreased 
neutrophil/monocyte number.54 Thus, 
c-Myc induces opposite effects in the 
differentiation of megakaryocytic versus 
monocytic and erythroid lineages. More-
over, these effects of c-Myc deletion in 
vivo on hematopoietic lineages correlates 
well with c-Myc expression in mouse 
hematopoietic cells: Cells expressing 
higher levels of c-Myc, such as GMPs, 
CLPs, and erythrocytic blasts, are sig-
nificantly reduced, whereas cells 
expressing lower Myc levels (HSCs, 
MEPs, and megakaryocytes) are less 
affected or are increased in number.54 
The data are roughly consistent with the 
observations in cell culture models 
where c-Myc impairs monocytic, granu-
locytic, and erythroid differentiation (see 
above and Table 1).

Megakaryocytes from c-Myc−/− mice 
are significantly smaller in size and lower in 
ploidy than those of control mice; however, 
because of the increase in megakaryocytic 
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number and although fewer platelets are 
produced by each megakaryocyte, a 
greater-than-3-fold increase in platelet 
number was observed in Myc−/− mice. It is 
noteworthy that mice deficient in the 
RNA-binding motif protein 15 (Rbm15) 
gene (involved in human acute mega-
karyoblastic leukemia) develop a pheno-
type similar to that of Myc−/− mice: a 
lower number of LT-HSCs and a higher 
number of abnormal low-ploidy mega-
karyocytes.55 Interestingly, the mega-
karyocyte number increase in Rbm15 
knockout mice could be partially reversed 
by ectopic c-Myc.55 The involvement of 
c-Myc in megakaryocytic differentiation 
is confirmed in transgenic mice with 
c-Myc overexpressed in the megakaryo-
cytic lineage, attained with a Myc trans-
gene under the control of the platelet 
factor 4 promoter. These mice show an 
increase in low-ploidy megakaryocytes 
owing to enhanced proliferation and sur-
vival, along with the blocking of 
differentiation.56

Effects of Enforced Expression 
of c-Myc in Hematopoietic 
Cells In Vivo

Transgenic Mice Developing 
Lymphoid Neoplasia

The oncogenic function of c-Myc in 
hematopoietic malignancies was first 
demonstrated in the Eµ-Myc transgenic 
mouse, in which c-Myc expression is tar-
geted to the lymphoid compartment by 
the immunoglobulin heavy chain gene 
promoter and enhancer.57,58 Analysis of 
the immunoglobulin gene rearrange-
ments of these tumor cells indicates that 
tumor development can commence at 
several points during B-lymphocyte dif-
ferentiation,17,57 suggesting that the 
deregulated Myc may be active at several 
developmental stages. The majority of 
the Eµ-Myc tumors appear after a latency 
period of 2 to 5 months and harbor muta-
tions in the Arf-Mdm2-p53 pathway,59,60 
indicating the insufficiency of c-Myc to 
transform lymphoid cells by itself. Eµ-N-
Myc mice also develop B-cell lym-
phoma.61 An interesting model is that of 

mice that conditionally express a MYC 
transgene (repressed by tetracycline) in 
lymphoid cells because the tTA gene is 
under the Eµ control.62 Most of the tumors 
induced in these mice are immature T-cell 
lymphoma. Interestingly, the tumors 
undergo a sustained regression upon inac-
tivation of the transgene (i.e., adding tet-
racycline in the drinking water).62

Although the Eµ-Myc-induced lym-
phoma demonstrates the ability of c-Myc 
to transform B cells in mice, the resulting 
tumors do not faithfully reproduce the 
Burkitt lymphoma, the hallmark of 
MYC-induced human B-cell lymphoma. 
Additional transgenic mice lines have 
been constructed to have better models 
for human Burkitt lymphoma. Yeast arti-
ficial chromosome (YAC) technology 
was used to obtain mice carrying a single 
copy of the 240-kb IgH/c-Myc transloca-
tion region.63 B-cell tumorigenesis 
occurs in these translocus mice, even 
when the entire Eµ intron enhancer 
region is deleted. The phenotype of 
tumors from IgH/c-Myc YAC transgenic 
mice is reminiscent of B-cell acute lym-
phoblastic leukemia (B-ALL),63 which 
is equivalent to Burkitt lymphoma in 
leukemic phase and represents about  
5% of acute lymphoblastic leukemia 
(ALL).64 Finally, a mouse transgenic was 
generated carrying a murine Myc cDNA 
inserted in the mouse IgH locus in a site 
that corresponds to the t(8;14) transloca-
tion break in Burkitt lymphoma or the 
t(12;15) in murine plasmacytoma.65 
These mice developed lymphoblastic 
B-cell lymphomas with a Burkitt-like 
morphology, diffuse large B-cell lym-
phomas and plasmacytomas (i.e., tumors 
of mature B cells). Thus, these mice 
model Burkitt lymphoma more precisely 
than do the Eµ-Myc and YAC-Myc mice, 
which do not develop plasmacytomas.65

Signaling of the BCR cooperates 
with c-Myc in the genesis of B lympho-
mas.66 Interestingly, tumors that grow in 
mice expressing an activated BCR dif-
fer from those found in Eµ-Myc mice 
and resemble Burkitt lymphoma. In 
contrast, BCR itself (in the absence of 
antigen stimulation) cooperates with 
c-Myc in tumorigenesis. The resulting 

tumors differ from those in the Eµ-Myc 
mice and those in Eµ-Myc/activated BCR 
and resemble a subset of chronic B-cell 
lymphocytic leukemia.66 A parallel model 
to study c-Myc involvement in B-cell dif-
ferentiation targets Myc to the IgH Cα 
locus in mice. In contrast to Eµ-Myc 
mice, Cα-Myc mice do not develop early 
B-cell lymphoma but show impaired pri-
mary and secondary humoral immune 
responses, failing to generate mature anti-
body-secreting plasma cells owing to 
increased apoptosis.67 Only when deregu-
lated c-Myc is combined with enforced 
expression of the antiapoptotic Bcl-xL 
gene do the mice develop plasmacytomas 
that reflect many features of human mul-
tiple myeloma. This transgenic model is 
the counterpart of mice carrying the 
t(12;15) translocation (IgH-Myc), which 
also develop plasmacitomas.68

Transgenic Mice Developing  
Myeloid Neoplasia

Although there is less information on the 
impact of c-Myc on myeloid transforma-
tion, transgenic mice with Myc overex-
pression in the myeloid cells demonstrate 
the carcinogenic potential of c-Myc in the 
myeloid compartment. Mice carrying the 
human MYC proto-oncogene under the 
control of the promoter of murine GATA-
1 promoter (an erythroid-specific gene) 
developed an early-onset, rapidly pro-
gressive erythroleukemia that resulted in 
death 30 to 50 days after birth.69 More 
recently, Smith and coworkers generated 
several transgenic mice lines carrying 
the Myc gene under the control of the 
Vav promoter, which is active through-
out all hematopoietic cell lineages (pre-
cursors and mature cells). Interestingly, 
the neoplasia lineage varied with the 
Myc expression level achieved in the 
transgenic mice. Aggressive T-cell lym-
phomas, as well as other hematopoietic 
abnormalities, predominated in the high-
est Myc-expressing transgenic mice, as 
expected from the broad expression of 
the transgene.70 In contrast, in the lines 
expressing lower c-Myc levels, most 
tumors were late-onset monocytic 
tumors.71 It is noteworthy that a 2-fold 
increase in c-Myc levels switched the 
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phenotype from monocytic tumors to 
exclusively T-cell tumors. Thus, rela-
tively low c-Myc levels can transform 
monocyte–macrophages but are insuffi-
cient to transform T lymphocytes.71

Retroviral-Mediated Expression 
of MYC in Murine Hematopoietic 
Precursors

Several reports illustrated the leukemo-
genic effects of c-Myc in hematopoietic 
cells after the enforced expression in 
murine hematopoietic precursors via ret-
roviral infection, although the neoplasia 
induction varies, depending on the virus, 
infected cells, and Myc gene. Bone mar-
row retrovirally transduced with Myc 
resulted in rapid development of acute 
myeloid leukemia (AML),72 and fetal 
liver cells infected with a different retro-
viral vector resulted in long-latency 
lymphoma.73 The infection of bone mar-
row progenitors in a p53−/− background 
also resulted in lymphoma.74 Interest-
ingly, upon culturing in vitro, a number 
of lymphoma-derived cells underwent 
myeloid differentiation. These cells 
switched from myeloid to lymphoid lin-
eage and induced B-cell lymphomas 
when returning to in vivo conditions.75 In 
another study, mice bone marrow cells 
transduced with N-Myc developed 
monoclonal and transplantable AML, 
but c-Myc retrovirus was not leukemo-
genic in the same system.76 This model 
shows that N-Myc overexpression is 
highly oncogenic in mouse myeloid 
cells. In a recent report, bone marrow for 
lethally irradiated cells were repopu-
lated with bone marrow cells expressing 
Myc, and the mice developed an AML-
like disease.77 The coexpression of sev-
eral antiapoptotic genes of the BCL2 
family accelerated leukemogenesis but 
did not change the myeloid phenotype of 
the leukemia.77 Thus, in experimental 
models, c-Myc is able to induce lym-
phoid and myeloid neoplasia. The data 
agree with the observation that Myc is 
upregulated in radiation-induced AML 
in mice78 and with the deregulation of 
MYC found in human leukemia, as dis-
cussed below.

Deregulation of MYC in 
Hematopoietic Cell Neoplasia
The original finding of translocations 
involving MYC in Burkitt lymphoma 
fueled intense research in other lym-
phoma and leukemia. MYC transloca-
tions have also been found at low 
frequencies in other lymphomas but not 
in lymphoblastic cell leukemia, except in 
the Burkitt leukemia variant (former 
acute lymphocytic leukemia L3). In addi-
tion, a significant fraction of MYC in 
Burkitt lymphoma carry mutations in the 
coding sequence, with several of them 
resulting in more stable mutant c-Myc 
proteins, thus increasing the c-Myc 
level.79–81 However, no recurrent MYC 
translocations have been reported in other 
tumors, including other lymphoblastic 
or myeloblastic leukemia.82 Table 2 
shows a summary of MYC alteration in 
human leukemia and lymphoma.

Myc in Human Lymphoid Leukemia

Lymphoid neoplasms can be broadly 
divided into those originating from 
immature lymphoid cells (T- and B- 
lymphoblastic leukemia and lymphoma) 
and the mature B- and T-cell neoplasms. 
The former include common leukemia, 
such as chronic lymphocytic leukemia 
(CLL), follicular lymphoma, diffuse 
large B-cell lymphoma, plasma cell 
myeloma (multiple myeloma), and 
Burkitt lymphoma, the first human 
tumor where MYC deregulation was 
identified.83

ALL is a heterogeneous disease com-
prising different entities that show clonal 
expansion of leukemic lymphoblasts.83,84 
In human ALL, upregulation of c-Myc 
through different mechanisms has been 
reported. Translocations t(8;14), t(8;22), 
and t(2;8) involving MYC deregulation 
are present in 5% of adult ALL and 2% 
to 5% of children ALL.84 Aberrant 
c-Myc stability has been reported in 
lymphoblastic leukemia cell lines and 
bone marrow samples from pediatric 
ALL patients.85 Prolonged c-Myc pro-
tein half-life was not correlated with the 
MYC-stabilizing mutation, as found in 
Burkitt lymphomas.85 The ETS family 

factor TEL2 has been shown to accelerate 
lymphoma development in Eµ-Myc trans-
genic mice, and interestingly, TEL2 and 
c-Myc expression levels were coordinately 
elevated in pediatric B-ALL patients, sug-
gesting that both oncogenes cooperate in B 
lymphomagenesis.86 Finally, more than 
50% of human T-cell acute lymphoblastic 
leukemia (T-ALL) have activating muta-
tions of NOTCH1,87 and MYC is a direct 
transcriptional target of oncogenic 
Notch1.88,89 Thus, it has been suggested 
that Notch1 mediates T-cell transformation 
at least in part by sustaining c-Myc levels 
(reviewed in References 90 and 91). 
Increased expression of MYC and c-Myc 
targets were recently found in T-ALL con-
comitant with LEF1 inactivation.92

CLL is the most frequent leukemia in 
adults (almost 25% of all leukemia in 
the United States and Europe).93,94 CLL 
is a slow-progression disease, with a 
median survival of 10 years, but it pres-
ents a marked variability: About one 
third of patients show a more aggressive 
form of the disease, with shorter sur-
vival periods. Interestingly, MYC mRNA 
expression is low in CLL,95 a result con-
firmed at the protein level (JM Caraballo 
and J León, unpublished results). MYC 
expression is similar in the bad and good 
prognosis groups of CLL. In contrast, in 
the malignant lymphoma form of the 
disease, Richter syndrome, MYC expres-
sion increases.96 Moreover, MYC trans-
location in CLL is associated with poor 
prognosis.97

Rearrangements of the MYC onco-
gene are present in 15% to 50% of pri-
mary human multiple myeloma tumors, 
in many cases involved in complex rear-
rangements.98,99 Frequent upregulation of 
MYC is also observed in plasma cell leu-
kemia, a monoclonal gammopathy that 
can evolve from multiple myeloma.100

c-Myc in Human Myeloid Leukemia

Myeloid neoplasms belong to 3 major 
groups: myeloproliferative neoplasms 
(including chronic myeloid leukemia 
[CML]), myelodysplastic syndromes, and 
AML.101 Moreover, human AML is actu-
ally a heterogeneous group of neoplasias 
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affecting the myeloid lineage. The for-
mer FAB (French-American-British) 
classification system of AML (M0 to M8 
subtypes, attending to the differentia-
tion type and stage) has been super-
seded by the World Health Organization 
classification, which identifies 15 dis-
eases characterized by clinical presen-
tation and recurrent chromosomal aberra- 
tions.101 Understandably, most molecular 
studies to date are carried out with a rel-
atively small number of cases of each 
myeloid disease or do not make distinc-
tions among the different entities. There-
fore, the information on MYC expression 
in myeloid leukemia (or expression of 
any gene, except those involved in 
recurrent translocations) refers to a 
rather heterogeneous group of diseases, 
and its possible involvement in a partic-
ular myeloid neoplasm has not been 
properly addressed.

The overexpression of MYC in bone 
marrow and peripheral blood in sporadic 
AML cases was observed early on.102,103 
Microarray-based studies and RT-qPCR 
studies showed that MYCN is over
expressed in AML patients (as comp- 
ared with normal bone marrow).76 Recur-
rent translocations in AML generate 
fusion proteins that are leukemogenic 

transcription factors.101 At least 3 of 
these—RUNX1-ETO, PML-RARα, and 
PLZF-RARα—induce c-Myc expres-
sion, suggesting that c-Myc is a down-
stream target of these oncogenes.104,105

Amplifications of MYC in AML have 
been reported.106–108 Double minute 
chromosomes and homogeneously stain-
ing regions containing amplified seg-
ments from chromosome band 8q24, 
including the MYC gene, have also been 
described.106,109 However, it has been 
reported that a high MYC copy number 
does not result in higher c-Myc expres-
sion,110,111 a situation that seems to con-
flict with the correlation between MYC 
amplification and expression observed in 
lymphoma.112

MYC expression appeared elevated in 
a microarray-based study in 5 AML sam-
ples, as validated by RT-PCR.113 In con-
trast, MYC was not detected as a major 
overexpressed gene in other microarray-
based studies on AML samples.114–116 
Note, however, that microarray-based 
studies are done at the mRNA level; 
thus, changes in c-Myc protein level are 
not evaluated. Also note that MYC 
expression changes less than 2-fold are 
usually filtered out by the statistical 
analysis of microarray data but that a 

2-fold expression change of c-Myc may 
be relevant. For instance, a mere 2-fold 
change means a major difference for 
c-Myc transformation ability of rat 
fibroblasts and mouse embryonic stem 
cells,30,117 as well in transgenic animals 
where c-Myc dosage can be modu-
lated.118 It is noteworthy that in Burkitt 
lymphoma, the paradigm of MYC acti-
vation in human cancer, c-Myc increase 
in expression can be only 2-fold with 
respect to normal lymphocytes.119 
Finally, the great diversity of AML com-
mented above makes the analysis of 
homogeneous sample cohorts difficult.

MYC mRNA is overexpressed in 
bone marrow cells from essential throm-
bocythemia, a myeloproliferative syn-
drome.120 This is in contrast with the 
lack of MYC overexpression in another 
common myeloproliferative syndrome, 
the polycythemia vera (PV).120 This is 
striking because more than 95% of PV 
carry activating mutation in the tyrosine 
kinase JAK2, which has been reported 
to induce MYC expression in cell 
lines,121,122 suggesting that the pathway 
is not operative in PV primary cells.

CML is a common myeloprolifera-
tive disorder that progresses in 2 
phases: Most patients are diagnosed in 

Table 2.  Summary of Myc Alteration in Human Hematological Malignanciesa

Lymphoma/Leukemia Myc Involvement References

Lymphoid neoplasms  
  Diffuse large B-cell lymphoma (DLBCL) MYC translocation (6–16%) 145
  Burkitt lymphoma (including Burkitt leukemia variant) MYC translocation and overexpresion (> 90%) 146, 147
  DLBCL c-Myc protein expression by immunochemistry (25%) 148
  DLBCL MYC amplification correlated with mRNA overexpression (38%) 112
  Acute lymphoblastic leukemia (ALL) MYC translocations t(8;14), t(8;22) t(2;8) (5%) 84
  B-ALL (pediatric) Coordinately elevated MYC and/or MYCN and TEL2 levels (30%) 86
  B-ALL MYC rearrangement/amplification (47–52%) 145
  Plasma cell myeloma / multiple myeloma MYC translocation (15-50%) 98, 99
  Primary plasma cell leukemia MYC translocation (13%) 98, 145
  Chronic lymphocytic leukemia Low c-Myc expression 95
Myeloid neoplasms  
  Acute myeloid leukemia (AML) MYC mRNA overexpression by microarray analysis 113
  AML (without translocations) MYC mRNA overexpression by microarray (20%) 149
  AML (pediatric) MYCN overexpression (24–40%) 76, 115
  AML (therapy related) MYC mRNA overexpression 150
  Essential thrombocythemia MYC mRNA overexpression 120
  Chronic myeloid leukemia MYC mRNA overexpression 130, 131

aThis list is not meant to be comprehensive. The table includes data published in the reviews of references.145–147
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a relatively benign chronic phase, 
which is followed by an accelerated 
and, finally, blastic crisis phase. The 
molecular hallmark of all CML phases 
is the expression of the Bcr-Abl 
kinase,123 which upregulates MYC 
expression122,124 and cooperates with 
c-Myc in transformation.125–127 Studies 
performed with a small number of cases 
showed that MYC mRNA levels were 
elevated in blastic crisis128,129 and in 
chronic phase versus healthy bone mar-
row.130,131 We recently observed the 
upregulation of c-Myc mRNA with 
CML progression (M Albajar et al., sub-
mitted). CML progression into blastic 
crisis is associated with cell survival, 
genomic instability, and differentiation 
arrest.123,132 We have also shown that 
enforced MYC expression in CML-
derived cells as K562 results in aberrant 
DNA synthesis under imatinib stress and 
block imatinib-mediated differentiation 
(M Albajar et al., submitted), suggesting 
that c-Myc may contribute to CML 
transformation. Note that trisomy 8 and 
gain at 8q24 (where MYC maps) are 
among the most frequent cytogenetic 
alterations in CML,133,134 although their 
correlation with expression is unknown.

In conclusion, c-Myc function is piv-
otal for the correct hematopoiesis, help-
ing to regulate the exquisite balance 
among self-renewal, differentiation, and 
proliferation required for blood forma-
tion. A reflection of c-Myc importance is 
the frequent finding of MYC deregula-
tion in human leukemia and lymphoma, 
which would destroy this balance and 
transform hematopoietic cells by stimu-
lating proliferation and blocking termi-
nal differentiation.
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