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Abstract
Recent advances in genomics have underscored the surprising ubiquity of DNA copy number
variation (CNV). Fortunately, modern genotyping platforms also detect CNVs with fairly high
reliability. Hidden Markov models and algorithms have played a dominant role in the
interpretation of CNV data. Here we explore CNV reconstruction via estimation with a fused-lasso
penalty as suggested by Tibshirani and Wang [Biostatistics 9 (2008) 18–29]. We mount a fresh
attack on this difficult optimization problem by the following: (a) changing the penalty terms
slightly by substituting a smooth approximation to the absolute value function, (b) designing and
implementing a new MM (majorization-minimization) algorithm, and (c) applying a fast version
of Newton's method to jointly update all model parameters. Together these changes enable us to
minimize the fused-lasso criterion in a highly effective way.

We also reframe the reconstruction problem in terms of imputation via discrete optimization. This
approach is easier and more accurate than parameter estimation because it relies on the fact that
only a handful of possible copy number states exist at each SNP. The dynamic programming
framework has the added bonus of exploiting information that the current fused-lasso approach
ignores. The accuracy of our imputations is comparable to that of hidden Markov models at a
substantially lower computational cost.
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1. Introduction
New techniques of fine mapping have uncovered many regions of the human genome
displaying copy number variants (CNVs) [Iafrate et al. (2004); Redon et al. (2006); Sebat et
al. (2004)]. Variation is to be expected in cancer cells, but it also occurs in normal somatic
cells subject to Mendelian inheritance. As awareness of the disease implications of CNVs
has spread, geneticists have become more interested in screening their association study
samples for copy number polymorphisms (CNPs) [Stefansson et al. (2008)]. Fortunately, the
Illumina and the Affymetrix platforms used in high-density genotyping yield CNV
information at no additional cost. Despite their obvious technical differences, the two
platforms generate conceptually very similar CNV reconstruction problems.

Hidden Markov models and algorithms have dominated the field of CNV reconstruction
[Colella et al. (2007); Korn et al. (2008); Scharpf et al. (2008); Wang et al. (2007, 2009)].
This statistical framework is flexible enough to accommodate several complications,
including variable single nucleotide polymorphism (SNP) frequencies, variable distances
between adjacent SNPs, linkage disequilibrium and relationships between study subjects. In
the current paper we investigate the potential of penalized estimation for CNV
reconstruction. Tibshirani and Wang (2008) introduced the fused-lasso penalty for the
detection of CNVs based on generic considerations of smoothness and sparsity [Rudin,
Osher and Fatemi (1992); Tibshirani et al. (2005)]. The application of the fused lasso to
CNV detection is best motivated by a simplified model. Let the parameter vector β = (β1,β2,
…, βn) quantify DNA levels at n successive SNPs. These levels are normalized so that βi = 0
corresponds to the standard copy number 2, where SNP i is represented once each on the
maternal and paternal chromosomes. Variant regions are rare in the genome and typically
involve multiple adjacent SNPs; CNVs range from a few thousand to several million base
pairs in length. In high-density genotyping we query SNPs that are on average about five
thousand base pairs apart. The true β is therefore expected to be piecewise constant, with the
majority of values equal to 0 and a few segments with positive values (indicating
duplication) and negative values (indicating deletion).

Tibshirani and Wang (2008) proposed the joint use of a lasso and a fused-lasso penalty
 to enforce this piecewise constant structure. One then estimates β by

minimizing the objective function l(β) + λ1∥β∥ℓ1 λ2p(β), where l(β) is a goodness-of-fit
criteria. The nondifferentiability of the objective function makes minimization challenging
[Friedman et al. (2007)]. We mount a fresh attack on this difficult optimization problem by
the following tactics: (a) changing penalty terms slightly by substituting a smooth
approximation to the absolute value function, (b) majorizing the substitute penalties by
quadratics and implementing a new MM (majorization–minimization) algorithm based on
these substitutions, and (c) solving the minimization step of the MM algorithm by a fast
version of Newton's method. When the loss function is quadratic, Newton's method takes a
single step. More radically, we also reframe the reconstruction problem in terms of
imputation via discrete optimization. Readers familiar with Viterbi's algorithm from hidden
Markov models will immediately recognize the value of dynamic programming in this
context. For the specific problem of detection of CNVs in DNA from normal cells, discrete
imputation has the advantage of choosing among a handful of copy number states rather
than estimating a continuous parameter. This fact renders discrete imputation easier to
implement and more accurate than imputation via parameter estimation.

The remainder of the paper is organized as follows. In the methods section we briefly review
the data generating mechanism for CNV problems. We then present our estimation approach
to CNV reconstruction and the MM algorithm that implements it. Finally, we describe our
new model and the dynamic programming algorithm for discrete imputation. In the results
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section we assess the statistical performance and computational speed of the proposed
methods on simulated and real data sets.

2. Methods
2.1. Characteristics of the genotype data

When reconstructing CNV from genotype data, researchers rely not only on the final
genotype calls but also on raw measurements obtained from the genotyping array. The
character of these measurements varies slightly depending on the platform adopted. For
definiteness, we focus on the data delivered by the Illumina platform at our disposal. A
DNA sample from an individual is preprocessed, hybridized to a chip, and queried at n
SNPs. For convenience, we will call the two alleles A and B at each SNP. The amount of
DNA carried by each allele at a queried SNP is measured by recording the luminescence of
specifically labeled hybridized DNA fragments. Transformations and normalizations of the
luminescences lead to two noisy measurements for each SNP i: yi (LogR) and xi (BAF). The
former quantifies the total DNA present at the SNP. After normalization, the average of yi
across individuals is 0. A large positive value suggests a duplication; a large negative value
suggests a deletion. The variability yi has been successfully described as a mixture of a
Gaussian and a distribution to guard against contamination from outliers [Colella et al.
(2007); Wang et al. (2007, 2009)].

The B-allele frequency (BAF) represents the fraction of the total DNA attributable to allele
B. The admissible values for xi occur on the interval 0, 1]. When copy number equals 1, xi
takes on values close to 0 or 1, corresponding to the genotypes A and B. When copy number
equals 2, xi is expected to fluctuate around the three possible values 0, 1/2 and 1,
corresponding to the three possible genotypes AA, AB and BB. When copy number equals
3, xi varies around the four possible values 0, 1/3, 2/3, 1, corresponding to the genotypes
AAA, AAB, ABB, BBB. When copy number equals 0, the value of xi is entirely due to
noise and appears to be distributed uniformly on [0, 1]. Figure 1 plots typical values of the
pair (yi, xi) along a DNA segment that contains a homozygous deletion (copy number 0), a
hemizygous deletion (copy number 1) and a duplication (copy number 3). Clearly both yi
and xi convey information relevant to copy number.

2.2. Reconstructing a piecewise constant function
Consider first CNV reconstruction using signal intensities yi and neglecting B-allele
frequencies xi. While this restriction overlooks important information, it has the benefit of
recasting CNV reconstruction as a general problem of estimating a piecewise constant
function from linearly ordered observations. In such regression problems, Tibshirani et al.
(2005) and Tibshirani and Wang (2008) suggest minimizing the criterion

Here y = (yi)n×1 is the response vector, Z = (zij)n×p is the design matrix, β = (βj)n×1 is the
parameter vector of regression coefficients, and λ1 and λ2 are tuning parameters that control
the sparsity and smoothness of the model. The model is particularly suited to situations
where the number of regression coefficients p is much larger than the number of cases n. For
the special task of CNV detection, we take Z = I (i.e., p = n), reducing the objective function
to
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(1)

Notice that f(β) is strictly convex and coercive, so a unique minimum exists. When λ2 = 0,
the objective function can be decomposed into a sum of n terms, each depending only on
one βi. This makes it very easy to find its minimum using coordinate descent [Friedman et
al. (2007); Wu and Lange (2008)]. Unfortunately, this is not the case with λ2 ≠ 0 because the
kinks in the objective function are no longer confined to the coordinate directions. This
makes coordinate descent much less attractive [Friedman et al. (2007)]. Quadratic
programming [Tibshirani et al. (2005); Tibshirani and Wang (2008)] is still available, but its
computational demands do not scale well as p increases.

Inspired by the resolution of similar smoothing dilemmas in imaging [Bioucas-Diaa,
Figueiredo and Oliveira (2006); Rudin, Osher and Fatemi (1992)], we simplify the problem
by slightly modifying the penalty. The function

is both differentiable and strictly convex. For small ε >0 it is an excellent approximation to |
x|. Figure 2 illustrates the quality of this approximation for the choice ε = 0.001. In practice,
we set ε = 10−10. If we substitute ∥x∥2,ε for |x|, then the CNV objective function becomes

(2)

As ε tends to 0, one can show that the unique minimum point of (2) tends to the unique
minimum point of the original objective function.

Another virtue of the substitute penalties is that they lend themselves to majorization by a
quadratic function. Given the concavity of the function , it is geometrically
obvious that

with equality holding if and only if x = z. This inequality enables a Majorization–
Minimization (MM) [Lange (2004)] strategy that searches for the minimum of the objective
function. Each step of this iterative approach requires the following: (a) majorizing the
objective function by a surrogate equal to it at the current parameter vector and (b)
minimizing the surrogate. The better-known EM algorithm is a special case of the MM
algorithm. The MM algorithm generates a descent path guaranteed to lead to the optimal
solution when one exists. More information can be found in Lange (2004). Returning to our
problem, we can replace the objective function by the surrogate function
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where m indicates iteration number and cm is a constant unrelated to β. Minimization of
gε,m(β | β(m)) to obtain β(m+1) drives the objective function fε(β) downhill. Although the MM
algorithm entails iteration, it replaces the original problem by a sequence of simple quadratic
minimizations. The descent property of the MM algorithm guarantees that progress is made
every step along the way. This, coupled with the convexity of our problem, guarantees
convergence to the global minimum.

Despite these gains in simplicity, the surrogate function still does not decompose into a sum
of n terms, with each depending on only one βi. The fact that the even numbered βi do not
interact given the odd numbered βi (and vice versa) suggests alternating updates of the two
blocks of even and odd numbered parameters. In practice, this block relaxation strategy
converges too slowly to be competitive. Fixing βi−1 and βi+1 leaves too little room to move
βi. Fortunately, full minimization of the quadratic is less onerous than one might expect. The
surrogate function can be written in a matrix form

(3)

where Am is a tridiagonal symmetric matrix. In view of the strict convexity of the surrogate
function, Am is also positive definite. The nonzero entries of Am and bm are

The minimum of the quadratic occurs at the point . Thanks to the simple form of
Am, there is a variant of Gaussian elimination known as the tridiagonal matrix algorithm
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(TDM) or Thomas's algorithm [Conte and deBoor (1972)] that solves the linear system Amβ
= bm in just 9n floating point operations. Alternatively, one can exploit the fact that the
Cholesky decomposition of a banded matrix is banded with the same number of bands. As
illustrated in Section 3.5, Thomas's algorithm is a vast improvement over block relaxation.

A few comments on the outlined strategy are in order. By changing the penalty from ∥ · ∥ℓ1
to ∥ · ∥2,ε, we favor less sparse solutions. However, spareness is somewhat besides the point.
What we really need are criteria for calling deletions and duplications. The lasso penalty is
imposed in this problem because most chromo-some regions have a normal copy number
where yi hovers around 0. The same practical outcome can be achieved by imputing copy
number 2 for regions where the estimated βi value is close to 0. (See Section 3.1.) It is also
relevant to compare our minimization strategy to that of Friedman et al. (2007). The fusion
step of their algorithm has the advantage of linking coefficients that appear to be similar, but
it has the disadvantage that once such links are forged, they cannot be removed. This
permanent commitment may preclude finding the global minimum, a limitation that our MM
algorithm does not share.

Perhaps more importantly, our strategy can be adapted to handle more general objective
functions, as long as the resulting matrix A in (3) is banded, or, at least, sparse. For example,
consider the inpainting problem in image reconstruction [Chan and Shen (2002)]. In this two
dimensional problem, the intensity levels for certain pixels are lost. Let S be the set of pixels
with known levels. The objective function

represents a compromise between imputing unknown values and smoothing. If we majorize
the penalties in this objective function by quadratics, then we generate a quadratic surrogate
function. The corresponding Hessian of the surrogate is very sparse. (Actually, it is banded,
but not in a useful fashion.) Although we can no longer invoke Thomas's algorithm, we can
solve the requisite system of linear equations by a sparse conjugate gradient algorithm.

All of the algorithms mentioned so far rely on known values for the tuning constants. We
will describe our operational choices for these constants after discussing the problem of
imputing chromosome states from estimated parameters in the next section.

2.3. Reconstructing discrete copy number states
Imputation of copy number as just described has the drawbacks of neglecting relevant
information and requiring the estimation of a large number of parameters. To overcome
these limitations, we now bring in the BAF xi and focus on a model with a finite number of
states. This setting brings us much closer to the HMM framework, often used for CNV
reconstruction. Such similarity will be evident also in the numerical strategy we will use for
optimization. However, our approach avoids the distributional assumptions at the basis of an
HMM.

We consider 10 possible genotypic states ϕ, A, B, AA, AB, BB, AAA, AAB, ABB and BBB
at each SNP. Here ϕ is the null state with a copy number of 0. (Note that, in the interest of
parsimony, we contemplate double deletions, but not double duplications. This has more to
do with the strength of signal from duplications than their actual frequency, and it is an
assumption that can be easily relaxed.) In the model the average signal intensity μc(s) for a
state s depends only on its copy number c(s). Regardless of whether we estimate the μc or
fix them, they provide a more parsimonious description of the data than the βi, which could
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take on a different value for each SNP. Furthermore, while we still need to impute a state for
each SNP i, selecting one possible value out of 10 is intrinsically easier than estimation of
the continuously varying βi. Table 1 lists the copy number c(s), the expected value of yi and
the approximate distribution of xi for each genotype state s. To reconstruct the state vector s
= (s1,…,sn), we recommend minimizing the generic objective function

(4)

which again is a linear combination of losses plus penalties. Here α, λ1 and λ2 are positive
tuning constants controlling the relative influences of the various factors. The lasso penalty
makes the states with copy number 2 privileged. The fused-lasso penalty discourages
changes in state. Minimizing the objective function (4) is a discrete rather than a continuous
optimization problem.

Different loss functions may be appropriate in different circumstances. If the intensity values
are approximately Gaussian around their means with a common variance, then the choice
L1(y, s) = [y − μc(s)]2 is reasonable. For the BAF xi, the choice L2(x s) = (x − νs)2 is also
plausible. Here νs is the centering constant appearing in the fourth column of Table 1. For
instance, L2(x, ABB) = (x − 2/3)2. For the null state ϕ, we would take

Once the loss functions are set, one can employ dynamic programming to find the state
vector s minimizing the objective function (4). If we define the partial solutions

for i = 1,…,n, then the optimal value of the objective function is minj gn(j). We evaluate the
partial solutions gi(j) recursively via the update

(5)

with initial conditions

The beauty of dynamic programming is that it applies to a variety of loss and penalty
functions.

In fact, it is possible to construct an even more parsimonious model whose four states
correspond to the four copy numbers 0, 1, 2 and 3. The loss function L1(y, c) = (y − μc)2 is
still reasonable, but L2(x, c) should reflect the collapsing of genotypes. Here c is the copy
number. Two formulations are particularly persuasive. The first focuses on the minimal loss
among the genotypes relevant to each copy number. This produces
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(6)

The second formulation averages loss weighted by genotype frequency. There are other
reasonable loss functions. Among these it is worth mentioning negative log-likelihood,
Huber's function and the hinge loss function of machine learning.

Dynamic programming does require specification of the parameters characterizing the
distribution of the intensities yi and the BAF xi. It may be possible to assign values to these
parameters based on previous data analysis. If not, we suggest estimating them concurrently
with assigning states. For example, if the parameters are the intensity means μ0, μ1, μ2 and
μ3, then, in practice, we alternate two steps starting from plausible initial values for the μi.
The first step reconstructs the state vector s. The second step re-estimates the μi conditional
on these assignments. Thus, if Gi is the group of SNPs assigned copy number i, then we
estimate μi by the mean of the yi over Gi. Taking the median rather the mean makes the
process robust to outliers. A few iterations of these two steps usually gives stable parameter
estimates and state assignments. To further stabilize the process, we impose two constraints
on the second step. If the number of SNPs assigned to Gi is less than a threshold, say, 5, we
choose not to update μi and rather keep the estimate in the previous iteration. In each update
we enforce the order of μ0 <μ1 <μ2(≈ 0) < μ3. In the following we will refer to the approach
described in this section as dynamic programming imputation (DPI).

3. Results
3.1. Identification of deleted and duplicated segments by the fused lasso

In calling deletions and duplications with the fused lasso, we adopt the procedure of
Tibshirani and Wang (2008). Originally designed for array-CGH platforms, this procedure
aims to control false discovery rate (FDR). Fortunately, it can be readily applied to genotype
data. The general idea is to formulate the problem as one of multiple hypothesis testing for
nonoverlapping chromosome segments S1 through SK. For each segment Sk we define the
test statistic

where nk is the number of SNPs in segment Sk and  is a conservative estimate of standard
deviation of the  across all segments based on the yi values between their 2.5 and 97.5
percentiles. The associated p-value for segment Sk is approximated by  for Z ~
N(0, 1). For a given threshold q ∈ (0, 1), we estimate the FDR by

(7)

Here the FDR is defined as the ratio between the number of SNPs in nominal CNV
segments with true copy number 2 and the total number of SNPs claimed to be within CNV
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segments. In the FDR estimate (7), q is roughly regarded as the fraction of null (copy

number 2) segments among all candidate CNV segments. In the numerator,  counts
the average SNP number within each segment, and Kq estimates the expected number of
null segments. In the denominator,  counts the total number of SNPs claimed to
be located in CNV segments. Thus, this approximation is desired according to the SNP-
number-based definition.

Once we decide on an FDR level α, the threshold q is determined as the largest value
satisfying . We call a segment Sk a deletion if  and pk ≤ q and a duplication
if  and pk ≤ q.

3.2. Choice of tuning constants
Choice of the tuning constants λ1 and λ2 is nontrivial. Because they control the sparsity and
smoothness of the parameter vector β and therefore drive the process of imputation, it is
crucial to make good choices. Both of the references Friedman et al. (2007) and Wu and
Lange (2008) discuss the problem and suggest solutions in settings similar to ours. While
explicit theoretical expressions for optimal λ1 and λ2 are currently unavailable, known
results can inform practical choices.

Friedman et al. (2007) consider the optimal solution to the fused-lasso problem

They prove that  for λ1 > 0 is a soft-thresholding of  when λ1 = 0, namwly,

(8)

This implies that λ1 > 0 will drive to 0 those segments of the piecewise constant solution
 whose absolute values are close to 0. It is also important to note that, since 

is piecewise constant, its effective dimension is much lower than n.

To understand how the optimal values of these tuning parameters depend on the dimension
of the vector β, let us recall pertinent properties of the Lasso estimator in linear regression.
In this setting

(9)

where , and ∥ · ∥ℓ1 and ∥ · ∥ℓ2 are the ℓ1 and ℓ2 norms. Candès and
Plan (2009), Donoho and Johnstone (1994)and Negahban et al. (2009) show that a Lasso
estimator with  for some constant c leads to an optimal upper bound on

. Our problem with λ1 = 0 fits in this framework if we reparameterize via δ1 =
β1 and δi = βi − βi−1 for i for i = 2, …,n. In the revised problem
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(10)

p = n, and the design matrix is lower-triangular with all nonzero entries equal to 1. This
finding suggests that we scale λ2 by 

On the basis of these observations, we explored the choices

Here σ relates the tuning parameters to the noise level. Because the effective dimension in
(8) is much smaller than n, we assumed that λ1 does not depend on n. Although ρ1 and ρ2
can be tuned more aggressively by cross-validation or criteria such as BIC, we chose the
sensible and operational combination

(11)

A small scale simulation study suggested that the performance of our methods does not vary
substantially for values of ρ1 and ρ2 close to 1 and 2, respectively. One may also vary ρ1
and/or ρ2 mildly to achieve different combinations of sensitivity and specificity as defined in
Section 3.4. (Data not shown.)

In practice, we do not know the value of σ. Here we estimated a different σ for each
individual, using the standard deviation of yi values between their 2.5 and 97.5 percentiles.
We decided to use only data points within the 95%-interquantile range in order to exclude
values of yi corresponding to possible deletions and duplications. Other possible robust
estimators are based on the median absolute deviation or the winsorized standard deviation.
In a small-scale simulation we did not observe substantial differences between these
estimators. (Data not shown.)

While most of the experiments in the paper used the values of λ1 and λ2 suggested in
equation (11), we also designed and conducted a more general simulation study to find the
optimal values of these tuning parameters; see Section 3.8 for details.

3.3. Simulated data with in silico CNVs
To illustrate the effectiveness of our algorithms, we tested them on simulated data. Real data
with empirically validated CNVs would be ideal, but such a gold standard does not exist.
Instead, we used data from male and female X chromosomes to construct in silico CNV.
Since males are equipped with only one X chromosome, we can use their genotype data to
approximate the signal generated by deletion regions. A patchwork of female and male data
mimics what we expect from an ordinary pair of homologous chromosomes with occasional
deletions. Our X chromosome data come from the schizophrenia study sample of Vrijenhoek
et al. (2008) genotyped on the Illumina platform. We focus on the 307 male and 344 female
controls.

To avoid artifacts, the data needed to be preprocessed. We identified SNP clusters on the X
chromosome using the Beadstudio Illumina software on female controls. These clusters
permit estimation of parameters typical of a diploid genome. We then normalized the
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corresponding male SNP signals relative to the corresponding female signals. Finally, to
destroy the signature of possible CNVs in the female data, we permuted the order of the
SNPs. This action breaks up the patterns expected within CNV regions and eliminates the
smooth variation in the intensity signals [Diskin et al. (2008)].

After these preprocessing steps, we generated ordinary copy number regions from the
female data and deleted regions from the male data. We also generated duplications by
taking the weighted averages

for the intensities and BAFs, where the f and m subscripts refer to females and males.
Because duplications show a lesser increase in logR values than the deletions show a
decrease, the factor 0.55 multiplies the absolute difference |median(yf)−median(ym)| between
median female and male intensities.

We generated two different data sets to assess the operating characteristics of the proposed
algorithms. In both data sets the number of deletions equals the number of duplications.
Data set 1 consists of 3600 sequences, each 13,000 SNPs long, with either a deletion or a
duplication in the central position. The CNVs had lengths evenly distributed over the 6
values 5, 10, 20, 30, 40 and 50 SNPs. Data set 2 consists of 300 sequences with variable
numbers of SNPs and either a deletion or duplication in the central position. The sequence
lengths were evenly distributed over the values 4000, 8000, 12,000, 16,000 and 20,000
SNPs; the CNV lengths followed the distribution of data set 1.

The sequence and CNV lengths in our simulations were chosen to roughly mimic values
expected in real data. For the Illumina HumanHap550 BeadChip platform, the median
number of SNPs per chromosome arm is 13,279, with a median absolute deviation of 8172.
Current empirical data suggests that there is usually at most one CNV per chromosome arm
[Wang et al. (2007)] and that the length of the typical CNV is usually less than 50 SNPs
[Jakobsson et al. (2008)]. The sequences from data set 1 represent an average chromosome
arm, while the sequences from data set 2 capture the diversity across all chromosome arms.
Both data sets have useful lessons to teach.

3.4. Measures of accuracy and a benchmark algorithm
We will measure accuracy on a SNP by SNP basis, adopting the following indexes: true
positive rate (TPR or sensitivity), false positive rate (FPR or 1-specificity), and false
discovery rate (FDR). These are defined as the ratios
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where the capital letters T, F, P, N and R stand for true, false, positive, negative and rate,
respectively. For example, the letter P by itself should be interpreted as the number of SNPs
with true copy number equal to 0, 1 or 3; the pair of letters FN should be interpreted as the
number of SNPs with true copy number 0, 1 or 3 but imputed copy number 2. We will also
evaluate the number of iterations until convergence and the overall computational time
required by each algorithm.

For benchmarking purposes, we will compare the performance of the proposed algorithms to
that of PennCNV [Wang et al. (2007)], a state-of-the-art hidden Markov model for CNV
discovery on Illumina data. PennCNV bases the geno-type call for SNP i on its yi and xi
measurements and its major and minor allele frequencies. We expect PennCNV to perform
well because it has been extensively tuned on real and simulated data. The main aim of our
comparisons is simply to check whether the new algorithms suffer a substantial loss of
accuracy relative to PennCNV.

3.5. Convergence of the MMTDM and MMB algorithms
We first investigate two versions of the fused-lasso procedure. Both implement the MM
algorithm on the objective function (2). The MMTDM algorithm solves the minimization
step by the tridiagonal matrix algorithm. The MMB algorithm approximately solves the
minimization step by one round of block relaxation. To assess the rate of convergence of
MMTDM and MMB, we used data set 1 with 3600 sequences of 13,000 SNPs each. We
declared convergence for a run when the difference between the objective function at two
consecutive iterations fell below 10−. To limit the computational burden, we set the
maximum number of iterations equal to 10,000. Both algorithms started with the values βi =
yi. Each entry of Table 2 summarizes the results for a different CNV width. The table makes
it abundantly clear that MMB is not competitive. Because MMB never converged in these
trials, we took one sequence and ran it to convergence under the more stringent convergence
criterion of 10−6. Figure 3 plots the value of the objective function under the two algorithms.
Examination of these plots shows that MMTDM is on the order of 1000 times faster than
MMB.

3.6. Effect of including BAF in discrete reconstruction
Data set 1 also illustrates the advantages of including BAF information in CNV
reconstruction. Here we focus on dynamic programming imputation (DPI) based on the
objective function (4). Note that this function does not incorporate prior knowledge of the
frequency of deletions versus duplications. In running the dynamic programming algorithm,
we rely on results from a previous study [Wang et al. (2009)] to initialize the intensity
parameters μk. Because the μk are re-estimated after each round of imputation, we can safely
ignore the slight differences between the genotyping platforms of the previous and current
studies. Table 3 reports the various accuracy indexes as a function of the tuning constant α
determining the relative influence of BAF. Although we already have acceptable
reconstruction for α = 0, increasing it leads to substantial improvements. When α = 12, we
reach an excellent balance between sensitivity and specificity. In the following we adopt the
value α = 12 unless noted to the contrary.
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3.7. Accuracy comparisons for various CNV sizes
Table 4 reports the values of the accuracy indices for various CNV sizes and types. Here we
compare PennCNV, fused-lasso minimization under MMTDM and DPI on data set 1. To
avoid overfitting and a false sense of accuracy, we used 3-fold cross-validation to choose α.
The accuracy indices reported in the table represent averages over the left-out thirds.
Although PennCNV falters a little with the shortest CNVs, it is clearly the best of the three
methods. More surprising, DPI achieves comparable FPR and FDR to PennCNV as well as
fairly good TPR. In particular, its FDR is uniformly low across CNV sizes and types.
Overall, Table 4 demonstrates the promise of DPI. In contrast, the results for fused-lasso
minimization are discouraging. Despite its post-processing to control FDR, it does poorly in
this regard. Furthermore, it displays substantially worse TPR for duplications than
PennCNV and DPI, particularly for duplications spanning only 5 SNPs. This behavior is to
be expected given the poor ability of signal strength alone to separate duplications from
normal chromosome regions. The performance of fused-lasso minimization underscores the
advantages of explicitly modeling the discrete nature of the state space and taking BAF
information into account. Nonetheless, it is important to keep in mind that the previous data
sets are by design more favorable to PennCNV and DPI. The analysis of tumor samples with
ambiguous copy numbers or signals from experimental devices, such as CGH arrays that
lack allele-specific information, are bound to cast fused-lasso minimization in a kinder light.

3.8. Accuracy comparison for various SNP sequence lengths
Data set 2 allowed us to assess performance on longer sequences with less frequent SNPs
and to gain insight into the impact of the tuning parameters λ1 and λ2. For the latter purpose
we adopted two strategies: (a) define λ1 and λ2 by the values displayed in equation (11), and
(b) adopt an “oracle” approach that relies on the knowledge of locations of deletions and
duplications. Strategy (b) chooses constant values across the individuals to maximize TPR
(sensitivity) while keeping FPR and FDR levels comparable to those under strategy (a). The
oracle approach is not applicable to real data sets, where locations of deletions and
duplications are unknown. We adopted it in this analysis to determine how optimal tuning
parameters vary with sequence length.

Tables 5–7 summarize results for PennCNV, fused-lasso minimization and DPI,
respectively. As with data set 1, PennCNV achieves the best sensitivity, followed by DPI.
The best control of false positives occurs with DPI. The accuracy of the methods and the
optimal values of λ1 and λ2 do not change with sequence length n. However, it is clear that
the advantages of selecting individual-specific λ values outweigh the benefit of selecting
constant λ values that maximize overall performance. In fact, the choice of the oracle λ is
excessively influenced by some individuals with poor quality data; to control false
discoveries in these subjects, one lowers performance in more favorable settings.

3.9. Speed comparison of different methods for CNV detection
Finally, we compared the computational speeds of the three methods. Although the cost of
each scales linearly with the number of SNPs, run times vary considerably in practice (see
Figure 4). We base our comparisons on data set 2 run on an Intel Xeon 2.80 GHz processor
operating under Linux. The PennCNV distributed software (2008, November 19 version) is
a combination of C and Perl. We implemented DPI and the MMTDM algorithm for fused-
lasso minimization in Fortran 95. The penalty tuning parameters were chosen according to
equation (11). For DPI we set α = 12. Table 8 lists average run times for each sequence
sample; standard errors appear in parentheses. As we anticipated, fused-lasso minimization
and DPI require less computation per iteration and run much faster than PennCNV. DPI is 2
to 3 times faster than fused-lasso minimization.
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3.10. Analysis of four real samples
We tested the three methods on genome scan data on four schizophrenia patients from the
study of Vrijenhoek et al. (2008). These patients were selected because they each exhibit
one experimentally validated CNV (two deletions and two duplications). The four CNVs
disrupt the genes MYT1L, CTNND2, NRXN1 and ASTN2, which play important roles in
neuronal functioning and are associated with schizophrenia. This subset of the data is ideal
for our purpose. The entire data set was collected as part of a genome-wide association study
and consists of blood samples from unrelated individuals. It is expected that only a modest
amount of CNV may be present; most CNVs probably represent inherited neutral
polymorphisms rather de novo mutations. Unlike cancer cell lines, copy numbers should
rarely exceed 3.

We analyzed the entire genomes of these four subjects, applying the three methods to each
chromosome arm. In calling CNVs with fused-lasso minimization, we controlled FDR at the
0.05 level. The penalty tuning parameters were chosen according to equation (11). For
dynamic programming, we set α 12. It took on average 113.8, 8.6 and 4.7 seconds for the
three methods to run on the approximately 550k SNPs typed on each individual. The
computational efficiency of DPI displayed here may be a decisive advantage in other data
sets with thousands of participants. To focus on signals with a higher chance of being real,
we eliminated all CNV calls involving fewer than 5 SNPs.

Table 9 reports the numbers of detected CNVs and their median sizes; median absolute
deviations are listed in parentheses. PennCNV produced the largest number of CNVs calls,
followed by fused-lasso minimization. The CNVs detected by PennCNV and DPI had
similar sizes; those detected by fused-lasso minimization tended to be longer. Table 10
summarizes the overlap between the CNVs calls for the three methods. The vast majority of
CNVs detected by DPI are also detected by PennCNV. There is a smaller overlap between
PennCNV and the Fused Lasso.

Three of the experimentally verified CNVs were detected by all three methods. The fourth, a
deletion on 9q33.1 in patient 4, was detected only by PennCNV (see Figure 5). It is
noteworthy that the quality of the data for this patient is poor. For example, it fails to pass
the PennCNV quality control criterion requiring the standard deviation of LogR to be less
than 0.2. In this sample the standard deviation is 0.26. It appears that the higher sensitivity
of PennCNV comes at the price of allowing too many false positives. PennCNV calls an
exceptionally high number (85) of CNVs for patient 4, with limited overlap with the other
two methods.

4. Discussion
We have proposed two new methods for the reconstruction of CNV. Both methods are much
faster than PennCNV, the current state-of-the-art method in CNV discovery. The greater
accuracy of DPI versus fused-lasso minimization underscores the importance of using BAF
measurements and capitalizing on the discrete nature of CNV imputation. DPI has the
additional advantage of outputting the allelic copy numbers so helpful in refining the
associations between CNVs and phenotypes. It is hardly surprising that DPI exhibits
superior performance in the schizophrenia data where its underlying assumptions hold. By
contrast in the analysis of tumor cells, it is much more difficult to fix a priori the number of
copies. With its flexibility in fitting piecewise constant functions to LogR intensities, the
fused lasso will shine in this less discrete setting.

We would like to emphasize that both proposed methods are rough compared to well-
established algorithms like PennCNV. There is definitely room for further performance
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improvements by redefining the loss and penalty functions. As a concrete example, one
could modify the fused-lasso penalties to reflect the distances between adjacent SNPs [Li
and Zhu (2007)]. We suggest scaling the difference  by the reciprocal of the
physical distance . Anyone wanting to use or modify our statistical procedures is
welcome to our Fortran source code. Please contact the first author for a copy.

We can expect to see more applications of penalized estimation throughout genomics. In our
view, penalized models are more parsimonious than hidden Markov models and achieve
many of the same aims. Our redefinition of the fused-lasso penalty and application of the
MM algorithm circumvent some of the toughest issues of penalized estimation in the CNV
context and have important implications for other application areas such as time series
analysis. For more traditional theoretical and numerical approaches to penalized estimation,
we recommend the recent survey paper on ℓ1 trend filtering [Kim et al. (2009)].
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Fig. 1.
Signal patterns for different DNA copy number scenarios organized by their physical
locations along a simulated chromosome. The top panel displays in blue yi (LogR), the
middle panel displays in green xi (BAF), and the bottom panel displays in red the true copy
number.
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Fig. 2.

Contours corresponding to different penalties. Solid gray line: |β1| + |β2| = 1 and ;

Dashed line: ∥β1∥2,ε + ∥β2∥2,ε = 1 and .
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Fig. 3.
Comparison of convergence rates for the two algorithms MMB and MMTDM for the fused
lasso. (a) MMTDM converges much faster than MMB. Blue line: MMB; Red line:
MMTDM; Black dashed line: minimum value of objective function; (b) After 105 iterations,
MMB converges with an accuracy of 0.01.
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Fig. 4.
Graphical comparison of computation speed as sequence length varies. Solid line:
PennCNV; Dashed line: Fused Lasso; Dotted line: DPI.
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Fig. 5.
PennCNV, fused-lasso minimization, and DPI detected experimentally verified CNVs in 4
schizophrenia patients:(a) A duplication on 2p25.3 of Patient 1; (b) A deletion on 2p16.3 of
Patient 2; (c) A duplication on 5p15.2 of Patient 3; (d) A deletion on 9q33.1 of Patient 4. In
each subplot from top to bottom, the first three panels display the CNV detected by
PennCNV, fused-lasso minimization and DPI respectively, the fourth panel displays in blue
yi (LogR), and the fifth panel displays in green xi (BAF).
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Table 1

Genotype states, corresponding copy numbers, expected values of yi and approximate distributions of xi

Genotype state s Copy number c(s) Mean of yi Distribution of xi

ϕ 0 μ0 (< μ1) Uniform on [0, 1]

A 1 μ1 (< 0) ≈0

B 1 μ1 (< 0) ≈1

AA 2 μ2 (≈ 0) ≈0

AB 2 μ2 (≈ 0) ≈1/2

BB 2 μ2 (≈ 0) ≈1

AAA 3 μ3 (> 0) ≈0

AAB 3 μ3 (> 0) ≈1/3

ABB 3 μ3 (> 0) ≈2/3

BBB 3 μ3 (> 0) ≈1
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Table 5

Accuracy of PennCNV for various SNP sequence lengths

Sequence length TPR (%) FDR (%) FDR (%)

4000 95.54 0.0029 0.46

8000 95.43 0.0019 0.62

12,000 96.71 0.0038 1.77

16,000 96.46 0.0012 0.74

20,000 95.60 0.0007 0.59

Overall 95.95 0.0018 0.84
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Table 8

Computation times for the three CNV imputation methods. The tuning constants in the fused lasso and DPI are
noted in Section 3.8

Sequence length PennCNV (s) Fused Lasso (s) DPI (s)

4000 0.349 (0.034) 0.038 (0.011) 0.011 (0.002)

8000 0.751 (0.111) 0.075 (0.022) 0.023 (0.003)

12,000 1.131 (0.145) 0.112 (0.035) 0.057 (0.020)

16,000 1.462 (0.181) 0.150 (0.045) 0.077 (0.034)

20,000 1.859 (0.260) 0.210 (0.072) 0.099 (0.038)
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Table 10

Overlap of CNVs detected by PennCNV, Fused Lasso and DPI. The percentages listed in parentheses refer to
the ratio of the number of overlapping CNVs to the total number of unique CNVs detected. For patient 1 DPI
treated a large duplication region on the long arm of Chromosome 22 as two segments. Thus, the number of
overlapping CNVs was increased by 1 compared to PennCNV vs Fused Lasso

Patient PennCNV vs Fused Lasso PennCNV vs DPI Fused Lasso vs DPI 3 methods

1 7 (15.6%) 12 (31.6%) 9 (36.0%) 8 (16.7%)

2 7 (38.9%) 6 (46.2%) 7 (53.8%) 6 (33.3%)

3 10 (43.5%) 15 (57.7%) 8 (28.6%) 8 (26.7%)

4 8 (8.2%) 13 (14.4%) 8 (26.7%) 7 (6.9%)
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