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Abstract
Some patients infected with the parasite Try-panosoma cruzi develop chronic Chagas’ disease,
while others remain asymptomatic for life. Although pathological mechanisms that govern disease
progression remain unclear, the balance between degeneration and regeneration in the peripheral
nervous system seems to contribute to the different clinical outcomes. This review focuses on
certain new aspects of host-parasite interactions related to regeneration in the host nervous system
induced by the trans-sialidase of T. cruzi, also known as a parasite-derived neurotrophic factor
(PDNF). PDNF plays multiple roles in T. cruzi infection, ranging from immunosuppression to
functional mimicry of mammalian neurotrophic factors and inhibition of apoptosis. PDNF affinity
to neurotrophin Trk receptors provide sustained activation of cellular survival mechanisms
resulting in neuroprotection and neuronal repair, resistance to cytotoxic insults and enhancement
of neuritogenesis. Such unique PDNF-elicited regenerative responses likely prolong parasite
persistence in infected tissues while reducing neuropathology in Chagas’ disease.
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1 Introduction
Despite recent progress in the control of Chagas’ disease, it is estimated that approximately
8 million people remain chronically infected with Trypanosoma cruzi, the etiological agent
of the disease. Many of these infected individuals (30–40%) will develop life-threatening
heart or gastrointestinal pathology. Given that an additional 20% of the population is at risk
of infection in endemic countries [57], Chagas’ disease (CD) remains a significant health
problem in Latin America.

T. cruzi is transmitted to humans by hematophagous insects of the Reduviidae family
through the deposition of feces at bite sites. In addition, nonvectorial routes like blood
transfusion, as well as mother-infant and oral ingestion are also important, particularly in
nonendemic areas [57].

The initial infection causes transient flu-like symptoms and thus often escapes medical
attention. Young children rarely (< 5%) develop severe inflammation of the heart or central
nervous system (CNS). Survivors of the acute disease do not develop clinical symptoms for
many years, and approximately 60–70% of them remain in the chronic indeterminate

Address correspondence to Marina V. Chuenkova, marina.chuenkova@tufts.edu.

NIH Public Access
Author Manuscript
J Neuroparasitology. Author manuscript; available in PMC 2011 May 11.

Published in final edited form as:
J Neuroparasitology. 2010 July 26; 1: 55–60. doi:10.4303/jnp/N100507.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(asymptomatic) stage of the disease for life, while the other 30–40% will exhibit chronic
symptomatic CD affecting peripheral nervous system (PNS) in the heart and digestive tract
several years or even decades after the initial infection [6,66].

Symptomatic CD can be fatal, but a vaccine for preventing T. cruzi infection has not been
developed yet, and trypanocidal drugs (benznidazole and nifurtimox) are effective only in
acute stage and can cause serious side effects [72].

The reason for a long latent period between initial infection and clinical manifestations, and
high proportion of asymptomatic patients, is not known; there is also no explanation for the
absence of chronic disease in CNS. Analysis of T. cruzi interaction with CNS and PNS in
the heart and gastrointestinal tract (GI) can provide some clues for the understanding of CD
progression from benign to pathological form and ideas for possible therapeutic
intervention.

2 Neuropathology in Chagas’ disease
Molecular mechanisms underlying pathogenesis in CD remain unclear. It is thought that
direct cell parasitism, acute inflammation, autoimmune reactions, or neuronal damage are
primary causes of disease pathogenesis [22,37,67]. The neurogenic hypothesis states that the
severe neuronal loss in the heart and GI of Chagasic patients defines the transition from
asymptomatic to symptomatic CD. The foundation to neurogenic theory was laid by the
pioneering work of Köberle who detected striking neuronal depopulation in autonomous
nervous system of CD patients with cardiomyopathy, megaesophagus, and megacolon [35].
Multiple pathological studies in humans and experimental animals have confirmed this
finding by demonstrating extensive destruction of cardiac parasympathetic ganglia
[9,22,23,34,47,58], which is thought to allow unopposed sympathetic activation resulting in
progressive myocardial damage [22,23]. However, lesions in sympathetic postganglionic
fibers in the sinus node and the myocardium have also been detected in patients with cardiac
form of CD and in experimental animals [34,59] and it was shown that reduction in both
cholinergic and noradrenergic cardiac nerves paralleled development of the acute
myocarditis at the end of the acute phase of experimental CD [47,58].

In Chagasic GI disease, neuronal destruction is even more drastic [48]. Loss of 50 to 90% of
nerve fibers in myenteric and submucosal plexuses and reduction in enteric glial cell
population correspond to striking luminal enlargement and muscular hypertrophy of the
esophagus and colon [20,36,46,53]. The aperistalsis thus developed leads to organ
obstruction and stagnated food passage resulting in megasyndromes (megaesophagus and
megacolon) and weight loss [49].

In contrast to the prominent damage of the PNS, T. cruzi invades CNS without noticeable
deleterious effects. Trypomastigotes are frequently found in the cerebrospinal fluid, brain,
and spinal cord in the absence of neurological symptoms [32,56], unless patients are
severely immunocompromised [26]. In experimental CD, even in younger animals, which
are usually very susceptible to T. cruzi infection, CNS is largely preserved regardless of the
parasite load, presence of amastigote nests inside astrocytes, and strong inflammatory
response [9,10,45]. Such silent infection is contrary to that in the heart, colon, and
esophagus, and it does not produce chronic symptoms [56]. The molecular mechanisms
underlying opposite effects of T. cruzi invasion of CNS and PNS remain unresolved.

PNS is most vulnerable to damage in the acute stage of the infection characterized by high
parasitemia and tissue parasitism. Parasites found in neuronal ganglia, Schwann cells, and
enteric glia [47,73] destroy cells directly and induce cytotoxic immune responses, mediated
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by NO production and oxidative burst resulting in myocardial damage and lesions in enteric
nervous plexuses [55,64].

Although acute disease symptoms could in some cases be dangerous, they normally resolve,
and Chagasic individuals advance to an indeterminate, asymptomatic stage, with many of
them showing normal electrocardiogram and X-rays of the heart, esophagus, and colon
[20,53,70]. In fact, it was demonstrated that the rate of age-related neuronal degeneration in
the colon and heart of Chagasic patients was decreased compared to that of noninfected age-
matched individuals [35], suggesting enhanced neuronal survival. In experimental CD
functional improvement in the heart and colon was associated with reinnervation of muscle
fibers, collateral sproutings of damaged nerves, and axonal regrowth, and with an increase in
the number of enteric glia [43,45,53]. For most of infected patients the extent of recovery is
such that they remain free of symptoms for the rest of their lives, despite retaining
pathogenic T. cruzi. It is thus likely that neuroregeneration is involved in the mechanisms
that prevent manifestations of chronic disease.

It is also possible that T. cruzi infection, traditionally viewed as an entirely detrimental
process to the host, can elicit specific reparative/survival responses in neuronal tissues. This
possibility received experimental support with the findings with the T. cruzi trans-sialidase.

3 T. cruzi trans-sialidase/parasite-derived neurotrophic factor (PDNF)
3.1 Catalytic and immunologic properties

A T. cruzi surface antigen, trans-sialidase/PDNF, plays multiple roles in parasite invasion of
mammalian host. As an enzyme it catalyzes the transfer of α-2,3-linked sialic acid to
terminal β-Gal residues [54,62], which can protect bloodstream trypomastigotes from
complement lysis [7] and promote parasite invasion [50, 68].

PDNF is attached to trypomastigote surface by GPI anchor and is copiously shed as a
soluble factor into the extracellular space and bloodstream [1,60,63]. Soluble PDNF was
shown to remodel surface of immune cells and augment T. cruzi immunosuppresion in the
acute phase of CD by inhibiting CD8+ lymphocytes cytotoxicity and promoting apoptosis of
T cells [29,51].

PDNF consists of N-terminal catalytic domain, connected through a lectin-like region to a
C-terminus with variable number of 12 amino acids repeats in tandem (long tandem repeat,
LTR) [8], also called SAPA (shed acute phase antigen) [28]. LTR/SAPA is not required for
sialic acid transfer, but it is highly immunogenic and contributes to parasite immune evasion
by inducing abnormal polyclonal B cell activation and nonspecific Ig secretion characteristic
for the acute phase of Chagas’ disease [30,31]; furthermore, it upregulates IL-6 production
in various cell types [61]. Consistent with PDNF functioning as an immunosuppressor,
heterologous expression of PDNF in Leishmania major enhanced parasite virulence [5].

However, a relatively small subset of TS/PDNF proteins has enzymatic activity—of 1400
PDNF gene family members, only 15, produced by invasive trypomastigotes, function as
trans-sialidases [4,27]. Trypomastigotes also express PDNF molecules without catalytic
activity, due to a single mutation of Tyr342 to His [19].

Unique subsets of PDNF molecules lacking catalytic activity and LTR/SAPA domain
belong to intracellular amastigotes, while no TS was detected for insect epimastigote forms
[4].
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Such structural diversity among multiple members of TS/PDNF family possibly resulted in
some of them exhibiting biological activities unrelated to the release and acquisition of sialyl
residues.

3.2 Interaction with Trk receptor tyrosine kinases
The discovery of PDNF specific affinity to Trk receptors of mammalian neurotrophins
pointed to a new direction in T. cruzi research, suggesting a possible mechanism for the
parasite involvement in regeneration of mammalian nervous tissue.

The development and maintenance of mammalian PNS and CNS critically depends on the
neurotrophins (NTs) nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF),
and neurotrophin 3 (NT3). NTs activate their respective Trk tyrosine kinase receptors TrkA,
B, and C, and downstream pathways of PI3kinase/Akt kinase, PLCγ, and mitogen-activated
protein kinases (MAPK) to control survival, axon, and dendrite outgrowth, plasticity and
neurotransmission. As a result, they protect neurons from toxic insults and facilitate neural
repair [33]. Deficit of endogenously generated NTs causes neuronal apoptosis and
degeneration, and is implicated in stroke, trauma, and neurodegenerative conditions such as
Parkinson, Alzheimer, and Huntington diseases, and amyotrophic lateral sclerosis [25].

3.2.1 Activation of Trk signaling and survival of neurons—Similar to neurotrophic
factors, PDNF affinity to Trk receptors was shown to support DRG, hippocampal, and
cerebellar neurons and a variety of neuronal cells through trophic deficiency, oxidative
stress, and neurotoxic insults—pathological conditions that typically lead to
neurodegeneration and apoptosis [11,12,14,15,75].

Resistance to apoptotic death induced by PDNF in neuronal cells is a direct result of
activating Trk downstream signaling via PI3K/Akt and Ras/MAPK/Erk (Figure 1). Thus
TrkA-dependent activation of Akt kinase by PDNF is followed by inhibition of pro-
apoptotic GSK-3 kinase, upregulation of mitochondrial anti-apoptotic Bcl-2, and reduced
ROS formation [12,14], while induction of MAPK/Erk signaling prevented activation of
caspase-3 and cleavage of caspase-3 substrate PARP (poly-ADP-ribose polymerase), a DNA
repair enzyme [18]. This chain of events leads to enhanced neuronal survival and resistance
to exogenous insults, such as neurotoxin MPTP that causes symptoms and pathology in
nigrostriatal neurons analogous to Parkinson disease [14].

Sustained activation of Erk by PDNF also correlated with increased neuritogenesis in DRG
neurons and differentiation of neuronal PC12 cells to sympathetic phenotype [13],
underlined by activation of cAMP-response-element- (CRE-) binding protein CREB and
CRE-dependent transcription [16,17].

Recent data demonstrated that PDNF also mediates T. cruzi interaction with TrkC receptor.
PDNF similar to natural TrkC ligand NT3 induces activation of MAPK/Erk signaling and
promotes differentiation and survival of neuronal and glial cells [71]. TrkC-expressing
Schwann and enteric glial cells, which myelinate neurons in PNS and modulate neuronal
homeostasis and neurotransmission in the gut [65,76], undergo regeneration in the course of
T. cruzi infection in humans and animals [21,53]. Thus PDNF activation of TrkC widens the
scope for possible role of T. cruzi in the repair of infected nervous tissues. It would be
broadened even further by T. cruzi activation of TrkB [74]; however, live trypomastigotes
and parasite-isolated PDNF did not recognize TrkB receptor in the conditions they bind
TrkA and TrkC [71].

3.2.2 Induction of cholinergic and adrenergic phenotypes in neuronal cells—T.
cruzi residence in PNS and affinity to TrkA and TrkC could underlie such an important
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aspect of nervous tissue functional integrity as neurotransmitter release, which is imbalanced
in acute CD [22,38,42,45]. PDNF activation of TrkA and downstream Akt and Erk1/2
signaling increased expression of cholinergic locus genes, choline acetyltransferase (ChAT),
and vesicular acetylcholine (ACh) transporter (VAChT)—two key components of ACh
synthetic cascade that define cholinergic phenotype in neurons [2].

Such PDNF activity also stimulated acquisition of adrenergic phenotype in ventral
mesenchephalic neurons and neuronal PC12 cells [17], mimicking NGF and other
neurotrophic factors, which can restore both cholinergic and adrenergic neuronal
populations in NS [41]. PDNF, via upregulation of MAPK/Erk and CRE-dependent
transcription, induced activation of tyrosine hydroxylase (TH)—the rate-limiting enzyme in
the biosynthesis of catecholamines, increasing TH-catalyzed conversion of tyrosine to
dopamine precursor L-DOPA [17] (Figure 1).

Such PDNF activity could be instrumental in restoring ChAT expression, ACh and
catecholamine levels in later stages of T. cruzi infection [23,42,44], and regeneration of
sympathetic neurons.

3.2.3 Promotion of cell invasion—PDNF interaction with TrkA induced endocytosis of
receptor-PDNF complexes [75], and T. cruzi successfully exploits this mechanism for cell
invasion. Trypomastigotes enter neuronal cells, Schwann cells, and other cells in Trk-
dependable manner, which in addition requires receptor-mediated signaling, as inhibition of
Trk-dependent signal transduction abrogated parasite invasion, reduced parasite load and
inflammatory responses, and attenuated experimental CD [24].

The dependence of T. cruzi invasion on intact TrkA-mediated signaling is in line with the
other data describing signaling pathways downstream of Trk receptor tyrosine kinase as
critical checkpoints in the invasion process. These include activation of the MAPK and PKC
pathways that enhanced infection of macrophages, endothelial and vascular smooth muscle
cells [52,69], and PI3K-mediated signaling, which induced accumulation of membrane
PIP3, mobilization of intracellular Ca2+ stores, and formation of parasitophorous vacuole
[3]. Therefore, T. cruzi activation of TrkA tyrosine kinase prior to using it as a vehicle for
cell entry is a powerful mechanism to provide conditions for efficient cell invasion.

3.2.4 Anti-infective anti-Trk receptor antibody—The importance of Trk receptors in
T. cruzi invasion is further underlined by the discovery that patients with asymptomatic CD
produce specific antibody against Trk receptors, which blocked T. cruzi cell invasion
[39,40]. Passive immunization of mice with these autoantibodies reduced parasitemia and
inflammation in the heart and protected from lethal T. cruzi infection [39]. Isolated from
asymptomatic patients these autoantibodies might function as a defense mechanism to
control T. cruzi invasion of nervous tissues.

4 Conclusion
Growth factors play important roles as intercellular signaling molecules throughout
mammalian nervous system, taking part in numerous functions, including neuronal
regeneration. As a parasite-derived growth factor, the T. cruzi TS/PDNF induces survival
and resistance to cytotoxic stimuli in neuronal cells, possibly subserving neural repair and
structural and functional recovery in the PNS of the heart and GI in Chagas’ disease. The
realization that T. cruzi can promote along with destructive, regenerative processes in
infected tissues offers a new framework for studies of molecular pathogenesis that may
suggest future therapeutic opportunities to prevent progression from asymptomatic to
pathological CD.
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Figure 1.
PDNF regulation of host cell signaling during T. cruzi infection. T. cruzi binding to Trk
receptors mediated by PDNF activates Trk-dependent signaling of MAPK/Erk1/2 and PI3K/
Akt, resulting in phosphorylation of transcription factor CREB and induction of CRE-
dependent transcription, upregulation of anti-apoptotic Bcl-2 gene, and cholinergic (ChAT
and VAChT) and adrenergic (TH) cascades. Activated Akt phosphorylates and inhibits
activity of pro-apoptotic GSK3 kinase, resulting in stabilization of Bcl-2 transcripts and
inhibition of oxidative stress (ROS) and caspase cascade. Cumulatively, these signaling
events result in cell resistance to cytotoxic stimuli and lead to enhanced survival and
differentiation in nervous tissue.
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