
Formally verifying human–automation interaction as part of a
system model: limitations and tradeoffs

Matthew L. Bolton and Ellen J. Bass
Department of Systems and Information Engineering, University of Virginia, 151 Engineer’s Way,
Charlottesville, VA, USA
Matthew L. Bolton: mlb4b@virginia.edu; Ellen J. Bass: ejb4n@virginia.edu

Abstract
Both the human factors engineering (HFE) and formal methods communities are concerned with
improving the design of safety-critical systems. This work discusses a modeling effort that
leveraged methods from both fields to perform formal verification of human–automation
interaction with a programmable device. This effort utilizes a system architecture composed of
independent models of the human mission, human task behavior, human-device interface, device
automation, and operational environment. The goals of this architecture were to allow HFE
practitioners to perform formal verifications of realistic systems that depend on human–
automation interaction in a reasonable amount of time using representative models, intuitive
modeling constructs, and decoupled models of system components that could be easily changed to
support multiple analyses. This framework was instantiated using a patient controlled analgesia
pump in a two phased process where models in each phase were verified using a common set of
specifications. The first phase focused on the mission, human-device interface, and device
automation; and included a simple, unconstrained human task behavior model. The second phase
replaced the unconstrained task model with one representing normative pump programming
behavior. Because models produced in the first phase were too large for the model checker to
verify, a number of model revisions were undertaken that affected the goals of the effort. While
the use of human task behavior models in the second phase helped mitigate model complexity,
verification time increased. Additional modeling tools and technological developments are
necessary for model checking to become a more usable technique for HFE.

Keywords
Human–automation interaction; Task analysis; Formal methods; Model checking; Safety critical
systems; PCA pump

1 Introduction
Both human factors engineering (HFE) and formal methods are concerned with the
engineering of robust systems that will not fail under realistic operating conditions. The
traditional use of formal methods has been to evaluate a system’s automation under different
operating and/or environmental conditions. However, human operators control a number of
safety critical systems and contribute to unforeseen problems. For example, human behavior

© The Author(s) 2010.
Correspondence to: Matthew L. Bolton, mlb4b@virginia.edu.
Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

NIH Public Access
Author Manuscript
Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

Published in final edited form as:
Innov Syst Softw Eng. 2010 March 25; 6(3): 219–231. doi:10.1007/s11334-010-0129-9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



has contributed to between 44,000 and 98,000 deaths nationwide every year in medical
practice [18], 74% of all general aviation accidents [19], at least two-thirds of commercial
aviation accidents [28], and a number of high profile disasters such as the incidents at Three
Mile Island and Chernobyl [22]. HFE focuses on understanding human behavior and
applying this knowledge to the design of human–automation interaction: making systems
easier to use while reducing errors and/or allowing recovery from them [25,29].

By leveraging the knowledge of both HFE and formal methods, researchers have identified
the cognitive preconditions for mode confusion and automation surprise [7,10, 16,23];
automatically generated user interface specifications, emergency procedures, and recovery
sequences [13,14]; and identified human behavior sequences (normative or erroneous) that
contribute to system failures [8,12].

While all of this work has produced useful results, the models have not included all of the
components necessary to analyze human–automation interaction. For HFE analyses of
human–automation interaction, the minimal set of components are the goals and procedures
of the human operator; the automated system and its human interface; and the constraints
imposed by the operational environment. Cognitive work analysis is concerned with
identifying constraints in the operational environment that shape the mission goals of the
human operator [27]; cognitive task analysis is concerned with describing how human
operators normatively and descriptively perform goal oriented tasks when interacting with
an automated system [17,24]; and modeling frameworks such as [11] seek to find
discrepancies between human mental models, human-device interfaces (HDIs), and device
automation. In this context, problems related to human–automation interaction may be
influenced by the human operator’s mission, the human operator’s task behavior, the
operational environment, the HDI, the device’s automation, and their interrelationships.

We are developing methods and tools to allow human factors engineers to exploit their
existing human task modeling constructs with the powerful verification capabilities of
formal methods in order to identify potential problems with human–automation interaction
in safety critical systems that may be related to human task behavior, the automated device,
the operational environment, or their interaction. To this end, we are developing a
computational framework (Fig. 1) for the formal modeling of human-automation interaction.
This framework utilizes concurrent models of human operator task behavior, human mission
(the goals the operator wishes to achieve using the system), device automation, and the
operational environment which are composed together to form a larger system model. Inter-
model interaction is represented by variables shared between models. Environment variables
communicate information about the state of the environment to the device automation,
mission, and human task models. Mission variables communicate the mission goals to the
human task model. Interface variables convey information about the state of the HDI
(displayed information, the state of input widgets, etc.) to the human task model. The human
task model indicates when and what actions a human operator would perform on the HDI.
The HDI communicates its current state to the device automation via the interface variables.
The HDI receives information about the state of the device automation model via the
automation state variables.

For broader applicability, the analysis framework must support modeling constructs intuitive
to the human factors engineer in order to allow him to effectively model human missions,
human tasks, and HDIs. Because an engineer may wish to rerun verifications using different
missions, task models, HDIs, environments, or automation behaviors, these components
should remain decoupled (as is the case in Fig. 1). Finally, the modeling technique must be
capable of representing the target systems with enough fidelity to allow the engineer to

Bolton and Bass Page 2

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



perform the desired verification, and do so in a reasonable amount of time (this could mean
several hours for a small project, or several days for a more complicated one).

This paper describes an instantiation of this framework using a model of a Baxter Ipump
Pain Management System [2], a patient controlled analgesia (PCA) pump that administers
pain medication in accordance with constraints defined by a health care technician
(described in Sect. 2.1). Models were developed in two phases. The first phase involved the
construction and debugging of the HDI, device automation, and human mission models (an
environmental model was not included because of the general stability of the environment in
which an actual pump operates) with an unconstrained human task model serving as a
placeholder for a more realistic human task model. The second extended the model
produced in Phase 1 with a realistic model of the human task, completing the framework.

Even though the target device in this modeling effort was seemingly simple, the system
model that was initially developed in Phase 1 (Phase 1a) was too difficult for the model
checker to process quickly and too complex for it to verify. Thus a number of revisions were
undertaken [3]. In Phase 1b a reduced and abstracted model of the Baxter Ipump was
produced which, while capable of being used in some verifications, did so at the expense of
limiting the number of goals represented in the human mission model. This Phase 1b model
limited the usefulness of incorporating human task behavior in Phase 2. Thus, in Phase 1c,
the system model was reduced to encompass the programming procedure for a much simpler
PCA pump. In Phase 2, the incorporation of the more realistic human task behavior actually
resulted in a reduction of the total system model’s complexity, but did so at the expense of
an increase in verification time. This paper discusses these modeling phases, the verification
results produced in them, and their associated compromises in relation to the goals of the
modeling architecture. These are used to draw conclusions about the feasibility of using
formal methods to inform human–automation interaction.

2 Methods
2.1 The target system

The Baxter Ipump is an automated machine that controls delivery of sedative, analgesic, and
anesthetic medication solutions [2]. Solution delivery via intravenous, subcutaneous, and
epidural routes is supported. Medication solutions are typically stored in bags locked in a
compartment on the back of the pump.

Pump behavior is dictated by internal automation, which can depend on how the pump is
programmed by a human operator. Pump programming is accomplished via its HDI (Fig. 2)
which contains a dynamic LCD display, a security key lock, and eight buttons. When
programming the pump, the operator is able to specify all of the following: whether to use
periodic or continuous doses of medications (i.e., the mode which can be PCA, Basal+PCA,
or Continuous), whether to use prescription information previously programmed into the
pump, the fluid volume contained in the medication bag, the units of measure used for
dosage (ml, mg, or µg), whether or not to administer a bolus (an initial dose of medication),
dosage amounts, dosage flow rates (for either basal or continuous rates as determined by the
mode), the delay time between dosages, and 1 h limits on the amount of delivered
medication.

During programming, the security key is used to lock and unlock the compartment
containing the medication solution. The unlocking and locking process is also used as a
security measure to ensure that an authorized person is programming the pump. The start
and stop buttons are used to start and stop the delivery of medication at specific times during
programming. The on–off button is used to turn the device on and off.

Bolton and Bass Page 3

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The LCD display supports pump operation options. When the operator chooses between two
or more options, the interface message indicates what is being chosen, and the initial or
default option is displayed. Pressing the up button allows the programmer to scroll through
the available options.

When a numerical value is required, the interface message conveys its name and the
displayed value is presented with the cursor under one of the value’s digits. The programmer
can move the position of the cursor by pressing the left and right buttons. He or she can
press the up button to scroll through the different digit values available at that cursor
position. The clear button sets the displayed value to zero. The enter button is used to
confirm values and treatment options.

Aside from the administration of treatment, the pump’s automation supports dynamic
checking and restriction of operator entered values. Thus, in addition to having hard limits
on value ranges, the extrema can change dynamically in response to other user specified
values.

2.2 Apparatus
All formal models were constructed using the Symbolic Analysis Laboratory (SAL)
language [9] because of its associated analysis and debugging tools, and its support for both
the asynchronous and synchronous composition of different models (modules using SAL’s
internal semantics). The task model representations described next were translated into the
SAL language as a single module using a custom-built java program [5]. All verifications
were done using SAL-SMC 3.0, the SAL symbolic model checker.1 Verifications were
conducted on a 3.0 GHz dual-core Intel Xeon processor with 16 GB of RAM running the
Ubuntu 9.04 desktop.

Human task models were created using an intermediary language called enhanced operator
function model (EOFM) [4], an XML-based, generic human task modeling language based
on the operator function model (OFM) [21,26]. EOFMs are hierarchical and heterarchical
representations of goal or mission driven activities that decompose into lower level
activities, and finally, atomic actions—where actions can represent any observable,
cognitive, or perceptual human behavior. EOFMs express task knowledge by explicitly
specifying the conditions under which human operator activities can be undertaken: what
must be true before they can execute (preconditions), when they can repeat (repeat
conditions), and when they have completed (completion conditions). Any activity can
decompose into one or more other activities or one or more actions. A decomposition
operator specifies the temporal relationships between and the cardinality of the decomposed
activities or actions (when they can execute relative to each other and how many can
execute).

EOFMs can be represented visually as a tree-like graph structure (examples can be seen in
Figs. 3, 4, 5, 6, 7). In these representations, actions are represented as rectangles and
activities are represented as rounded rectangles. An activity’s decomposition is presented as
an arrow, labeled with the decomposition operator, extending below it that points to a large
rounded rectangle containing the decomposed activities or actions. In this work, three
decomposition operators are used: (1) ord (all activities or actions in the decomposition must
execute in the order they appear); (2) or_seq (one or more of the activities or actions in the
decomposition must execute); and (3) xor (exactly one activity or action in the
decomposition must execute). Conditions on activities are represented as shapes or arrows

1Some model debugging was also conducted using SAL’s bounded model checker.

Bolton and Bass Page 4

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(annotated with the condition logic) connected to the activity that they constrain. The form,
position, and color of the shape are determined by the type of condition. A precondition is
presented as a yellow, downward-pointing triangle connected to the left side of the activity.
A completion condition is represented by a magenta, upward-pointing triangle connected to
the right side of the activity. A repeat condition is depicted as an arrow recursively pointing
to the top of the activity. More details can be found in [4].

2.3 Verification specification
Two specifications were employed in each of the modeling phases: both were written in
linear temporal logic and evaluated using SAL–SMC. The first (Eq. 1), used for model
debugging, verifies that a valid prescription could be programmed into the pump:

(1)

Here, if the model is able to enter a state indicating that treatment is administering
(iInterfaceMessage = TreatmentAdministering) with the entered (or programmed)
prescription values (iMode, lFluidVolume,…, lContinuous-Rate) matching the prescription
values generated by the mission model (variables with the iPrescribed prefix), a
counterexample would be produced illustrating how that prescription was programmed.
Variables with an i prefix indicate that the variable is an input to the human task model.
Variables with an l prefix indicate that the variable is local to a given model.

The second specification (Eq. 2) represented a safety property that was expected to verify to
true, thus allowing the model checker to traverse the entire state space of each phase’s
model. Because such a verification allows SAL to report the size of a model’s state space,
verifications using this specification would provide some means of comparing the
complexity of the models produced in each phase.

(2)

Here, the specification is asserting that the model should never enter a state where treatment
is administering in the PCA or Basal+PCA modes (iMode ≠ Continuous) when there is no
delay between doses.2 Thus, if Eq. (2) verifies to true, the pump will never allow a
programmer to enter prescriptions that would allow patients to continuously administer PCA
doses to themselves [2].

2A delay can only been set when the PCA or Basal + PCA modes have been selected by the human operator. There are no delays
between doses when the pump is in the Continuous mode.

Bolton and Bass Page 5

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3 Phase 1a: a representative model of the Ipump
3.1 Model description

An initial model was created to conform to the architectural and design philosophy
represented in Fig. 2: the mission was represented as a set of viable prescriptions options;
the mission, human operator, human-device interface, and device automation were modeled
independently of each other; and the behavior of the automated system and HDI models was
designed to accurately reflect the behavior of these systems as described in the user’s
manual [2] and observed through direct interaction with the device. An unconstrained
human operator was constructed that could issue any valid human action to the human-
device interface model at any given time. Because the PCA pump generally operates in a
controlled environment, away from temperature and humidity conditions that might affect
the performance of the pump’s automation, no environmental model was included. Finally,
because documentation related to the internal workings of the pump was limited, the system
automation model was restricted to that associated with the pump programming procedure:
behavior that could be gleaned from the operator’s manual [2], correspondences with
hospital staff, and direct interaction with the pump.

3.2 Model coordination
Model infrastructure was required to ensure that human operator actions were properly
recognized by the HDI model. In an ideal modeling environment, human action behavior
originating from the human operator model could have both an asynchronous and
synchronous relationship with the HDI model. Synchronous behavior would allow the HDI
model to react to user actions in the same transition in which they were issued/performed by
the human operator model. However, both the human operator and HDI models operate
independently of each other, and may have state transitions that are dependent on internal or
external conditions that are not directly related to the state of the other model. This suggests
an asynchronous relationship. SAL only allows models to be composed with each other
asynchronously or synchronously (but not both). Thus, it was necessary to adapt the models
to support features associated with the unused composition.

Asynchronous composition was used to compose the human operator and HDI models. This
necessitated some additional infrastructure to prevent the human operator model from
issuing user inputs before the HDI model was ready to interpret them and to prevent the
human operator model from terminating a given input before the interface could respond to
it. This was accomplished through the addition of two Boolean variables: one indicating that
input had been submitted (henceforth called Submitted) and a variable indicating the
interface was ready to receive actions (henceforth called Ready). This coordination occurred
as follows:

– If Ready is true and Submitted is false, the human operator module sets one or
more of the human action variables to a new input value and sets Submitted to
true.

– If Ready and Submitted are true, the human-device interface module responds to
the values of the human action variables and sets Ready to false.

– If Ready is not true and Submitted is true, the human operator module sets
Submitted to false.

– If Ready and Submitted are both false and the automated system is ready for
additional human operator input, the human-device interface module sets Ready
to true.

Bolton and Bass Page 6

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.3 Verification results
Attempts to verify this model using the specifications in Eqs. 1 and 2 resulted in two
problems related to the feasibility and usefulness of the verification procedure. First, the
SAL–SMC procedure for translating the SAL code into a binary decision diagram (BDD)
took excessively long (more than 24 h), a time frame impractical for model debugging.
Second, the verification process which followed the construction of the BDD eventually ran
out of memory, thus not returning a verification result.

4 Phase 1b: a reduced Baxter Ipump model
As a result of the failed verification of the model produced in Phase 1a, significant revisions
were required to make the model more tractable. These are discussed below.

4.1 Representation of numerical values
To reduce the time needed to convert the SAL-code model to a BDD, a number of
modifications were made to the model from Phase 1a by representing model constructs in
ways more readily processed by the model checker. As such, the modifications discussed
here did not ultimately make the BDD representation of the model smaller, but merely
expedited its construction.

4.1.1 Redundant representation of values—Two different representations of the
values programmed into the pump by the operator were used in the HDI and device
automation models. Because the HDI required the human operator to enter values by
scrolling through the available values for individual digits, an array of integer digits was
appropriate for the HDI model. However, because the system automation was concerned
with dynamically checking limits and using entered values to compute other values, a
numerical representation of the actual value was more convenient for the automated system
model.

This redundancy burdened the BDD translator. This was remedied by eliminating the digit
array representations and using functions to enable actions from the human task model to
incrementally change individual digits within a value.

4.1.2 Real numbers and integers—In the model produced in Phase 1a, all numerical
values were represented as real values with restricted ranges. This was done because most
user specified values were either integers or floating point numbers (precise to a single
decimal point). No data abstractions were initially considered because the nature of the
human task (modeled in Phase 2) required manipulation of values’ individual digits.
However, representing values this way proved especially challenging for the BDD
translator. Thus, all values were modified so that they could be represented as restricted
range integers. For integer variables representing floating point numbers, this meant that the
model value was ten times the value it represented. This representation allowed the values to
still be manipulated at the individual digit level, while making them more readily
interpretable by the BDD translator.

4.1.3 Variable ranges—In the Phase 1a model, the upper bound on the range of all value-
based variables was set to the theoretical maximum of any value that could be programmed
into the pump: 99,999.3 However, to reduce the amount of work required for the BDD
conversion, the range of each numerically valued variable was given a specific upper bound
that corresponded to the maximum value it could actually assume in the device.

3All lower bounds were set to 0.

Bolton and Bass Page 7

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.2 Model reduction
To reduce the size of the model, a variety of elements were removed. In all cases these
reductions were meant to reduce the number of state variables in the HDI or device
automation models (slicing), or reduce the range of values a variable could assume (data
abstraction). Unfortunately, each of these reductions also affected what human tasks could
ultimately be modeled and thus verified in subsequent model iterations. All of the following
reductions were undertaken:

– In the Phase 1a model, the mission model could generate a prescription from the
entire available range of valid prescriptions. This was changed so that fewer
prescription options were generated in Phase 1b’s mission model: that of
programming a prescription with a continuous dosage with two options for bolus
delivery (0.0 and 1.0 ml) and two continuous flow rate options (1.0 and 9.0 ml/
h). While this significantly reduced the number of model states, it also reduced
the number of prescriptions that could be used in verification procedures.

– In the Phase 1a model, the HDI model would allow the operator to select what
units to use when entering prescriptions (ml, mg, or µg). Only the ml unit option
was included in the Phase 1b model. This reduced the number of interface
messages in the model, allowed for the removal of several variables (those
related to the unit option selection, and solution concentration specification), and
reduced the ranges required for several numerical values related to the
prescription. This eliminated the option of including unit selection and
concentration specification task behaviors in the model.

– In the Phase 1a model, both the HDI and device automation models
encompassed behavior related to the delivery of medication solution during the
priming and bolus administration procedures. During priming, the HDI allows
the operator to repeatedly instruct the pump to prime until all air has been
pushed out of the connected tubing. During bolus administration, the HDI
allows the operator to terminate bolus infusion by pressing the stop button twice.
This functionality was removed from the Phase 1b models, thus eliminating
interface message states and numerical values indicating how much fluid had
been delivered in both procedures. This eliminated the possibility of
incorporating task behavior related to pump priming and bolus administration in
the model.

– The Phase 1a model mimicked the security features found in the original device
which required the human operator to unlock and lock the device on startup and
enter a security code. This functionality was removed from the Phase 1b model
which reduced the number of interface messages in the model and removed the
numerical variable (with a 0–999 range) associated with entering the security
code. This eliminated the possibility of modeling human task behavior related to
unlocking and locking the pump as well as entering the security code in the
model.

– In the Phase 1a model, the interface message could automatically transition to
being blank: mimicking the actual pump’s ability to blank its screen after three
seconds of operator inactivity. Because further operator inaction would result in
the original device issuing a “left in programming mode” alert, a blank interface
message could automatically transition to an alert issuance. This functionality
was removed from the Phase 1b model, eliminating several interface messages
as well as variables that kept track of the previous interface message. Thus, the
option of modeling operator task response to screen blanking and alerts was
removed from the model.

Bolton and Bass Page 8

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



While these reductions resulted in the Phase 1b model being much smaller and more
manageable than the original, the ability to model some of the task behaviors originally
associated with the device had to be sacrificed.

4.3 Results
The Phase 1b model was able to complete the verification procedure with Eq. (1) and
produce a counterexample with a search depth of 54 in approximately 5.9 h, with the
majority of that time (5.4 h) used for creating the BDD representation [3].4 Not surprisingly,
the model checker ran out of memory when attempting to verify Eq. (2).

5 Phase 1c: a simpler PCA pump model
While the model developed in Phase 1b did produce usable results and has subsequently
been used in the verification of additional properties (see [5]), this power came at the
expense of a reduction in the scope of the mission model. Since the mission directly
influences what human behavior will execute, this limited the human task behavior that
could ultimately be verified as part of the system model. Further, the fact that the Phase 1b
model was too complex for Eq. (2) to be verified potentially limited any future model
development that might add complexity. To remedy these shortcoming, the model produced
in Phase 1b was further reduced to one that encompassed the programming of the most basic
PCA pump functionality while the ranges of possible values for the remaining mission
model variables were expanded to be more realistic.

5.1 Model reduction
To obtain a smaller PCA model, all of the following were removed: the selection of mode
and the ability to specify a basal rate, continuous rate, bolus dosage, and fluid volume. As a
result, associated interface messages and variables were removed along with the ability to
model their programming as part of the human task behavior model. This resulted in a
model that only encompassed functionality for programming a PCA dose, programming the
delay between PCA doses, turning the pump on and off, and starting and stopping the
administration of treatment: functionality compatible with the most basic PCA pump
operations (see [1]).

Value ranges were further restricted to reduce the size of the model. Specifically, the upper
bound on the acceptable delay between PCA dosages was changed from 240 to 60 minutes.
This, coupled with the other reductions, had the added benefit of allowing the number of
digits required for the programming of pump values to be reduced to 2 rather than the
original 4.

The reductions in other areas allowed the scope of the delays and PCA dosages generated by
the mission model to be expanded to a more representative set. For PCA dosages, the full
range of values from 0.1 to 9.9 in 0.1 ml increments were supported. For delay between
dosages, five options were available: delays of 10, 15, 30, 45, and 60 min.

All pump interface functionality was retained from the previous models. Thus, the
unconstrained human task model was unchanged as was the human task and HDI models’
communication protocol.

4Completed models, SAL outputs, and counterexamples can be found at http://cog.sys.virginia.edu/ISSE2010/.

Bolton and Bass Page 9

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://cog.sys.virginia.edu/ISSE2010/


5.2 Results
The Phase 1c model ran the verification procedure for Eq. (1) (with the eliminated variables
removed) in 6 s with a search depth of 22, much faster than the model from Phase 1b. The
verification of the specification in Eq. (2) verified to true in 129 s with a search depth of 259
and 78,768,682,750 visited states.

6 Phase 2: incorporating models of human behavior
In the second phase of modeling, we expanded our instantiation of the framework by
incorporating a realistic human task behavior model. We therefore replaced the
unconstrained human operator in the Phase 1c model with a human task behavior model
derived from pump documentation [2] and training materials. This model utilized the EOFM
concepts and thus required some additional infrastructure in order to incorporate it into the
formal system model. We describe the behaviors that were modeled, how these were
translated into the formal model, and report verification results for the produced system
model.

6.1 Human task behavior modeling and translation
The pump’s materials contained six high-level goal directed behaviors for performing a
variety of pump activities relevant to the Phase 1c model as follows:

– Turning on the pump.

– Stopping the infusion of medication.

– Turning off the pump.

– Entering a prescribed value for PCA dosage volumes (in milliliter).

– Entering a prescribed value for the delay between PCA doses (in minutes), and

– Selecting whether to start or review an entered prescription.

The EOFM models describing each of these behaviors are discussed below.

6.1.1 Turning On the pump—The model for turning on the pump is shown in Fig. 3.
Here, the EOFM can execute if the interface message indicates that the system is off
(iInterfaceMessage = SystemOff; a precondition). This high-level activity (aTurnOnPump)
is completed by performing the action of pressing the on/off button (hPressOnOff). The ord
decomposition operator indicates that all of the decomposed activities or actions must be
completed in sequential order. The EOFM has accomplished its goal (a completion
condition) when the interface message indicates that the pump is no longer off
(iInterfaceMessage/ = SystemOff).

6.1.2 Stopping infusion—Infusion of medication can be stopped (Fig. 4) if the interface
indicates that treatment is administering (iInterfaceMessage = TreatmentAdministering).
This is accomplished by pressing the stop button (hPressStop) twice in quick succession
with no other human inputs occurring in between. The process has completed when the
interface indicates that treatment is not administering (iInterfaceMessage / =
TreatmentAdministering).

6.1.3 Turning Off the pump—The model for turning off the pump (Fig. 5) is relevant if
the interface message indicates that the system is not off (iInterfaceMessage / = SystemOff).
The pump is turned off by performing two lower level activities in sequential order:
stopping infusion (aStopInfusion; explained above) and pressing the keys necessary to turn
off the pump (aPress-KeysToTurnOffPump). This latter activity is completed by pressing

Bolton and Bass Page 10

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the on/off button (hPressOnOff) twice in sequence. The entire process of turning off the
pump completes when the interface indicates that the pump is off (iInterfaceMessage =
SystemOff).

6.1.4 Programming a value into the pump—The values for PCA dosage volume and
delay between dosages can be programmed into the pump using an EOFM patterned after
Fig. 6. Thus, for a given value X, the corresponding EOFM becomes relevant when the
interface for setting that value is displayed (iInterfaceMessage = SetX). This is achieved by
sequentially executing two sub-activities: changing the displayed value (aChangeX Value)
and accepting the displayed value (aAccept). The activity for changing the displayed value
can execute, and will repeatedly execute, if the displayed value is not equal to the prescribed
value (iCurrentValue / = iPrescribedX). The value is changed by executing one or more
(denoted by the or_seq decomposition operator) of the following sub-activities: changing the
digit currently pointed to by the cursor (aChangeDigit: completed by pressing the up key
(hPressUp)), moving the cursor to a different digit (aNextDigit: completed by pressing only
one of (the xor decomposition operator) the left (hPress-Left) or right (hPressRight)
buttons), or setting the displayed value to zero (aClearValue: completed by pressing the
clear button(hPressClear)). The process of changing the displayed value completes when the
displayed value matches the prescribed value (iCurrentValue = iPrescribedX). The
displayed value is accepted by pressing the enter key. The entire process ends when the
interface is no longer in the state for accepting X.

6.1.5 Starting or reviewing a prescription—After a prescription has been
programmed the human operator is given the option to start the administration of that
prescription or to review it (where the operator works through the programming procedure a
second time with the previously programmed options displayed at each step). The EOFM for
performing this (Fig. 7) becomes relevant at this point (iInterfaceMessage = StartBeginsRx).
It is completed by performing only one of two activities: selecting the option to start
treatment (aStartRx—performed by pressing the start button (hPressStart)) or selecting the
review option (aReviewRx—performed by pressing the enter button (hPressEnter)).

6.2 EOFM translation
The EOFMs representing the human task model were translated into a SAL code module.
This translation was accomplished by creating a variable for each activity or action node in
each EOFM, each of which could assume one of three enumerated values describing its
execution state: ready, executing, or done. Thus, in addition to handling the transitional logic
for the coordination protocol, this module handled the transition logic for allowing the
variables representing activity and action nodes to transition between these three values. All
activity and action variables start in the ready state. They can transition between execution
states based on the execution state of their children, parent, and siblings in the EOFM
structure; the evaluation of their conditions; and their position within the EOFM hierarchy.

While the resulting human operator module and its associated unconstrained operator model
both had the same inputs and outputs, the logic associated with traversal of the human task
structures required 48 additional variables in the human task behavior model.

6.3 Results
The specification in Eq. (1) verified (produced the expected counterexample) in 57 s with a
search depth of 42. The specification in Eq. (2) verified to true in 10.6 h with a search depth
of 437 and 1,534,862,538 visited states.

Bolton and Bass Page 11

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7 Discussion
This work has shown that it is possible for human–automation interaction to be evaluated
using the architecture in Fig. 1. However, this came as a result of tradeoffs between the
goals the architecture is designed to support:

1. Model constructs need to be intuitive to human factors engineers who will be
building and evaluating many of the models;

2. the sub-models should be decoupled and modular (as in Fig. 1) in order to allow for
interchangeability of alternative sub-models; and

3. the constructed models need to be capable of being verified in a reasonable amount
of time.

We discuss how each of these goals was impacted and how related issues might be
addressed.

7.1 Goals 1: model intuitiveness
Many of the model revisions were associated with representing model constructs in ways
that were more readily interpretable by the model checker rather than the human factors
engineer. These primarily took the form of converting floating point and digit array values
into integers in Phase 1b. Further, the extensive model reductions that were undertaken in
Phase 1c would be very cumbersome for a human factors engineer.

There are two potential ways to address this issue. One solution would be to improve the
model checkers themselves. Given that the modifications would not actually change the
number of reachable states in the system, this would suggest that the model checker need
only optimize the BDD conversion algorithms.

Alternatively, additional modeling tools could be used to help mitigate the situation. Such
tools could allow human factors engineers to construct or import HDI prototypes, and
translate them into model checker code. This would allow the unintuitive representations
necessary for ensuring a model’s efficient processing by the model checker to be removed
from the modeler’s view.

7.2 Goal 2: decoupling of architecture sub-models
Because the protocol used to coordinate human actions between the HDI and human task
models (discussed for Phase 1a and used in all models produced in all subsequent phases)
assumes a particular relationship between variables shared by these models, they are tightly
coupled. Unless a model checker can be made to support both asynchronous and
synchronous relationships between models more elegantly, this coordination infrastructure
cannot be eliminated.

However, a solution may be found in an additional level of abstraction. A toolset for
translating a HDI prototype into model checking code, could handle the construction of the
coordination protocol, making this process effectively invisible to the modeler. Such a
process could also allow for more efficient means of coordinating the HDI and human task
models: one that might not require the use of separate models in the actual model checker
code.

While the extensive model reductions from Phase 1 greatly diminished the fidelity with
which the model represented the actual PCA pump, this provides some advantages. Since
the model from Phase 2 does not suffer from the memory usage problems encountered in
Phase 1, this opens the door to the addition of other model constructs to be added allowing

Bolton and Bass Page 12

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for a more complete system analysis. Future work can expand the model developed in Phase
2 with environmental and device automation models that are compatible with the formal
PCA pump reference model described in [1].

7.3 Goal 3: model verifiability
We are predominantly concerned with exploring how formal methods can be used to provide
insights into human factors and systems engineering concerns. If our goal was to formally
verify properties of the Baxter Ipump, the modeling compromises we made in order to
obtain a verifiable model might necessitate a change in modeling philosophy or verification
approach.

There are many barriers to the verifiability of models of realistic systems. These include
large numbers of parallel processes, large ranges of discrete valued variables, and non-
discretely valued variables. The modeling efforts described here were so challenging
because the target system was dependent on a large number of user specified numerical
values, all of which had very large acceptable ranges. This resulted in the scope of the model
being reduced to the point where it could no longer be used for verifying all of the original
human operator task behaviors: with the model produced in Phase 1b making minor
compromises and the model produced in Phase 1c only allowing for behaviors associated
with basic PCA pump functionality.

As was demonstrated in Phase 2, the verifiability of the model actually increased with the
inclusion of the human task behavior as indicated by the 98% reduction in the reported state
space from the Phase 1c to the Phase 2 model. However, this came at the expense of the
verification process taking 284 times as long. Thus, in a context where verification time is
less important than the size of the model’s state space, the inclusion of the human task
behavior model may generally prove to be advantageous in the formal verification of
systems that have a human–automation interaction component, irrespective of whether the
human behavior is of concern in the verification process. Future efforts should investigate
the different factors that affect this tradeoff.

Even exploiting this advantage, the relative simplicity of the device that was modeled in this
work makes it clear that there are many systems that depend of human–automation
interaction that would be even more challenging to verify, if not impossible, using these
techniques. While the use of bounded model checkers may provide some verification
capabilities for certain systems, there is little that can be done without either using additional
abstraction techniques or future advances in model checking technology and computation
power.

It is common practice in the formal methods community to use more advanced forms of data
abstraction than those employed in this work to mitigate the complexity of variables with
large value ranges (an overview of these methods can be found in [20]). Because the nature
of the modeled human task behavior in this work was concerned with the digit level editing
of the data values, such abstractions were not appropriate for this particular endeavor.
Additionally, automatic predicate abstraction techniques like those used in counterexample-
guided abstraction refinement [6] could potentially alleviate some of the complexity
problems encountered in this work without requiring changes to the models themselves.
Future work should investigate how these different abstraction techniques could be used
when modeling systems that depend on human-automation interaction in ways that are
intuitive to human factors engineers.

It is clear that the multiple, large-value-ranged variables were the source of most of the
model complexity problems in the pump example, as shown in the drastic decrease in

Bolton and Bass Page 13

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



verification performance time between the models produced in Phases 1b and 1c. Thus, had
the target system been more concerned with procedural behaviors and less on the
interrelationships between numerical values, the system model would have been much more
tractable. Future work should identify additional properties of systems dependent on
human–automation interaction that lend themselves to being modeled and verified using the
framework discussed here.

Finally, some of the performance issues we encountered can be attributed to our use of SAL.
For example, model checkers such as SPIN [15] do not perform the lengthy process of
constructing the BDD representation before starting the checking process. Future work
should investigate which model checker is best suited for evaluating human–automation
interaction.

8 Conclusion
The work presented here has shown that it is possible to construct models of human–
automation interaction as part of a larger system for use in formal verification processes
while adhering to some of the architectural goals in Fig. 1. It has also shown that the
incorporation of human task behavior models into system models may help alleviate the
state explosion problem in some systems that depend on human–automation interaction.
However, this success was the result of a number of compromises that produced a model
that was not as representative, understandable, or modular as desired. Thus, in order for
formal methods to become more useful for the HFE community, the verification technology
will need to be able to support a more diverse set of systems. Further, new modeling tools
may be required to support representations that human factors engineers use. These
advances will ultimately allow formal methods to become a more useful tool for human
factors engineers working with safety critical systems.

Acknowledgments
The research described was supported in part by Grant Number T15LM009462 from the National Library of
Medicine and Research Grant Agreement UVA-03-01, sub-award 2623-VA from the National Institute of
Aerospace (NIA). The content is solely the responsibility of the authors and does not necessarily represent the
official views of the NIA, NASA, the National Library of Medicine, or the National Institutes of Health. The
authors would like to thank Radu I. Siminiceanu of the NIA and Ben Di Vito of the NASA Langley Research
Center for their technical help. They would like to thank Diane Haddon, John Knapp, Paul Merrel, Kathryn
McGough, and Sherry Wood of the University of Virginia Health System for describing the functionality of the
Baxter Ipump and for providing documentation, training materials, and device access.

References
1. Arney, D.; Jetley, R.; Jones, P.; Lee, I.; Sokolsky, O. Formal methods based development of a PCA

infusion pump reference model: generic infusion pump (GIP) project; Proceedings of the 2007 joint
workshop on high confidence medical devices, software, and systems and medical device plug-and-
play interoperability; Washington, DC: IEEE Computer Society; 2007. p. 23-33.

2. Baxter Health Care Corporation. Ipump pain management system operator’s manual. McGaw Park:
Baxter Heath Care Corporation; 1995.

3. Bolton, ML.; Bass, EJ. Building a formal model of a human-interactive system: insights into the
integration of formal methods and human factors engineering; Proceedings of the first NASA
formal methods symposium; Moffett Field: NASA Ames Research Center; 2009. p. 6-15.

4. Bolton, ML.; Bass, EJ. Enhanced operator function model: a generic human task behavior modeling
language; Proceedings of the IEEE international conference on systems, man, and cybernetics;
Piscataway: IEEE; 2009. p. 2983-2990.

Bolton and Bass Page 14

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. Bolton, ML.; Bass, EJ. A method for the formal verification of human-interactive systems;
Proceedings of the 53rd annual meeting of the human factors and ergonomics society; Santa
Monica: Human Factors and Ergonomics Society; 2009. p. 764-768.

6. Clarke E, Grumberg O, Jha S, Lu Y, Veith H. Counterexample-guided abstraction refinement for
symbolic model checking. J ACM. 2003; 50(5):752–794.

7. Crow, J.; Javaux, D.; Rushby, J. Models and mechanized methods that integrate human factors into
automation design; Proceedings of the 2000 international conference on human-computer
interaction in aeronautics; Menlo Park: Association for the Advancement of Artificial Intelligence;
2000. p. 163-168.

8. Curzon P, Ruksenas R, Blandford A. An approach to formal verification of human–computer
interaction. Formal Asp Comput. 2007; 19(4):513–550.

9. De Moura, L.; Owre, S.; Shankar, N. Technical report. Menlo Park: Computer Science Laboratory,
SRI International; 2003. The SAL language manual.

10. Degani, A. PhD thesis. Atlanta: Georgia Institute of Technology; 1996. Modeling human–machine
systems: on modes, error, and patterns of interaction.

11. Degani, A.; Kirlik, A. Modes in human–automation interaction: Initial observations about a
modeling approach; Proceedings of the IEEE international conference on systems, man and
cybernetics; Piscataway: IEEE; 1995. p. 3443-3450.

12. Fields, RE. PhD thesis. York: University of York; 2001. Analysis of erroneous actions in the
design of critical systems.

13. Heymann M, Degani A. Formal analysis and automatic generation of user interfaces: approach,
methodology, and an algorithm. Hum Factors. 2007; 49(2):311–330. [PubMed: 17447671]

14. Heymann, M.; Degani, A.; Barshi, I. Generating procedures and recovery sequences: a formal
approach; Proceedings of the 14th international symposium on aviation psychology; Dayton:
Association for Aviation Psychology; 2007. p. 252-257.

15. Holzmann, GJ. The spinmodel checker, primer and reference manual. Reading: Addison-Wesley;
2003.

16. Javaux D. A method for predicting errors when interacting with finite state systems. How implicit
learning shapes the user’s knowledge of a system. Reliab Eng Syst Saf. 2002; 75(2):147–165.

17. Kirwan, B.; Ainsworth, LK. A guide to task analysis. Philidelphia: Taylor and Francis; 1992.
18. Kohn, LT.; Corrigan, J.; Donaldson, MS. To err is human: building a safer health system.

Washington: National Academy Press; 2000.
19. Krey, N. 2007 Nall report: accident trends and factors for 2006. Technical report. 2007.

http://download.aopa.org/epilot/2007/07nall.pdf
20. Mansouri-Samani, M.; Pasareanu, CS.; Penix, JJ.; Mehlitz, PC.; O’Malley, O.; Visser, WC.; Brat,

GP.; Markosian, LZ.; Pressburger, TT. Technical report. Moffett Field: Intelligent Systems
Division, NASA Ames Research Center; 2007. Program model checking: a practitioner’s guide.

21. Mitchell CM, Miller RA. A discrete control model of operator function: a methodology for
information dislay design. IEEE Trans Syst Man Cybern A Syst Hum. 1986; 16(3):343–357.

22. Perrow, C. Normal accidents. New York: Basic Books; 1984.
23. Rushby J. Using model checking to help discover mode confusions and other automation surprises.

Reliab Eng Syst Saf. 2002; 75(2):167–177.
24. Schraagen, JM.; Chipman, SF.; Shalin, VL. Cognitive task analysis. Mahwah: Lawrence Erlbaum

Associates; 2000.
25. Stanton, N. Human factors methods: a practical guide for engineering and design. Brookfield:

Ashgate Publishing; 2005.
26. Thurman, DA.; Chappell, AR.; Mitchell, CM. An enhanced architecture for OFMspert: a domain-

independent system for intent inferencing; Proceedings of the IEEE international conference on
systems, man, and cybernetics; Piscataway: IEEE; 1998. p. 3443-3450.

27. Vicente, KJ. Cognitive work analysis: toward safe, productive, and healthy computer-based work.
Mahwah: Lawrence Erlbaum Associates; 1999.

28. Wells, AT.; Rodrigues, CC. Commercial aviation safety. 4th edn. New York: McGraw-Hill; 2004.

Bolton and Bass Page 15

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://download.aopa.org/epilot/2007/07nall.pdf


29. Wickens, CD.; Lee, J.; Liu, YD.; Gordon-Becker, S. Introduction to human factors engineering.
Upper Saddle River: Prentice-Hall; 2003.

Bolton and Bass Page 16

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Framework for the formal modeling of human–automation interaction. Arrows between
models represent variables that are shared between models. The direction of the arrow
indicates whether the represented variables are treated as inputs or output. If the arrow is
sourced from a model, the represented variables are outputs of that model. If the arrow
terminates at a model, the represented variables are inputs to that model

Bolton and Bass Page 17

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
A simplified representation of the Baxter Ipump’s human-device interface. Note that the
actual pump contains additional controls and information conveyances

Bolton and Bass Page 18

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
The EOFM graphical representation for turning on the pump

Bolton and Bass Page 19

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
The EOFM graphical representation for stopping infusion

Bolton and Bass Page 20

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
The EOFM graphical representation for turning off the pump

Bolton and Bass Page 21

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
The EOFM graphical representation of the pattern for programming a value X into the pump

Bolton and Bass Page 22

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
The EOFM for choosing to start or review a prescription

Bolton and Bass Page 23

Innov Syst Softw Eng. Author manuscript; available in PMC 2011 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


