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Abstract
Independent of the aetiology, AD (Alzheimer's disease) neurofibrillary degeneration of
abnormally hyperphosphorylated tau, a hallmark of AD and related tauopathies, is apparently
required for the clinical expression of the disease and hence is a major therapeutic target for drug
development. However, AD is multifactorial and heterogeneous and probably involves several
different aetiopathogenic mechanisms. On the basis of CSF (cerebrospinal fluid) levels of Aβ1-42

(where Aβ is amyloid β-peptide), tau and ubiquitin, five different subgroups, each with its own
clinical profile, have been identified. A successful development of rational therapeutic disease-
modifying drugs for AD will require understanding of the different aetiopathogenic mechanisms
involved and stratification of AD patients by different disease subgroups in clinical trials. We have
identified a novel aetiopathogenic mechanism of AD which is initiated by the cleavage of SET,
also known as inhibitor-2 (I2

PP2A) of PP2A (protein phosphatase 2A) at Asn175 into N-terminal
(I2NTF) and C-terminal (I2CTF) halves and their translocation from neuronal nucleus to the
cytoplasm. AAV1 (adeno-associated virus 1)-induced expression of I2CTF in rat brain induces
inhibition of PP2A activity, abnormal hyperphosphorylation of tau, neurodegeneration and
cognitive impairment in rats. Restoration of PP2A activity by inhibition of the cleavage and of
I2

PP2A/SET activity offers a promising therapeutic opportunity in AD with this aetiopathogenic
mechanism.
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Introduction
AD (Alzheimer's disease), the single major cause of dementia in middle- and old-age
individuals, is multifactorial and heterogeneous. Less than 1% of the AD cases are caused
by a mutation in APP (β-amyloid precursor protein) or PS (presenilin) 1 or PS2 [1]. The
aetiology of the remaining, i.e. over 99%, AD cases, commonly referred to as the sporadic
form of the disease, is at present not established. Independent of the aetiology, AD is
histopathologically characterized by the co-occurrence of β-amyloidosis and neurofibrillary
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degeneration of the brain. The former is seen as β-amyloid plaques and congophilic
angiopathy. Neurofibrillary degeneration is seen as intraneuronal NFTs (neurofibrillary
tangles) of PHFs (paired helical filaments) admixed with SFs (straight filaments) in the cell
soma, in the neuropil as neuropil threads, and in dystrophic neurites surrounding the plaque
core β-amyloid. β-Amyloid is made up of the APP metabolite Aβ (amyloid β-peptide),
mostly Aβ1-40 and Aβ1-42 [2,3]. The major protein subunit of PHFs/SFs is the microtubule-
associated protein tau in an abnormally hyperphosphorylated state [4–6]. Studies on
clinicopathological correlation have repeatedly demonstrated that neurofibrillary pathology
and not β-amyloidosis correlate with the presence of dementia in humans [7–9]. Although,
according to the amyloid cascade hypothesis, β-amyloidosis is upstream of neurofibrillary
degeneration, an increasing number of studies suggest that the latter is pivotal for at least the
clinical expression of AD. Neurofibrillary degeneration of the AD type is made up of the
abnormally hyperphosphorylated tau which apparently involves several different
aetiopathogenic mechanisms. The present article reviews the pivotal role of the
neurofibrillary pathology of the abnormally hyperphosphorylated tau and the multifactorial
nature of this lesion.

Pivotal role of tau pathology in neurodegeneration and dementia
Whereas neurofibrillary degeneration and β-amyloidosis are two required histopathological
features of AD, each of these two lesions are seen in the absence of the other in different
human conditions. In a significant number of healthy aged individuals, there is as much β-
amyloid plaque burden in the brain as in typical cases of AD, except that, in the former case,
plaques lack dystrophic neurites with neurofibrillary pathology surrounding the β-amyloid
cores [8,10–12]. On the other hand, neurofibrillary degeneration of the AD type, but in the
absence of β-amyloid, is seen in several tauopathies such as Guam parkinsonism dementia
complex, dementia pugilistica, corticobasal degeneration, Pick's disease and FTDP-17 tau
(frontotemporal dementia with parkinsonism linked with chromosome 17 and tau mutations)
and progressive supranuclear palsy. All of these tauopathies with neocortical lesions are
clinically characterized by dementia; in progressive supranuclear palsy, the neurofibrillary
degeneration is limited to the brain stem and is associated with motor impairment.

In healthy aged individuals, neurofibrillary pathology is seen in the entorhinal cortex. In
AD, neurofibrillary degeneration spreads from the entorhinal cortex first to the hippocampus
and then to the rest of the neocortex [13]. Apparently neurofibrillary degeneration in the
neocortex is required for the dementia; neither β-amyloidosis of the brain in the absence of
neurofibrillary degeneration nor the presence of the neurofibrillary pathology in the
entorhinal cortex alone are sufficient for the clinical expression of the disease.

In the case of the inherited cases of FTDP-17, almost equal numbers are caused by a
mutation in the tau gene (FTDP-17 tau) as in the TDP (TAR-DNA-binding protein)-43 gene.
In FTDP-17 tau, certain missense mutations in the tau gene, including those that affect the
alternative splicing of its pre-mRNA, favouring the 4R (four microtubule-binding repeat) tau
isoforms, co-segregate with the disease [14–16]. These mutated taus and the 4R taus are
respectively more favourable substrates for abnormal hyperphosphorylation than wild-type
tau and 3R taus [17]. Inclusions of hyperphosphorylated tau have also been observed in
small numbers in glial cells in the white matter, especially in frontolobal dementias [18,19].

In AD-affected brain, all of the six tau isoforms are hyperphosphorylated and aggregated
into PHFs/SFs [4–6,20,21]. Although conformational changes [22–24] and truncation of tau
[25–27] following its hyperphosphorylation [28] have been reported in AD, the most
established and compelling cause of neurofibrillary degeneration in AD and related
tauopathies is the abnormal hyperphosphorylation of this protein [5,29,30].
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Two major known functions of tau are its ability to promote assembly and to maintain
structure of microtubules [31]. These functions of tau are regulated by its degree of
phosphorylation [29,32–34]. An increase in phosphorylation beyond the normal brain level
of 2–3 mol of phosphate depresses the biological activity of tau.

As much as 40 % of the abnormally hyperphosphorylated tau in AD-affected brain is present
in the cytosol and not polymerized into PHFs/NFTs [30,35,36]. Unlike normal tau, the
cytosolic AD P-tau (AD abnormally hyperphosphorylated tau) does not bind to tubulin and
promote microtubule assembly, but instead it inhibits assembly and disrupts microtubules
[29,30,37,38]. This inhibitory property of the AD P-tau involves the sequestration of normal
tau, MAP (microtubule-associated protein) 1, and MAP2 by this diseased protein [29,39,40].
This toxic behaviour of the AD P-tau appears to be solely due to its abnormal
hyperphosphorylation because the dephosphorylation of the diseased tau by protein
phosphatase converts it into a normal-like protein [29,37,38]. Hyperphosphorylation of tau
induced by intracerebroventricular injection of forskolin, a PKA (protein kinase A)
activator, in rats caused cognitive impairment and on co-administration of Rp-cAMPS (Rp
isomer of adenosine 3′,5′-monophosphothioate), a PKA inhibitor, both the
hyperphosphorylation and cognitive impairment were reversed [41]. The inhibitory activity
of the cytosolic AD P-tau has also been confirmed in tau-transfected yeast [42,43], tau-
transgenic Drosophila [44] and a P301L transgenic mouse model [45]. On self-assembly
into PHFs/NFTs, the AD P-tau loses its ability to sequester normal MAPs and inhibit or
disrupt microtubules [32,33,46].

Tau mutations, which cause FTDP-17 tau, result either in an increase in the 4R/3R tau ratio
or in missense mutations. Both 4R and mutated taus are more easily abnormally
hyperphosphorylated than the normal wild-type protein [17,47]. Opposite to FTDP-17 tau,
in Pick's disease and Down's syndrome, the 3R/4R ratio is increased [48–50]. Since the
activity of 3R tau is lesser than that of 4R tau in binding to tubulin/microtubules, the
unbound 3R tau becomes abnormally hyperphosphorylated because free tau is a more
favourable substrate than tau on microtubules for phosphorylation [51]. Thus it appears that
a loss of the normal balance of 4R/3R taus can promote tau pathology.

Multifactorial nature of neurofibrillary degeneration
Neurofibrillary degeneration of AD P-tau, a histopathological hallmark of AD and related
tauopathies, is caused by multiple factors. These multiple causes include not only mutations
in the tau gene, APP gene, PS1 gene and PS2 gene mentioned above, but also metabolic
abnormalities and environmental factors.

Tau is a substrate for several protein kinases [52,53]. Among these kinases, GSK3 (glycogen
synthase kinase 3), Cdk5 (cyclin-dependent protein kinase 5), PKA, CaMKII (Ca2+/
calmodulin-dependent protein kinase II), CK1 (casein kinase I), MAPK (mitogen-activated
protein kinase) ERK1/2 (extracellular-signal-regulated kinase 1/2) and SAPKs (stress-
activated protein kinases) have been most implicated in the abnormal hyperphosphorylation
of tau [54,55].

The state of phosphorylation of a phosphoprotein is a function of the balance between the
activities of the protein kinases and the protein phosphatases that regulate its
phosphorylation. The activity of PP2A (protein phosphatase 2A), which accounts for over
70% of tau phosphatase activity in human brain [56–58] is compromised in AD–affected
brain [59,60] and has been strongly implicated as a cause of abnormal hyperphosphorylation
of tau [55,61,62]. On dephosphorylation with PP2A, the AD P-tau loses both its ability to
inhibit microtubule assembly and self-assemble into PHFs/SFs [63]. Interestingly, this
PP2A-dephosphorylated tau can be converted back into AD P-tau by more than one
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combination of tau kinases, suggesting that AD neurofibrillary degeneration can involve
several different aetiopathogenic mechanisms [63].

PP2A activity is regulated by two heat-stable proteins, inhibitor-1 (I1
PP2A) and inhibitor-2

(I2
PP2A) [64–67]. The mRNAs and protein expression of both of these PP2A inhibitors are

up-regulated in AD-affected brain [68]. I2
PP2A, also called SET, a primarily nuclear protein,

is selectively cleaved into an N-terminal half (I2NTF) and a C-terminal half (I2CTF), and is
translocated from the neuronal nucleus to the cytoplasm and co-localizes with NFTs in AD-
affected brain [68]. Expression of I2CTF in the brain causes abnormal hyperphosphorylation
of tau and reference memory impairment in rats [69], suggesting a novel aetiopathogenic
mechanism of neurofibrillary degeneration involving cleavage of I2

PP2A and generation of
I2CTF.

Virtually all cases of Down's syndrome, which is caused by partial or complete trisomy 21,
develop AD histopathology when they reach the fourth decade of life. In addition to APP,
another important gene within the chromosome 21, Down's syndrome-critical region is
Dyrk1A, which encodes a serine/threonine protein kinase DYRK1A (dual-specificity
tyrosine-phosphorylated and -regulated kinase 1A) [70]. Recent studies suggest that
overexpression of DYRK1A may cause neurofibrillary degeneration, both by leading to
abnormal hyperphosphorylation of tau by priming it for further phosphorylation by GSK3β
and by promoting exclusion of microtubule-binding repeat 2 through phosphorylation of
ASF (alternative splicing factor) [50,71].

Phosphorylation of tau is also regulated by its degree of O-GlcNAcylation which involves
serine/threonine residues [72,73]. O-GlcNAcylation, including that of tau, is down-regulated
in AD-affected brain [74]. This is probably due to a decrease in brain glucose metabolism
caused by a decrease in the level of the glucose transporters Glut1 and Glut3 [75,76]; the
brain level of Glut3 is also decreased in diabetes and in cases of AD with diabetes, providing
an explanation of diabetes as a risk factor and a metabolic cause of AD. All of these studies
taken together suggest that the sporadic AD is multifactorial. Understanding of these
different aetiopathogenic mechanisms involved is required for rational development of
potent disease-modifying drugs for the treatment of AD.
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Abbreviations used

Aβ amyloid β-peptide

AD Alzheimer's disease

AD P-tau AD abnormally hyperphosphorylated tau

APP β-amyloid precursor protein

DYRK1A dual-specificity tyrosine-phosphorylated and -regulated kinase 1A

FTDP-17 tau frontotemporal dementia with parkinsonism linked with chromosome 17
and tau mutations

Glut glucose transporter

GSK3 glycogen synthase kinase 3

MAP microtubule-associated protein

NFT neurofibrillary tangle

PHF paired helical filament

PKA protein kinase A

PP2A protein phosphatase 2A

I2
PP2A PP2A inhibitor-2

I2CTF I2
PP2A C-terminal half

PS presenilin

R microtubule-binding repeat

SF straight filament
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Figure 1. Multifactorial nature, pivotal role, and mechanism of AD neurofibrillary degeneration
Neurofibrillary degeneration of the AD type is a product of multiple aetiological factors.
Independent of the aetiology, neurofibrillary degeneration in AD and tauopathies involves
abnormal hyperphosphorylation of tau and its occurrence in the neocortex is associated with
dementia; neurofibrillary degeneration in the brainstem in progressive supranuclear palsy is
associated with motor impairment. A cause of hyperphosphorylation of tau is a decrease in
the activity of PP2A, a major tau phosphatase. Unlike normal tau, AD P-tau, instead of
interacting with tubulin and promoting its assembly into microtubules, sequesters normal
tau, MAP1 and MAP2, forming 200 000 g sedimentable oligomeric tau. The sequestration
of normal MAPs disrupts microtubules and compromises axonal transport and consequently
retrograde degeneration and dementia. The AD P-tau polymerizes into tangles of PHFs/SFs,
which, unlike the cytosolic/oligomeric AD P-tau, interacts neither with tubulin nor with
normal MAPs, but eventually obstructs further the microtubule network and axoplasmic
flow as a space-occupying lesion.
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