
Induction of Pancreatic Islet Graft Acceptance: The Role of
Antigen Presenting Cells

Camillo Ricordi, Suzanne T. Ildstad, and Thomas E. Starzl

Diabetes mellitus is the most common endocrine disease. It is the fourth leading cause of
death by disease in western countries and it is a worldwide public health problem.1–3

Prolongation of life is achieved by insulin therapy, but an increasing number of diabetic
patients are treated for the complications associated with the disease, including blindness
and end-stage renal failure. Fifty percent of all patients with diabetes develop renal failure in
their lifetime.1–5

In patients with Type I diabetes mellitus, insulin production progressively declines and
finally disappears as the beta cells within the islets are destroyed by an autoimmune process
which results from a complex interplay between genetic and unknown environmental
factors.6–7 Replacement therapy with exogenous insulin has prevented acute death but is
imperfect and has been ineffective in preventing the chronic complications of the disease.
Thus, alternative methods for total endocrine replacement have been explored, including
transplantation of isolated islets as a free graft.8

The idea of transplanting pancreatic tissue to reverse diabetes is a century old9–10 and recent
reviews on the subject are available.11–15 Procedures for islet isolation16–17 have improved
significantly during the last decade18–30 and the use of more powerful immunosuppressive
agents such as cyclosporine26,27,31–33 or FK 50634–36 have resulted in prolonged human
islet allograft survival. Insulin independence31,33–37 was obtained in some patients
indicating that it is possible to replace the endocrine function of the pancreas by an islet
transplant in humans.

Despite these encouraging results, rejection remains the major factor limiting clinical trials
of islet transplantation in Type I diabetes mellitus.31,32,34–37 The solution to islet rejection
cannot be provided by an increase in immunosuppressive protocols, since islet
transplantation does not constitute a life-saving procedure. In contrast to other organ
transplants such as heart or liver allografts, islet administration to Type I diabetic patients
should be considered as prophylaxis to prevent the development of the chronic
complications of the disease. Therefore, the risks associated with powerful
immunosuppressive treatments cannot be justified at the present time. In the absence of any
major breakthrough in the development of new and more benign immunosuppressive agents,
it will be necessary to develop alternative procedures to prevent islet rejection.

Several experimental approaches have been developed to reduce the immunogenicity of islet
preparations by elimination or metabolic inactivation of the donor antigen presenting cells
(APCs) within the islet grafts. Other approaches to prevent islet rejection that are currently
under investigation include microencapsulation/macroencapsulation, bioartificial pancreas
and treatment with antibodies to major histocompatibility complex (MHC) determinants.
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These approaches are not the subject of the present review. Instead this review will address
the question of the role of APCs in islet rejection and the method to develop islet graft
acceptance that could require a participating or determining effect of APCs.

The idea of treating tissues before transplantation to reduce immunogenicity is not new.38,39

In 1934, Stone suggested a clinical benefit of in vitro culture of parathyroid tissue before
transplantation in patients with hypoparathyroidism.38 The hypothesis was that culture of
tissue in the presence of recipient serum could result in graft “adaptation” to the new host.
Lafferry40 postulated that the facilitating effect of organ culture could be explained by the
destruction or metabolic inactivation of bone marrow-derived donor antigen presenting cells
(APCs). After two weeks of culture in an atmosphere of 95% O2, significant prolongation of
thyroid allograft survival was obtained (> 200 days).40,41 Inactivation or destruction of the
so-called “passenger leukocytes”42,43 became the focus of many investigators who
significantly contributed to developing procedures to prolong survival of endocrine tissues
44,45 and pancreatic islet46–65 grafts.

Faustman et al50 achieved prolongation of islet allograft survival following anti-Ia serum
and complement treatment of the donor islets prior to transplantation, demonstrating a
correlation between islet immunogenicity and the presence of Class II-positive cells in the
transplanted islets. However, it has been shown that islet allograft rejection occurs despite
Class II identity between the donor and the recipient,66 indicating that rejection can occur
for Class I disparities alone.67–69

Steinman and his associates described a specific type of interdigitating APC which he called
the dendritic cell. He demonstrated that this Class II+ cell was a potent simulator of immune
reaction in vitro.70 He prepared a monoclonal antibody (mAb) to mouse dendritic cells and
demonstrated that treatment with this antibody could eliminate these cells in vitro. In
collaborative studies with Steinman, Faustman et al, demonstrated dendritic cells in mouse
islets by immunochemical techniques and found that these cells could be eliminated by in
vitro treatment of the islets with the mAb and complement. Pretreatment of BIO-BR (H-2k)
donor mouse islets with the anti-dendritic cell mAb plus complement prevented rejection of
the treated islets when transplanted into MHC-disparate diabetic C57 BL/6J (H-2b)
recipients.52 These findings indicated that in the mouse the dendritic cell plays a major role
in the initiation of rejection of islet allografts, since other Ia+ cells which remained in the
graft after elimination of the dendritic cell did not initiate rejection.

Subsequent attempts to prevent rejection of rat islet allografts using antibodies that were
reactive with Ia antigens in these species were nor successful. In fact, either treatment of
donor islets with a single antibody or with a mixture of anti-Ia antibodies and complement
did not prevent rejection of rat islet allografts. Lacy and his associates demonstrated that in
the rat, anti-Ia antibody and complement treatment decreased the number and/ or quality of
APCs in the islets but did nor completely eliminate them. The inability to prevent rejection
of rat islet allografts by treatment of the donor islets with anti-Ia antibodies was probably
due to the larger size and more compact arrangement of rat islets as compared to mouse
islets, thus making it more difficult for the antibody and complement to diffuse into the
islets. Ia + lymphoid cells can be demonstrated in freshly isolated rat islets using
immunohistochemical techniques; however, relatively few Ia+ cells can be found after
overnight culture. If the cultured islets are partially disrupted by a mechanical means or by a
low calcium content in the medium, then Ia + cells can be demonstrated in such islet
preparations. These findings indicated that Ia + cells were still present in the islets after
overnight culture; however, the antibody was unable to penetrate the tightly compact islets
to reveal their presence. The size and compactness of human islets is similar to the rat, and it
may be difficult to obtain complete penetration of human islets with specific anti-Ia
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antibodies and complement. Thus, the rat model could be of assistance to test approaches
that may be applicable to human islet transplants.71

Evidence is growing that APCs in different tissues are part of a bone marrow-derived system
connected by movement and homing.72 Coupled with this migratory ability is the capacity to
capture antigens in an immunogenic form in situ. There is evidence to suggest that donor
APCs from solid organ grafts, i.e., heart, migrate to splenic and other lymphoid tissues of
the host and that allograft rejection is in fact initiated at a site distinct from the graft itself.119

The progenitor for the putative dendritic cell lineage has not been isolated. Dendritic cells in
spleen and lymph originate from a proliferating pool of precursors and undergo rapid
turnover,73–75 but the site for proliferation (3H-thymidine uptake) is not known. A bone
marrow precursor exists but conditions have not been identified that direct its growth in
culture.73,74,76,77

A recent study by Setum et al compared the potency of an enriched rat donor-strain dendritic
cell population with fractionated spleen in relative ability to initiate an immune response in
vivo.78 While 103–104 dendritic cells were capable of stimulating graft rejection, or at least
a severe immunologic response, 105 spleen cells were required to produce a similar effect,
indicating that dendritic cells are powerful APCs. These findings extended the in vitro
evidence that dendritic cells are potent stimulator cells and supported the hypothesis that
APCs may be one of the most important inducers of allograft rejection.

Increasing interest has been focused on the thymus as a unique site for the induction of
tolerance to both the endogenous (self) and transplantation antigens.79–95 In radiation bone
marrow chimeras it is now accepted that bone marrow-derived thymic stromal APCs played
an essential role in the deletion of potentially autoreactive T-lymphocytes during T cell
maturation. A renewed interest in the thymus as a “privileged” site for tolerance induction
has therefore occurred. The induction of systemic donor-specific transplantation tolerance
for islets but not skin was reported when Antilymphocyte Serum (ALS) was administered
intraperitoneally(IP) and a simultaneous MHC-disparate islet allograft was placed
intrathymically (IT).96 A subsequent donor-specific islet graft was accepted at a distant site
(renal subcapsular), but third-parry islet grafts were rejected. Recipients were systematically
hyporeactive to donor alloantigens in mixed lymphocyte culture proliferative assays (MLR).
The thymus was critical for tolerance induction since placement of the first graft at the renal
subcapsular (RSC) location did not induce tolerance. One might speculate that presence of
bone marrow-derived APCs accompanying the islet graft could have resulted in the
induction of tolerance. This is especially important since quiescent mature T-cells cannot
reenter the thymus, while activated T-lymphocytes can.97

Therefore, rejection has remained a limitation to survival of pancreatic islet allografts. The
induction of donor-specific transplantation tolerance using bone marrow stem cells to
produce chimerism, has been suggested as a potential approach to prevent rejection of
transplanted pancreatic islets. The association between bone marrow chimerism and donor-
specific transplantation has been recognized for 40 years.79–94, 98–115 The first association
between bone marrow chimeras and tolerance was reported by Billingham. Brent and
Medawar in 1953 when they demonstrated the induction of permanent donor-specific
transplantation tolerance for skin grafts by transplantation of bone marrow cells into
newborn mouse recipients.98 Subsequently, numerous methods to induce similar tolerance in
adult recipients using bone marrow transplantation have been reported.101–111 Monaco et al
demonstrated prolongation of skin allograft survival in mice treated with ALS followed by a
critically timed transfusion of donor bone marrow stem cells.103,104 Similar tolerance for
alloantigens has now been achieved in a number of other species, including the dog110 and
monkey.111
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Recently, Ildstad et al developed and characterized a model to induce donor-specific
transplantation tolerance across a species barrier through preparation of fully xenogeneic
chimeras (rat => mouse).116,117 Engraftment of rat bone marrow stem cells in mouse
recipients was stable, as evidenced by the presence of rat-derived lymphocytes, myeloid
cells, platelets and red blood cells up to 12 months after reconstitution with untreated rat
bone marrow cells. Survival was excellent (>80% at 180 days), and there was no evidence of
graft-versus-host (GVH) disease. Fully xenogeneic chimeras specifically accepted donor-
strain rat skin grafts but were competent to reject MHC-disparate third party mouse and rat
skin grafts.116,117 We have recently demonstrated that long-term acceptance and function of
donor-specific pancreatic islet xenografts could be achieved in fully xenogeneic chimeras
without requirement of chronic nonspecific immunosuppressive therapy.99,100 Euglycemia
resulted within 48 hours following the placement of the cellular xenografts under the renal
capsule. The pancreatic islet grafts were permanently accepted and remained functional for
over eight months following transplantation.

To determine that the euglycemic state present in the chimeras was supported by the islet
grafts and not due to return of function of the native pancreas, we performed serial
nephrectomies of the kidneys bearing the grafts in selected chimeras. Following
nephrectomy the animals returned to the diabetic state within 24 hours, further
demonstrating that the islet xenografts were responsible for maintenance of the euglycemic
state. Histologically, the grafts appeared healthy, and there was evidence for insulin positive
cells (immunoperoxidase stains). Most importantly, there was no evidence for chronic
rejection. These islets were not hand picked and therefore closely approximate the cellular
grafts currently utilized in human trials. We have recently observed that bone marrow-
derived APCs are completely replaced in fully xenogeneic chimeras with those of the bone
marrow donor, suggesting a potential role of donor APCs in the tolerance state that is
associated with chimerism following bone marrow transplantation (manuscript submitted).

In conclusion, it is apparent that antigen-presenting cells exert a central role in islet allograft
and xenograft rejection and/or tolerance induction. Methods to induce tolerance to islets as
well as to other organ and tissue grafts using APCs as the target of immunoalteration
procedures are currently the object of intense research. In the past APCs have been the target
of procedures to eliminate and/or metabolically inactivate these cells to prolong islet graft
survival. Today research evidence supports that APCs may play an active role in graft
acceptance as well. Further studies will unmask the multifaceted role of this critical cellular
component of tissue and organ grafts.
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