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Abstract

High resolution of NMR spectroscopic data of biosamples are a rich source of information on the
metabolic response to physiological variation or pathological events. There are many advantages
of NMR techniques such as the sample preparation is fast, simple and non-invasive. Statistical
analysis of NMR spectra usually focuses on differential expression of large resonance intensity
corresponding to abundant metabolites and involves several data preprocessing steps. In this paper
we estimate functional components of spectra and test their significance using multiscale
techniques. We also explore scaling in NMR spectra and use the systematic variability of scaling
descriptors to predict the level of cysteine, an important precursor of glutathione, a control
antioxidant in human body. This is motivated by high cost (in time and resources) of traditional
methods for assessing cysteine level by high performance liquid chromatograph (HPLC).
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1. Introduction

During the last decade, metabolomics has provided new opportunities to investigate
complex dietary and nutritional questions by applying quantitative methodologies to
information-rich profiles of dietary chemicals and their metabolites (German et al., 2003;
2004). NMR spectroscopy has been utilized in exploring physiological variations in
macronutrient metabolism and has shown to be a fast, simple, and non-invasive method for
“fingerprinting” of metabolic compounds. These advantages, however, are offset by
complex spectral representations. For example, 1H NMR measures proton (hydrogen)
signals from all plasma metabolites. Its principle, same as that used in MRI, is based on
behavior of protons in atomic nuclei in a strong magnetic field. However almost every
molecule in plasma contains multiple protons which results in overlapped and complex
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spectra. For this reason advanced signal processing techniques are increasingly used to
analyze the NMR spectra.

Statistical analysis of NMR spectra traditionally focuses on differential expression of large
resonance intensity corresponding to abundant metabolites and involves several data
preprocessing steps such as baseline correction, peak alignment and normalization. These
preprocessing steps are not perfect and often lead to ambiguities and information loss.
Researchers have developed statistical methods and multidimensional NMR techniques that
identify important metabolites contributed to toxicological and pathophysiological
conditions or treatments by comparing the spectra.

A previously unaddressed question is what is the interplay of metabolites with small
“energies” in spectra, how they “communicate”, and what is the position-lagged correlation
of their spectral contents. In contrast to exploring a few large resonance intensity in the
spectra after preprocessing of spectral curves, our analysis focuses on fractal properties of
the output signals and regularities of their scalings. An advantage of the proposed method is
that it does not require complicated preprocessing steps.

Formally speaking, we treat the spectra as functional data and employ functional data
analysis (FDA) techniques (Ramsay and Silverman, 1997; 2002) for extracting spectral
functional components characterized by treatments, subject blocking, and maybe some other
factors of underlying experimental design. At the same time, we employ multiscale analysis
that provides the tools for assessing the scaling of derived functional components which is
an intrinsic property of functional observations and deriving descriptors that can be
connected to energy activity of all metabolites in the spectrum.

Since wavelets and wavelet-based methodology offer domains in which the variation of a
function can be explored at layers of nested scales, with the possibility of controlling the
total energy allocated to each resolution level (Morris et al., 2006; Raz and Turetsky, 1999;
Ruttimann, 1998; Sajda, et al., 2002; Vidakovic, 2001), we perform the multiscale analysis
of spectral components in the wavelet domain.

Traditional applications of wavelets in NMR spectroscopy are for dimension and noise
reduction. The statistical foundation of these methods is due to David Donoho and his
coauthors. It is interesting that one of the first template functions to test performance of
wavelet methods was a caricature of an NMR spectrum, the function bumps, (Donoho and
Johnstone, 1994; 1995). More recent publications describe emerging methods in NMR data
processing and some novel uses of wavelets in NMR processing (Giinther, 2002; Hoch and
Stern, 1996; Trbovic et al., 2005; Vannucci et al., 2005).

In the following, we suggest new methods to extract biologically significant information
about the interactions of metabolites and their relationship with biological functions that is
contained in NMR spectra by using scaling measures computed from wavelet coefficients.
The method does not require preprocessing. As an application, we use the systematic
variability scaling descriptors to predict cysteine concentrations from spectral data in which
cysteine itself cannot be detected because its concentration is below detection limits. The
measurement of plasma cysteine requires special blood collection techniques, and analysis
by HPLC requires the long sample preparation time before actual HPLC running. On the
other hand, NMR does not require any special blood collection technique or complicated
sample preparation. NMR running time is much shorter than that of HPLC. The prediction
of concentration of cysteine through multiscale analysis thereby could save the cost and time
of analysis compared to other methods.
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To focus on the effect of diurnal time on the scaling coefficient, we use functional repeated
measure block design, a statistical design technique in which the observations are spectra.
The influence of subjects on scaling index is not of interest and they serve as blocks. The
scaling is assessed from the functional ANOVA components corresponding to the treatment
effect of interest.

The paper is organized as follow. In Section 2 we describe the methodology of functional
data analysis and wavelet-based assessment of scaling. The application of the methodology
to assess the level of cysteine in blood plasma is provided in Section 3. Remarks and
conclusions are given in Section 4.

2. Methodology

2.1 Data

In this section we describe data and statistical methodology utilized in the analysis. Some
technical details about the methods are deferred to Appendix. Our methodology is supported
by two statistical techniques — (i) functional data analysis (FDA) and (ii) scaling assessment.
Both techniques utilize multiresolution tools (wavelets) in their implementation.

Human plasma samples were collected hourly over a 24 hour period (from 8:30 am to 8:30
am) from nine healthy adults under a protocol approved by the Emory University Institution
Review Board. Subjects were given standardized, nutritionally balanced meals to provide
caloric intake at estimated basal energy expenditure + 40% (derived from the Harris
Benedict equation) and adequate protein at 15% of total energy intake. Total energy intake
was provided as 15% protein (based on 0.8 gm protein/kg/day), 30% fat, and 55%
carbohydrate. Subjects consumed each meal within 45 minutes (i.e., breakfast from 9:00—
9:45 am, lunch from 1:00-1:45 pm and dinner from 5:00-5:45 pm) and the snack within 15
minutes (9:00-9:15 pm). Meals were provided as a percentage of total energy intake as
breakfast (30%), lunch (30%), dinner (30%), and an evening snack (10%). Water was
provided ad libitum throughout the admission. Activity (if desired) was confined to walking
in the Emory General Clinical Research Center (GCRC) unit and only within the following
time frames (after the hourly blood draw): 10:00-10:30 am, 12:00-12:30 pm, 14:00-14:30
pm, 16:00-16:30 pm, 18:00-18:30 pm and 20:00-20:30 pm. Otherwise, patients remained in
their room, either lying in bed or sitting in a chair. Blood samples were collected via a
heparinized butterfly needle and syringe. Tubes were spun in a microcentrifuge at 14,600 g
for 30 seconds at room temperature to remove blood cells. The entire sampling procedure
was less than 2 minutes for each hourly sample. Plasma samples were maintained on ice
until convenient for transfer to a —70°C freezer.

Plasma samples were thawed and a 600 ml porions are mixed with 66 ml of deuterium oxide
(D20) containing DSS [3—(trimethylsilyl)-1-propanesulfonic acid sodium salt
(CgH15Na03SSi, 1% w/w)]. TH NMR spectra were measured at 600 MHz on a Varian
INOVAG00 spectrometer with water presaturation at 25°C. The samples were maintained at
25°C in the magnet at least 10 minutes before measurement in order to ensure temperature
stability. NMR spectra were measured with 64 scans into 16,384 data points over a spectral
width of 6600.7 Hz, which resulted in an acquisition time of 2.55s per sample (d1=0,
pulse=5ms, presaturation=1s, acquisition=1.5s). To check the reproducibility of the NMR
analysis, spectra were acquired on identical samples at multiple time points (1.5h, 3h, 4h and
6h). The correlation coefficients of spectra were 0.96, 0.93, 0.97, 0.97.

Figure 1 shows the IH FT(Fourier transform)-NMR spectra that measure physiologic

variations in macronutrients in human plasma. The columns correspond to individuals while
the rows represent time of sampling. For each subgraph the horizontal axis is expressed as
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ppm (part per million) and ranges between 10 and 0, while the vertical axis gives an artificial
magnitude adopted for comparison. Although the range of spectra for all patients is the
same, note that the individuals 5,8, and 9 have “richer” spectra which can be attributed to
varying rates of absorbtion, distribution, metabolism, and excretion.

The level of cysteine was measured by HPLC with fluorescence detection of dansyl
derivatives (Jones, 2002). This method requires two days for processing and cysteine
derivation. Furthermore, HPLC running time took for 1 hour to evaluate the cysteine
concentration. In this study, we extract the Hurst exponent from NMR spectrum to predict
the level of concentration, although cysteine concentration of human plasma cannot be
directly observed in the NMR spectrum. The acquisition time for one NMR spectrum is less
than 15 minutes per sample. The preparation of sample for NMR is less than 5 minutes.
Total time for NMR data collection per sample is less than 20 minutes. Comparing the NMR
method to the HLPC method to extract the level of cysteine, the NMR approach of human
plasma is much simpler and requires much less time than HPLC.

2.2 Assessing the spectral components via a functional design

Given that our observations are functions (spectra) observed under different conditions from
different individuals, we employ functional data analysis (FDA) to estimate, separate, and
test spectral components corresponding to different experimental factors.

FDA is a recent statistical methodology (Ramsay and Silverman, 1997; 2002) which treats
functions, images, n-dimensional continuum objects as observations and performs standard
statistical inference tasks (estimation, testing, classification) on such functional
observations. Unlike the traditional statistical procedures that treat functional observations
as multivariate data, the FDA makes inference on functions directly. For instance, estimating
population mean function x(:) or testing that it is equal to 0, based on the sample of
functional observations, are typical inferential tasks in FDA.

The traditional ANOVA statistical technique explores the scalar data which are obtained
under one or more (fixed- or random-level) experimental treatments. It estimates the
population treatment means and tests their equality. The functional ANOVA (FANOVA)
assumes that observations are functions, in our case NMR spectra and performs equivalent
statistical inference.

It is assumed that the experiment in which the NMR spectra are measured is performed
under p different treatments. Let b represent the number of subjects observed under the
treatment i, where i =1, 2, ..., p. The total sample size is n = pb. It is of interest to estimate
and test the functional contributions of the treatments to the spectral output. In the
FANOVA jargon, the observed spectra sj;(d) can be represented as superposition of 4
functions, u(d) which is a common part, () which is the contribution from the treatment i,
Be(0) which is the contribution of the subject £ (blocking variable), and the error term &, ().
This can be expressed as

5it(®)=H(O)+aid)+Bi(6) +eic(D). i=L, ..., p. =1, ,b. @.1)

Here the variable 6 represents chemical shift expressed in ppm unit. It is assumed that for
each fixed 0, &jg(0) are independent normal random variables with mean zero and common
variance ¢2. A rigorous way to introduce (2.1) involves random fields and is provided in the
Appendix. In simple terms, each observed spectra is a sum of the mean spectra, treatment
effect component, subject effect component, and an error attributed to the measurement
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procedure and uncontrollable fluctuations. The validity of this analysis is contingent on
precise alignment of spectra across times and subjects since the estimators involve averaging
the observed functions.

In the context of our data, the repeated measures are calibrated so that measure 1
corresponds to 8:30 am. The each subsequent measure is 1 hour apart from the previous one,
so that 25th measurement corresponds to 8:30 am of the following day, i.e., p = 25. A total
of nine individuals are followed through all the treatment times. This study is not interested
in differences among the individuals; thus, the subjects are considered as a blocking factor.

Our major interest is the hourly variation of nutritional metabolomics. We first separate the
observed spectra as the sum of the mean spectra z, time effects o and the subject effects ﬁJ j
=1,..., 9. The estimates of the time effects are shown in Figure 2. The mean hourly
contributions to the spectra are estimated as in the Appendix. Note that a1 and axs (upper
left and lower right panels numbered as panels 1 and 25 respectively) are similar in size, as
expected. Note also that at some hours there is increased expression of dominant metabolites
compared to the average (panels 9:30 am, 3:30 pm, for example), while for some other times
(panels 11:30 pm, 2:30 am, for example) the expression decreases.

The estimators of the block effects, i.e., the mean contributions to the spectra by each
subject, are given in Figure 3. Although these estimators are not of interest in assessing the
treatment means, their inequality is desirable since it shows that our model accounts for the
variability among the subjects contributing to the precision of the assessment of the
differences between the treatment means. This is a universal benefit of blocking in all
experimental designs where blocking is possible. As evident in Figure 3, the mean
contribution of each subject shows a different pattern. For example, subjects 5, 8, 9 show
increased expression of dominant features compared to the average and subjects 1, 3, 4, 6, 7
show a decrease in the expression.

The FANOVA tests (details in Appendix) showed that both null hypotheses

Hy:a1(8)=a(8)= - - - =aa5(6)=0 and Hy:81(8)=Pa(8)= - - - =Bo(6)=0 were rejected with p-
values of 0.0001 and 1075, strongly suggesting that the mean functional contributions to the
spectra are non-zero functions and vary significantly with ¢, time and subjects.

Although these results are important, their practicality is limited. Other relevant but
exogenous parameters influence the functional estimators. This motivated us to summarize
the functional components of spectra via scalar descriptors with realistic physical
interpretation, as described in the following Section.

2.3 Scaling of spectral components

Most high frequency biomedical measurements exhibit scaling. The regular scaling of high
frequency data has been used in statistical modeling tasks involving regression,
classification, and experimental design (Peng et al., 1992; Shi et al., 2006). The scaling is
described as regular decay of the energy in signals when this energy is progressively
measured at scales for which the resolution is increasing. More precisely, the regular scaling
is described by a linear relationship between the log-scale (scale defined as reciprocal of the
frequency) and log-average-energy within the scale. The slope of this linear relationship
uniquely determines the Hurst exponent, H, a constant between 0 and 1 that characterizes
the scaling. For example, white noise is characterized by H = 1/2, all turbulent signals have
H = 1/3, and “random DNA walk” corresponding to non-coding parts of human DNA have
H ~ 0.6. Most neural, ocular, and many other physiological high-frequency measurements
scale and this scaling has been used as a statistical summary of the outputs. Theoretical
details describing the estimation of the Hurst exponent are given in the Appendix.
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Next, we briefly discuss the rationale for use of scaling to summarize NMR spectra. When
trends in data are irrelevant and when smoothing does not make sense, scaling analysis of
row noisy measurements may yield useful information. For example, in the study on links
between dynamics of change of pupil diameter and ocular pathologies, Shi et al. (2006)
argue that trends in high frequency measurements (> 200 Hz) are irrelevant since they could
be affected by the change of environmental light intensity, clearly not related to the
pathologies. However, the scaling in these measurements assessed by the Hurst exponent
carries discriminatory information about the eye pathologies. Similarly, traditional analysis
of IH NMR spectra of human plasma can be considered irrelevant to the plasma cysteine
concentration because the dominant spectral measurements are insensitive to directly detect
cysteine.

Another important property of scaling is that it is invariant with respect to shift/scale of the
spectra, and does not require data preprocessing steps such as baseline correction, peak
alignment and normalization, unless performed on one of the FANOVA components. The
consequence is that the estimator of the Hurst exponent is robust with respect to changes in a
few dominant resonance intensities corresponding to expressed metabolites or marker
chemicals.

If the signal has high Hurst exponent, the autocorrelations (correlations between the signal
and its shifts) are strong, signifying considerable internal regularity. On the other hand, the
signals with low Hurst exponent exhibit intrinsic irregularity and antipersistency. In terms of
NMR spectra, spectra with a larger Hurst exponent would possess more internal regularity
and autocorrelation. This informally means that metabolites communicate more when the
Hurst exponent is higher and that they are more “co-expressed.”

The signature of scaling in the NMR spectral data is visible in a logscale diagram (Figure 4).
The horizontal axis represent diadic scales in which the largest number (13 in Figure 4)
corresponds to the Nyquist frequency i.e., the finest discernable scale. Note that the slope of
the graph in the logscale diagram corresponding to scales 10, 11, 12, and 13 differ from the
slope corresponding to scales that are below 10. This is an artifact of preprocessing of
spectra. The low scales of logscale diagram (2-5) are not of interest in assessing the scaling
since their values are affected by global energy of the spectra and a few energetic peaks. The
region with fairly constant slope in the middle of the diagram is used to calculate the Hurst
exponent.

We estimated the Hurst exponent from each of the spectra normalized by subtracting the
mean estimator, 4(d). The rationale is to inspect the scaling of the functional contributions

for time and subject only. From s,(6)=si¢(6) — 12(6), i = 1,..., 25, £ = 1,..., 9, the matrix of
Hurst exponents, {H;¢} is obtained. Assume that each Hj, can be decomposed to a “grand

mean” H', effect of time H, effect of subject Hl and an error gjg in the form of a block-
design model

Hy=H +H, +H, +¢&i, i=1,...,25, (=1,...,9,

A standard analysis of this model yielded that the hypothesis HO:H;’ =0, i=1,..., 25 was
rejected (p-value 0.0013); that is, there is a significant difference in scaling with respect to

times. The hypothesis HO:HZ' =0, £ =1,..., 9 was rejected as well (p-value < 0.0001), and a
significant difference in scaling is attributed to subjects. This is expected and justifies the
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blocking. We note that if this blocking was omitted, i.e., if Hj’s are analyzed by one way
ANOVA,

Hy=H +H, +&y, i=1,...,25, (=1,...,9,

the hypothesis HO:H;' =0, 1=1,..., 25 was not rejected, in fact unaccounted variabilities
among the subjects masked the variability in times.

Figure 5 shows the hourly variations of Hurst exponent, estimated from the FANOVA
components corresponding to the time effects «;, as in Figure 2). Since o;s are obtained by
manipulating spectra, the alignment is necessary (e.g., common average spectra is
subtracted). We argue that even if the alignment is not perfect and a few big peaks result
from a misalignment, the scaling is not affected if robust measures of average level energies
are used, as proposed in Stoev et al. (2005).

The left panel shows the average Hurst exponent by the hour, while the right panel shows a
compass-plot of the truncated average Hurst exponent. It is noticeable that H values tend to
be higher in the afternoon/evening and tend to be lower in the night to morning. This
indicates that the metabolites have more tendency to be co-expressed in the late afternoon
than in the morning. The three classes of time of day (morning, afternoon/evening, night) we
used are from the previous PCA (Principal Components Analysis) results of the data Park et
al. (2006).

2.4 Assessing the level of cysteine

Cysteine (Cys) is an amino acid used for protein synthesis as well as many other metabolic
functions. Therefore, metabolic changes could potentially serve as a biological response
indicator of plasma cystaine. This suggests that scaling measure of NMR spectra of human
plasma could be useful to assess the level of cysteine.

Cysteine is obtained directly from the diet and also from the essential amino acid,
methionine (Met), which is metabolized in individuals by the transulfuration pathway to
form Cys (Hoffer, 2002). In addition to use in the primary sequence of most proteins, both
Met and Cys are required for other metabolic functions. Met is converted to S-
adenosylmethionine, which is used for methylation reactions (Bottiglieri, 2002) for
structural and functional modifications of proteins, RNA and DNA, as well as synthesis of
phospholipids and signaling molecules. The carbon skeleton of Met is also used for
biosynthesis of polyamines, which are required for cell division and cell growth (Wallace
and Caslake, 2001). Cys is used for biosynthesis of glutathione (GSH), coenzyme A, taurine
and sulfate (Stipanuk and Watford, 2006). GSH functions in redox regulation (Jones, 2002)
and detoxification of oxidants and reactive electrophiles (Jones et al., 2005). Coenzyme A is
central to fatty acid metabolism and the citric acid cycle; taurine is utilized for bile acid
synthesis and osmotic regulation (Hansen, 2001); sulfate is used as a structural component
of oligosaccharides (Sugahara and Kitagawa, 2000), transport of steroid hormones (Song,
2001) and detoxification of foreign compounds (McCarver and Hines, 2002). Both are
required for physiologic processes in addition to maintenance of protein synthesis and
nitrogen balance.

Accordingly, Cys could have a central role in controlling metabolism. Consequently we
tested the association of the Hurst exponents of NMR spectra with a quantitative measures
of Cys in simultaneously collected samples to determine whether a useful estimate of plasma
Cys could be derived from the metabolic spectrum.
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Figure 6 shows the plot of the hourly variation of the average Cys level with the average
Hurst exponent and the associated scatter plot. The biological implication of co-behavior
pattern of the Cys level and the scaling measure reveals that we can make predictions of Cys
level based on the Hurst exponents of 1H NMR spectra. This means that, in principle, we
can use 1H NMR spectra for nutritional assessment, i.e., we can assess Cys levels even
though Cys is not directly detected in the sample.

The rationale is the following. When Cys level is high, the major metabolic pathways
producing different metabolites are well regulated. The links between metabolites are strong
in the sense that there is required coordination of metabolism of lipids, carbohydrates, and
proteins. On the 'H NMR spectra, this well regulated link results in a more regular
appearance. Some portion of this regularity is likely to be due to multiple signals arising
from the same chemicals, especially among the metabolites not so distant in the chemical
shift. This regularity is properly sensed and assessed by wavelet spectra and is measured by
Hurst exponent. The higher exponent corresponds to more regulated spectra which is linked
to the increased level of Cys.

3. Conclusions

NMR spectroscopy of human plasma and urine is attractive because it requires minimal
sample preparation, has a short run time and provides quantitative spectral information that
depends upon intrinsic properties of the biologic molecules. In this study, we performed
FDA and scaling assessment of NMR spectra and proposed a means to predict Cys
concentration using the scaling in the 1H NMR data.

Such a wavelet-based global spectral analysis can be extended to local analysis that will
identify neighborhoods of metabolites close in chemical shift sense, responsible for
particular changes. This analytic approach may be useful for single, high-throughput
analysis for chemical assessment of cysteine as well as other key nutrients.
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Technical appendix

In this Technical Appendix we give some details concerning the functional ANOVA and
wavelet-based assessment of scaling.

The functional ANOVA (FANOVA) model has been utilized by several authors. For
example, Ramsay and his team use the FANOVA to model lip motion from acoustical data
(Ramsay et al., 1996) and Fan and Lin (1998) apply it to test longitudinal effects of business
advertisement, while Abramovich et al. (2004) apply a functional block design on the data
coming from sport medicine.

In the FANOVA, the observations y are modeled as

dy; (O)=(u(t)+a;(t)) dt+o dWi(t),

)4
i=1,..., p; t=1,....n;; Ynj=n, teTCR,
i=1

where ¢ > 0 is the diffusion coefficient, p and s are finite integers, u(t) and o;(t) are
(unknown) s-dimensional mean and treatment effect functions and Wi (t) are independent s-
dimensional standard Wiener processes. To ensure identifiability of treatment effect
functions g, it is standardly imposed:

Zl_n,-a,(t):o; Vt. (3.1)

It is understood that the observations y are taken at a regular grid in s-dimensional space tp,
= (tl,mv' Y ts,m):

tim=m/N, 1<i<s, 1<m<N,

and that N is the discretization size.

The standard least square estimators for u(t) and ;(t)
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ﬁ(t)=§.,(t)=%2{>~i5<t),
FO=F, (1) - (1),

where y; (=7 [)-,»[(t), are obtained by minimizing the discrete version of LMSSE Ramsay
and Silverman (1997, p 141),

LMSEE=" > [yir(t) - (u(®)+a: ()1,
t il

subject to discretized version of constraint (3.1).

The fundamental ANOVA identity becomes functional identity,
SST(t)=SSTr(t)+SSE(t),

with SST(t) = Zi [y (©)—7..(01% SSTr(t) = Zinifyi.()—y--(1)]%, and SSE(Y) = Zi ¢[yic ()4
(H)]2. If MSE(t) = SSE(t)/(n — p) and MSTr(t) = SSTr(t)/(p — 1), then for each t, the
function

~ MSTx(t)
" MSE(t)

F(t)

is distributed as non-central ¥’ p—l.n—p(o"zzinia?(t)). Angelini and Vidakovic (2003) use
False Discovery Rate procedure in multiple F-tests in the wavelet domain to regularize
functional treatment effects. For more on functional statistical designs, use of decorrelating
transformations (wavelets), and estimation, regularization and testing of design components,
see Brown, et al. (2001), Fan (1996), Fan and Lin (1998), Raz and Turetsky (1999), and
Vidakovic (2001).

The self-similarity is an inherent property of many high-frequency functional responses. If
the data are self-similar, that is, scale in a regular fashion, then a single descriptor in the
form of a Hurst exponent, fully describes the scaling.

There are many ways to assess the self-similarity and to estimate the Hurst exponent. We
mention the methods based on contrasting estimators of variability, on various aspects of
Fourier and wavelet spectra, methods based on level-crossings, filtering, etc. The literature
on this methodology is rich and the monograph Doukhan et al. (2002) provides a
comprehensive overview.

We utilized the wavelet-based estimation of the Hurst exponent because of its locality and
robustness. A brief description of wavelet spectra follows.

Assume that the signal (*H NMR data) is wavelet-transformed to a range of scales jo <j <
Jj1, where the jo scale contains wavelet coefficients corresponding to the coarsest details
while the jq scale corresponds to the details in the highest resolution. A complete wavelet
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transformation contains in addition the scaling coefficients, but they play no role in
determining the Hurst exponent. The structure of decomposition (details of various scales
and scaling exponents) is the embodiment of the multiresolution analysis performed by
wavelets. The Hurst exponent quantifies scaling behavior in the data, and classifies these
intrinsic autocorrelations as persistent (H > 0.5), antiperspirant (0 < H < 0.5), or white noise
(H = 0.5). Researchers realized the practical importance of scaling descriptors and utilized
them in the statistical inference tasks, see for instance Shi et al. (2006) and references
therein. Persistent signals show more visual regularity while the antiperspirant signals
exhibit irregular, almost a zig-zag appearance.

The magnitudes of the detail coefficients over all scales are second order descriptors of the
process and, in total, constitute a wavelet spectrum of the signal. Formally, within the scale
j, averages of squared wavelet coefficients (energies) are found. We denote these averages
by E(j). The logarithms of such average energies are proportional to the scale index j and
this proportionality is directly linked to the Hurst exponent; that is,

log,E(j)=aj+C, 3.2)

where a is the slope, and C is an intercept. The slope a can be expressed in terms of the
Hurst exponent H as a = 2H — 1, which provides a practical approach to Hurst exponent
estimation. For more information, consult Abry et al. (1998), Abry et al. (2003), and Stoev
et al. (2005).
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NIH-PA Author Manuscript

columns correspond to individuals while the rows represent time instants. For each subgraph

the horizontal axis is chemical shift expressed as ppm unit and ranges between 10 and 0,
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Estimators of the time effects «; for 25 times. The upper left panel shows a; while the lower

right panel shows aos.
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Figure 3.

Estimators of the block effects for the 9 individuals.
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Figure 4.
An average logscale diagram for each of 25 times.
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Hourly variations of Hurst exponent as bar plot (left) and as compass plot (right).
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Figure 6.
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Hourly variation of cysteine level with Hurst exponent and associated scatter plot.
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