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Metastatic Dormancy and Progression in Thyroid Cancer:
Targeting Cells in the Metastatic Frontier

Matthew D. Ringel

Background: Metastatic dormancy, or the ability of cancer cells to survive but not progress in metastatic envi-
ronments, is now recognized to be a common occurrence in cancer.
Summary: From a clinical perspective, this phenomenon is common in metastatic well-differentiated thyroid
cancer, whereby patients often present with distant metastases that remain stable for years after removal of the
primary tumor and subsequent treatment. Experimental data suggest that metastases can develop throughout
the life of a cancer and that progression in the distant environment depends on the biology of the cancer cells
that metastasize as well as that of the various microenvironments they encounter. A firm understanding of how
thyroid cancer cell progression is regulated in different metastatic environments is necessary to devise effective
therapies targeting progressive metastatic thyroid cancer.
Conclusion: In this review, current models of metastatic progression and factors that regulate late-stage meta-
static progression that are particularly relevant for thyroid cancer are discussed.

Introduction

In 1889, Dr. Stephen Paget proposed the ‘‘seed and soil’’
hypothesis of cancer metastases, positing that the devel-

opment of metastases in specific organs depended both on the
cancer cell and the presence of a ‘‘congenial soil’’ at the met-
astatic site (1). Research regarding how and when metastases
occur in the life of a tumor and how metastatic cancer cells
survive and progress in distant sites has expanded on this
hypothesis. One concept that has gained traction is that small
micrometastatic lesions or individual cancer cells can survive
in a quiescent state in metastatic niches without progression, a
state known as metastatic dormancy (2,3). Experimental and
clinical data, such as detection of tumor cells from circulation
and bone marrow in patients thought cured from solid tu-
mors, now support the notion that metastatic dormancy is
not only possible, but it is a common event. These results
challenge the ‘‘step-wise’’ model of metastatic progression
whereby cancer cells progressively dedifferentiate prior to
metastasizing and grow rapidly in the metastatic niche. They
further suggest that in many cases, clinical ‘‘recurrences’’ may
in fact represent progression of micrometastatic disease that
was already present at diagnosis and not eradicated with
initial therapy. Indeed it has been demonstrated that quiescent
cancer cells may have markers of ‘‘stemness’’ with the ability to
self-renew, have a slow rate of growth, and are relatively

treatment resistant (4). From a clinical perspective, metastatic
dormancy may be particularly common in well-differentiated
thyroid cancer, a disease in which many individuals with
biochemically and anatomically defined distant metastases
often enjoy prolonged disease stability without therapy. In
support of this concept are data that vascular invasion, even
when within the tumor, is associated with metastases at di-
agnosis (5). Importantly, identifying mechanisms by which
metastases escape from dormancy and progress in metastatic
sites may be crucial in identifying appropriate targets for pa-
tients with progressive metastatic disease. These concepts and
their potential impact on how we approach developing new
therapies for thyroid cancer are the focus of this review.

Models of Metastatic Progression

The long-held step-wise model of cancer metastasis is
shown in the short dormancy component of Fig. 1. In this
model, through serial genetic and epigenetic events, cancer
cells become increasingly aggressive and gain the ability to
invade into local structures, including blood vessels. This
process may involve epithelial-to-mesenchymal transition
(EMT) whereby the more differentiated epithelial cells gain
functions typical of more primitive mesenchymal cells that
may also have stem cell features (6–8). These cells gain access
to the circulating blood vessels, evade the immune response,
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and are either degraded or reach a target organ. Factors that
draw cancer cells to specific sites of metastatic deposition are
uncertain but likely include circulatory patterns, lymphatic
drainage patterns, and specific cancer cell–tissue interactions
mediated by chemokines and other molecules. In thyroid
cancer there appears to be organ specificity of either metas-
tasis formation or progression as evidenced by the propensi-
ties of medullary thyroid cancer cells to metastasize to liver
and bone and follicular and papillary cancer to metastasize to
lungs and more rarely bone and brain. In this short dormancy
model, once cancer cells have reached their target organs, they
rapidly attach to the extracellular matrix, reinvade into the
local tissue, develop a nutrient supply through angiogenesis,
and grow and invade in the metastatic niche. Clinically, this
model may apply to cancers with a very aggressive metastatic
clinical course, such as anaplastic or poorly differentiated
thyroid cancers.

More recently a second model has been proposed and ex-
perimentally verified (long dormancy component of Fig. 1
and reviewed by Aguirre-Ghiso [2], Nguyen et al. [3], and
Klein and Hölzel [9]). In this model, individual or small
clusters of differentiated epithelioid cancer cells are capable of
gaining access to the circulation at an earlier stage than pre-
viously believed in the life of a tumor. These cells are ‘‘shed’’
into blood vessels and some of them are able to localize to
specific organs and escape through the local vasculature
into the metastatic tissue as noted above. However, once

these cells arrive in the metastatic niche, they do not grow.
Indeed, even nontransformed cells have been demonstrated
to be capable of surviving long periods of time without
growth in the lungs following tail vein injections in mice (10).
This period of stability is regulated both by the expression
of genes intrinsic to the cancer cells, by the metastatic
microenvironment, or by other factors such as the immune
system (see following text). It is possible that these cells may
exhibit markers of ‘‘stemness’’ or reflect a slow-growing,
treatment-resistant subpopulation of cells that remain in a
quiescent phase in a G0–G1 arrest (11). Loss of dormancy can
occur through a number of mechanisms intrinsic to the cancer
cells, due to cells recruited to the local environment, and/or
due to genetic or epigenetic changes in the microenviron-
ment. How cancer cells and the microenvironment commu-
nicate likely involves a combination of secreted proteins
and microvesicles such as exosomes that contain genetic
information (12).

It seems likely that both the early and late metastatic
models occur in patients with thyroid cancer and that rates of
progression may vary depending on the biology of the met-
astatic cells from the primary tumor and the specific meta-
static site. For example, patients with anaplastic thyroid
cancer or large widely invasive papillary or follicular cancer
tend to progress rapidly in a variety of microenvironments
with a short period of dormancy. In contrast, patients with
metastatic well-differentiated thyroid cancer typically enjoy
prolonged periods of metastatic dormancy followed by slow
rates of subsequent progression. Predictors of progression in
distant metastases from well-differentiated thyroid cancer
include the histology of the primary tumor, the size and lo-
cation of the metastases at diagnosis and degree of metabolic
activity based on [18F]fluorodeoxyglucose positron emission
tomography scanning (13,14). Certain mutations, such as
BRAF V600E (15) or p53 (16), or activation of phosphoinosi-
tide 3 (OH) kinase pathways (17) may predict a more ag-
gressive course as well, but this has not yet been clearly
implicated in progression of metastatic disease (18). It is of
interest that clinical trial populations enriched for patients
with progressive metastatic disease have a particularly high
incidence of BRAF mutations that are persevered in metastatic
tissues (19,20). However, it has also been shown that thyroid
cancer cells gain additional genetic or epigenetic changes in
metastatic lesions, consistent with the possibility of late-stage
genomic progression of thyroid cancer cells (19). These data
underscore the need to directly evaluate thyroid cancer met-
astatic tissues to devise more effective therapeutic approaches.

Regulators of Metastatic Progression

There are many regulators of metastatic progression once
cells have reached the metastatic microenvironment. Several
of the most important in relation to thyroid cancer that might
be therapeutically relevant are reviewed in the following
sections.

Metastasis suppressors

Metastasis suppressor genes are genes whose products
inhibit the metastatic process and proliferation, but do not
suppress tumor formation (21). Loss of metastasis suppressor
gene expression or function could potentially result in loss of
growth restraint in the metastatic niche thereby allowing for

FIG. 1. A model of metastatic progression in cancer. Pri-
mary tumor growth and invasion occur through the gain of
genetic or epigenetic changes in the primary tumor often in
cells that have a change in character through the process of
epithelial to mesenchymal transition (blue cells). Individual
cells, or groups of cells, that have gone through this transi-
tion, as well as those that have not (perhaps earlier in the life
of the cancer), gain access to blood vessels through incom-
pletely defined mechanisms. Some of the cells are targeted to
specific organs (gold diamonds) and enter their new micro-
environment. Cells that have dedifferentiated are likely able
to modify the premetastatic niche to allow for proliferation
and invasion with short latency in the metastatic site. Cells
shed into the circulation that are more differentiated (red
cells) likely enter a period of prolonged dormancy controlled
by a number of factors that may be released over time
through changes in the tumor cells or the metastatic micro-
environment. In both cases, metastatic progression at the
metastatic site likely requires interactions with immune cells,
endothelial cells, and the stroma.
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cancer progression. Thus, these genes may serve as ‘‘gate-
keepers’’ of metastatic progression. More than 20 metastatic
suppressor genes have now been described with varying
levels of supportive evidence (reviewed by Horak et al. [21]).
Several of these have been studied in thyroid cancer, includ-
ing NM23 (22–24), KiSS-1 (25), RCAN1-4 (26,27), and others.
These proteins, in general, seem to predominate in single
metastatic cells where they maintain quiescence. The mecha-
nisms responsible for metastasis suppression vary for the
different suppressors. In several cases, in vivo suppression
may involve functions on the host tissues in addition to those
in the cancer cells (28). For example, cancer cells over-
expressing a KiSS-1 and over-secreting its protein products
(Kisspeptins) appear to have reduced ability to proliferate in
the lungs, suggesting that secreted KiSS-1 may induce factors
that maintain dormancy in the lung metastatic niche (29). It is
of interest that RCAN1-4 and the tetraspanin KAI-1 (CD82)
have also been shown to block tumor-induced angiogenesis
through effects on the host rather than the cancer cell (30–33).
Thus, metastasis suppressors have potential to restrain met-
astatic progression through effects in the cancer cells as well as
the microenvironment. Delivery of metastasis suppressors is
one potential therapeutic option that is being explored.

Oncogenes and oncogenic pathways

Oncogenes are well-known inducers of cell growth and
dedifferentiation. They can induce chromosomal instability
and EMT, activate pathways that lead to degradation of local
intracellular matrix proteins, and also induce recruitment of
bone marrow progenitor cells that may facilitate angiogenesis
(34). Indeed, it has been experimentally proven that breast
cells display oncogene-dependent proliferation and invasion
in the pulmonary metastatic niche (10). This may also be
true in bone marrow where breast cancer cells have been
isolated in patients thought to be cured of breast cancer
clinically. This situation is akin to thyroid cancer patients in
whom metastatic disease can be identified by thyroglobulin
measurement or iodine scanning but not detected using con-
ventional cross-sectional imaging for many years. While, as
noted above, BRAF V600E is associated with a greater likeli-
hood of local invasion and nodal metastases, whether or not
particular oncogenes regulate metastatic dormancy is un-
certain (15). This represents an important area of research
when considering targeting oncogenes with therapeutic in-
tent in patients with progressive distant metastases.

Angiogenesis

Once cancer cells proliferate in the metastatic site, they have
potential to grow to a point where they can no longer be
supported by the vascular bed of the organ to provide nutri-
ents. The hypoxic state that develops leads to increased ex-
pression of hypoxia inducible factor 1 (HIF1) and subsequent
release of pro-angiogenic factors that lead to blood vessel
formation (35). This may also be supported by release of sig-
nals that recruit bone marrow–derived macrophages, which
further support new blood vessel formation. Factors that limit
the ability of cancers to respond to hypoxia or that reduce
endothelial cell response to angiogenic factors may limit the
rate of progression of cancers. The specific factors and re-
quirements for angiogenesis and blood vessel formation may
vary in different organs. Many of the current treatments that

have shown disease-stabilizing effects in metastatic thyroid
cancer are thought to inhibit metastasis-related angiogenesis
by inhibiting responses to vascular endothelial growth factor
(VEGF) (36). However, whether or not VEGF receptors are the
primary target of the compounds clinically has not been
proven. Finally, there are concerns that short-term treatment
has potential to induce neovascularization and subsequent
tumor progression or that the compounds may not be equally
active in all metastatic niches (37).

Extracellular matrix

The extracellular matrices (ECMs) in different metastatic
niches are unique, but in all cases the matrix presents a
physical and chemical barrier between metastatic cancer cells
and the cellular environment that surrounds them. The ECM
is composed of collagens, laminins, and other components
that create a three-dimensional scaffold to which metastatic
cancer cells must attach for metastases to occur (38). The
matrix components likely play an important role in main-
taining metastatic dormancy. Data from three-dimensional
model systems have defined a critical role for activation of b1
integrin and Rho GTPase signaling by the extracellular matrix
and other factors, such as tetraspanins, in enabling cell sur-
vival, proliferation, and cytoskeletal changes required for the
switch from dormancy to proliferation and invasion (39,40).
Initiation of cell movement–related pathways and secretion of
proteinases to degrade surrounding matrix proteins required
for invasion involves a coordinated and complex signaling
program (41). Finally, the physical barriers to invasion also
relate to physical factors, such as the relative stiffness of the
tissue and other features. Models to study these physical
factors are underway in many laboratories (42). Evidence
from several groups has implicated b1 integrin regulators
such as transforming growth factor b and urokinase plas-
minogen activator receptor (43–45), as well as downstream
pathways such as Src kinase (SRC), focal adhesion kinase
(FAK), and pre activated kinase (PAK) in thyroid cancer
progression (46,47). Whether or not these potential regulators
of the dormancy-progression switch are viable therapeutic
targets has not yet been reported.

Immune surveillance

It has been known for many years that cytotoxic CD8þ T
lymphocytes are able to kill cancer cells and that they, along
with other components of the immune response are capable of
maintaining tumor cells in a dormant state (48,49). These types
of data have led to experiments and clinical trials using tumor
cells or tumor antigens to induce specific populations of cy-
totoxic T cells for treatment with evidence of clinical benefit in
some tumor types (50). Lymphocyte infiltrate has been dem-
onstrated to occur commonly in papillary thyroid cancer
(PTC), particularly those with RET/PTC mutations, and in-
flammation has been associated with the development and
prognosis of PTC in population studies (51,52). It has been
recently reported that the specific types of infiltrating lym-
phocytes influence tumor size and local metastatic spread (53).
These data, when considered with evidence that macrophages
and some lymphocytes may also promote tumor formation
and progression in thyroid cancer demonstrate that effects of
cancer-associated immune infiltrates cannot be generalized
and may be highly regulated (54–56). Despite this complexity,

TARGETING CELLS IN THE METASTATIC FRONTIER 489



the field of tumor vaccines to induce cytotoxic immune re-
sponses to tumor-specific antigens remains a promising ave-
nue of research for selective therapy for cancers (57).

Cancer cell impact on the premetastatic niche:
exosome-mediated gene and protein transfer

Another important concept is that single cancer cells or
small clusters of cancer cells may release signals that modify
tissues to better accept cancer cells (reviewed by Peinado et al.
[58]). This ability to create a ‘‘premetastatic’’ niche that will be
more conducive to implantation and progression may be
mediated locally by proteins released by cancer cells. One
intriguing mechanism is the release of exosomes and other
microvesicles from cancer cells (59). Exosomes are small
(<100 nm) lipid bilayer microvesicles derived from the fusion
of intracellular microvesicular bodies with the cytosolic
membrane. Exosomes contain DNA, mRNA, microRNAs,
and proteins, some of which can be enriched in comparison to
the parental cells. The formation and release of exosomes from
cells is tightly controlled by cells, primarily via member of the
RAB family of small G proteins (60). After being released from
cells, exosomes travel either locally or in peripheral blood,
fuse to recipient cells and deliver their cargo (61). It has been
demonstrated, for example, that cancer cell–derived exo-
somes can deliver oncogenes to recipient non–cancer cells
in vitro (39,62). Although the methods are laborious, it has
been shown that cancer cell–derived exosomes and micro-
vesicles can be isolated from the circulating blood of can-
cer patients, suggesting that exosome-mediated information
transfer can occur in patients (63). It has been hypothesized that
cancer cells may influence the metastatic niche before their ar-
rival through this mechanism, creating a premetastatic niche. In
addition to this ‘‘long-distance’’ communication, exosome-
delivered cancer cell information represents another method
by which cancer cells influence their local microenvironment
for successful survival and growth. The role of exosome and
microvesicles in the premetastatic or metastatic environment is
incompletely defined. However, it seems likely that this may be
a regulated cancer cell function that could be inhibited or
exploited to influence the rate of cancer progression in meta-
static locations.

Clinical Implications and Summary

Metastatic progression of cancer is a multifaceted and
complex process. In poorly differentiated or anaplastic thy-
roid cancer, both local and metastatic progression can occur
rapidly, suggesting in these cases that the cancer cells have
achieved a very aggressive nonregulated state prior to me-
tastasizing. However, in well-differentiated thyroid cancer,
the presence of vascular invasion even in small tumors pre-
dicts the presence of distant metastases. These metastatic le-
sions are often located in the lymph nodes or lungs, are
identified based on thyroglobulin elevations, are typically
small and multiple, and tend to remain stable for years or
decades. These data suggest that most thyroid cancer distant
metastases may occur early and remain dormant in the met-
astatic niche, especially in the lymph nodes and lungs, and
further suggest that the latency between the metastatic event
and subsequent progression is regulated by the cancer cells
and the host environment. From a clinical perspective, if this
hypothesis is correct it implies that late-stage progression is

not likely to be related to the development of new secondary
metastases but rather to changes in growth pattern of cells
that lie dormant in metastatic locations. Clinically nearly all
patients placed on clinical trials have evidence of progression
in one or more metastatic environment. Thus, to design more
effective therapies or preventive strategies, a clear under-
standing of metastatic dormancy and progression is needed.
This is a challenging task that will involve obtaining tissue
samples from primary tumors and stable and progressive
metastatic tissues in individual patients, the development of
in vitro and in vivo models to assess metastatic dormancy and
progression, and the identification of targetable regulators
that are not intrinsic to survival of the host. Taking thyroid
cancer research out of the thyroid into the new frontier of
metastatic location has potential to have major impact on the
future therapies for patients with progressive and life-
threatening forms of thyroid cancer.
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