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Abstract

Background: Insulin is an anorexigenic hormone that contributes to the termination of food intake in the postprandial
state. An alteration in insulin action in the brain, named ‘‘cerebral insulin resistance’’, is responsible for overeating and the
development of obesity.

Methodology/Principal Findings: To analyze the direct effect of insulin on food-related neuronal activity we tested 10 lean
and 10 obese subjects. We conducted a magnetencephalography study during a visual working memory task in both the
basal state and after applying insulin or placebo spray intranasally to bypass the blood brain barrier. Food and non-food
pictures were presented and subjects had to determine whether or not two consecutive pictures belonged to the same
category. Intranasal insulin displayed no effect on blood glucose, insulin or C-peptide concentrations in the periphery;
however, it led to an increase in the components of evoked fields related to identification and categorization of pictures (at
around 170 ms post stimuli in the visual ventral stream) in lean subjects when food pictures were presented. In contrast,
insulin did not modulate food-related brain activity in obese subjects.

Conclusions/Significance: We demonstrated that intranasal insulin increases the cerebral processing of food pictures in
lean whereas this was absent in obese subjects. This study further substantiates the presence of a ‘‘cerebral insulin
resistance’’ in obese subjects and might be relevant in the pathogenesis of obesity.
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Introduction

Obesity with its growing incidence and prevalence and its costs

for the health system is currently a research focus in different

scientific disciplines ranging from internal medicine to neurosci-

ence. However, the underlying mechanisms that lead to overeating

and obesity are not yet fully understood.

Human eating behavior is controlled by homeostatic and

hedonic mechanisms [1,2]. Whereas homeostatic mechanisms are

based on signals from the periphery to the brain [3,4], the hedonic

aspects are based on emotional factors which are triggered by

visual, olfactory and gustatory signals [5,6].

In the homeostatic regulation of food intake, the modulation is

basically achieved by nutritional and hormonal factors. One of the

most prominent hormons in the postprandial state is insulin, which

is secreted from beta-cells after a meal. Insulin receptors are widely

expressed throughout the brain, especially in the hypothalamus,

the olfactory bulb, the cerebellum and the cortex [7–9]. Various

animal studies demonstrated that insulin in the brain controls and

suppresses food intake [10–12]. Furthermore, knock-out models

for insulin receptors in the brain displayed obesity and insulin

resistance [13]. In humans, we demonstrated in a magnetoence-

phalographic (MEG) study that the insulin-mediated increase in

spontaneous brain activity and auditory evoked fields during a

hyperinsulinemic-euglycemic clamp is reduced in obese subjects

[14]. During visual stimulation with a checkerboard, Benedict

et al. [15] and Seaquist et al. [16] showed no effect of insulin on

visual evoked potentials. However, Benedict et al. reported an

effect of insulin on the later evoked component (P300) in a

recognition memory task and they further demonstrated an

improvement in memory by insulin [17].

Most of the studies in humans to date were performed with

systemic insulin application and alterations at the blood-brain

barrier in obese subjects were not taken into account [18].

Therefore, in the present study, insulin was administered intrana-

sally to enter the brain via the olfactory nerve and bulb and to raise

insulin concentrations in the cerebrospinal fluid without relevant

absorption to the systemic blood circulation [19–21]. In this respect,
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intranasal insulin is a useful tool to determine the effect of insulin in

the brain without affecting glucose metabolism in the periphery. We

recently used this study protocol in a functional magnetic resonance

imaging study (fMRI) to investigate the effect of insulin on neuronal

activity and detected a reduction in the blood oxygen level

dependent response (BOLD) after intranasal administration of

insulin compared to placebo in the fusiform gyrus [22].

There have been few studies to date dealing with the neuronal

processes related to food pictures. One group by Porubska et al.

showed in a fMRI study that the BOLD response was increased by

food pictures compared to non-food pictures [23]. In addition,

studies performed with EEG and MEG have demonstrated a very

detailed insight into the time dynamics of processing food-related

pictures in the human brain [23–26]. In our previous study with

MEG [24] we were able to show the temporal sequence of

neuronal activation during visual processing of food pictures,

whereas in the current study we have focused on the effect of

insulin in this network.

Methods

Objectives
We hypothesized that insulin modulates food specific activation

in the brain dependent on body weight, and therefore evaluated

evoked magnetic fields in lean and obese subjects before and after

intranasal insulin administration.

Participants
Subjects were recruited via email advertisement. We originally

included 26 healthy subjects in the study. Six subjects had to be

excluded based on the following criteria: one subject due to a severe

migraine occured during the study, another subject did not show up

for the second recording session, two further subjects were excluded

based on artifacts during recordings and lastly two more subjects

were excluded based on preset performance criteria during the

memory task of ,75% (pressing at random could not be excluded).

Therefore, 10 lean (f/m = 7/3, age 25.761.5 years, BMI

20.960.4 kg/m2) and 10 obese subjects (f/m = 7/3, age 26.761.8

years, BMI 28.860.6 kg/m2) took part in our investigation. None of

the subjects suffered from any severe disease or eating disorder.

Volunteers with diabetes mellitus or with a family history of diabetes

were excluded at screening, as well as those undergoing treatment

for a chronic disease or taking any form of medication.

Furthermore, a routine blood analysis was conducted to detect

any unknown metabolic or organic diseases. All subjects were

normal sighted or had corrected-to-normal vision.

Study protocol
The placebo and insulin study was conducted on two days in a

single-blind randomized cross over study. After 12 hour overnight

fast, the experiment was started at 8: 00 am with basal blood

sampling and basal MEG measurements. This was followed by

intranasal insulin or placebo administration. When insulin levels in

the cerebrospinal fluid reached their highest concentrations after

30 minutes [19], the second MEG measurement was performed.

Blood was taken every 30 minutes from the beginning of the

experiment to determine plasma glucose, insulin and C-peptide

levels. The study lasted approximately two hours.

Nasal spray administration
Nasal spray was administered via spray pumps as previously

described [27]. Subjects received either insulin (U100, Insulin

Actrapid; Novo Nordisk, Mainz, Germany) or placebo (HOE 31

dilution buffer for H-Insulin; Aventis Pharma, Bad Soden,

Germany). Each dosage consisted of 10 IU in a total volume of

0,1 ml and the subjects were administered a totel of 16 doses

(160 IU). To ensure optimal absorption, the total dosage was

applied in 3 minutes. Both, the insulin and the placebo spray

contained cresole so that the subjects could not differentiate

between the two sprays.

Analytical measurements
Plasma glucose was determined using the glucose-oxidase

method (YSI, Yellow Springs Instruments, Yellow Springs, CO,

USA). Plasma insulin and C-peptide levels were determined with

commercial chemiluminescence assays for ADVIA Centaur

(Siemens Medical Solutions, Fernwald, Germany).

Stimulus material
The subject had to perform a one-back visual memory task

while inside the MEG. During the task, 64 food and 64 non-food

pictures matched for color, size and complexity were presented in

a randomized order. The subject was asked to determine whether

the current picture belonged to the same object category as the

previous one (one-back task). If the second picture belonged to the

same object category as the first one, the subject pushed the button

with their right index finger (‘‘same’’ category -e.g. food – food:

FF, and non-food – non-food: NN). If the picture did not belong to

the same object category, the subject pushed the button with their

right middle finger (‘‘not-same’’ category -e.g. food – non-food: FN

and non-food – food: NF) (for a more detailed description of the

protocol see Stingl et al. [24]). Subjects were excluded from further

analysis if the percentage of correct answers was below 75%.

Stimulus presentation was controlled with PresentationH (Neuro-

behavioral Systems, Inc., Albany, CA.).

MEG data acquisition
MEG signals were recorded using a 275 sensor whole head

system (VSM, Medtech, Vancouver, Canada). The continuous

recording was filtered off line with a 40 Hz low-pass and a 1 Hz

high pass filter and separated into trials of 2100 ms length (from

2100 ms to 2000 ms) according to the previous stimulus (condi-

tions FF, FN, NF, NN). The baseline of each trial was defined

according to the pre-stimulus interval of 100 ms. All of the trials

with eye movement artifacts (detected by threshold criteria) were

excluded from further analysis. The trials were averaged for each

condition and each subject, and then again averaged for all subjects

for every experimental condition. According to our recent study,

two different evoked potential components (M1: 100–140 ms,

generated in primary visual areas and M2: 140–190 ms, generated

in higher visual areas, especially the fusifrom gyrus) showed stronger

responses after the presentation of food pictures compared to non-

food pictures [24]. The response for the two time windows was

quantified by the mean of the root mean square values (RMS) of all

channels of the evoked potentials for the specific window and by

latency of maximum amplitude of RMS for that component.

Furthermore, we showed that there is no difference between

conditions for satiated subjects when the previous stimulus was food

or non-food [24]. This result was reproduced in the current study

and based on this, we combined the conditions FF and NF to the

condition ‘‘food’’ and NN and FN to the condition ‘‘non-food’’ for

the investigation of the effect of insulin.

Ethics
The protocol was approved by the local Ethics Committee in

Tübingen, Germany and informed written consent was obtained

from all participants.

The Cerebral Insulin Effect Depends on Body Weight
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Statistical analysis
All data are given as unadjusted mean 6 SEM. Non-normally

distributed parameters were log transformed to approximate normal

distribution prior to statistical analysis. MANOVA analysis was used

to test for significant differences in metabolic parameters between

insulin and placebo experiments with the software package JMP 7.0

(SAS Institute, Cary, NC). Results with p#0.05 were considered

statistically significant.

For the analysis of the behavioral and basal measurement, we

used a three-way repeated analysis of variance (ANOVA) with two

within factors ‘‘preceding stimulus’’ (levels: food and non-food)

and ‘‘current stimulus’’ (levels: food and non-food) and one

between factor weight (levels: obese and lean).

The analysis on the insulin effect was preformed for ‘‘food’’ and

‘‘non-food’’ condition. As a measure of insulin action, we calculated

the difference for M1 and M2 after insulin application and basal

measurement adjusted for the placebo measurement [(insulin 2 –

insulin 1) – (placebo 2 – placebo 1)]. A two tailed t-test was

performed separately for each condition (food, non-food) and each

group (lean, obese) for both periods to determine the effect of

insulin. For statistical analysis SPSS 14.0 (SPSS Inc., Illinois; U.S.A.)

and Matlab 2007 (The MathWorks, Inc., Natick, USA) were used.

The source activation was calculated for the difference between

insulin application and basal measurement adjusted for the placebo

measurement [(insulin 2 – insulin 1) – (placebo 2 – placebo 1)] for

each subject. For source reconstruction, an empirical Bayesian

approach [28–30] was used in the time window 100–350 ms (SPM8

http://www.fil.ion.ucl.ac.uk/spm). A standard cortical surface

template was transformed to match the fiducials of the MEG data

[29]. In all cases, the sensor locations were registered to source space

and the gain matrix was computed using a single shell head model.

The data covariance was used to estimate the Multiple Sparse Priors

maximizing the free-energy approximation to the model-evidence

(using automatic relevance determination) [31]. For the second level

analysis, we applied a spatial filter of 12 mm. The solutions from

individual subjects were grouped and we used a t-test to calculate

the statistical parametric map for calculation of areas which showed

specific insulin effects. We report all regional activations above the

initial significance threshold p,0.05 (FWR corrected).

Results

Metabolic parameters
Obese subjects had slightly higher HbA1c as compared to lean

subjects (5.560.1% vs. 5.460.1 in lean). Furthermore, fasting

plasma glucose, insulin and C-peptide concentrations were higher

in the obese group as compared to the lean group (glucose:

p,0.001, insulin: p, = 0.01, C-peptide: p, = 0.001, Table 1).

There was no statistical difference in blood glucose levels between

the placebo and insulin condition in both the lean and the obese

group. After insulin application, insulin levels remained unaltered

and C-peptide concentrations did not differ between the insulin

and placebo conditions (Table 1).

Behavioral results for basal measurements
Behavioral data from two basal measurements were combined for

each subject. There was a significant main effect for the factors

previous and current. The accuracy of the response was higher if the

previous picture was food-related (F(1,18) = 37.46, p,0.001). For

the current factor, we also found the accuracy to be higher for food

pictures compared to non-food pictures (F(1,18) = 14.28,

p = 0.0013). For reaction time (RT), the main significant effect

was for the factors previous and current. The RT was significantly

decreased in conditions where food was the preceding factor

(F(1,18) = 136.47, p,0.001) and for conditions where food was the

current factor (F(1,18) = 9.28, p = 0.0069) in comparison with non-

food. The interaction between preceding and current factor was

only statistically significant for accuracy (F = 36.8, p,0.001). There

was no significant main effect for the factor weight or interaction

effect between weight and any other factor for accuracy or RT.

MEG data for basal measurements
The wave form of the evoked potentials showed two peaks (M1

and M2) within the first 200 ms both in lean and in obese subjects.

The main factor current was significant for the RMS values. A

significant increase in RMS was observed at both peaks for food

compared to non-food in lean and obese subject (M1 -

F(1,18) = 36.05, p,0.001 and M2 F(1,18) = 29.75, p,0.001)

(Table 2, Fig. 1). None of the other factors or interactions was

significant. The RMS values for the M1 and M2 component and

the peak amplitude analysis between the lean and obese group

were not statistically significant (see Table S1 and Table S2). In

addition, no significant main effect or interaction was found for the

latency of the M1 and M2 components (Table 2).

MEG results after intranasal insulin application
Neither reaction time nor accuracy of the response to the

pictures showed a significant effect related to the insulin

application.

Table 1. Metabolic parameters during MEG experiment (Insulin or placebo spray was given at time = 0 min).

Placebo Insulin Placebo Insulin Placebo Insulin Placebo Insulin Placebo Insulin Placebo Insulin

Lean subjects Obese subjects Lean subjects Obese subjects Lean subjects Obese subjects

Time (minutes) Glucose (mmol/l) Insulin (pmol/l) C-Peptide (pmol/l)

230 4.760.1 4.660.1 5.260.1 5.160.1 3965.6 3463.9 59610.3 68611.9 360636 336634 520653 609652

0 4.760.1 4.860.1 5.360.2 5.360.2 3365.5 3365.1 61611.8 62611.4 379653 336639 554669 584662

30 4.460.1 4.660.1 5.060.1 5.060.1 3364.8 4165.8 70615.9 88615.5 345636 314638 535666 595682

60 4.460.1 4.660.1 5.160.2 5.160.1 3266.8 3464.8 65612.1 6669.1 372651 289629 555667 544668

p-value (time*
insulin/placebo)

0.31 0.76 0.42 0.23 0.19 0.07

All data are given as mean 6 SEM.
Statistical significance between insulin and placebo condition was performed using MANOVA analysis, univariate test and interaction effect.
The p-value time*insulin/placebo shows differences in the curves over time of insulin and placebo.
doi:10.1371/journal.pone.0019482.t001
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The M1 component for food pictures was not affected by

insulin. However, insulin led to an increase in the M2 component

for food pictures in lean subjects (p = 0.005) but not in obese

subjects (Fig. 2). The insulin application did not induce significant

changes in neuronal activity for the non-food pictures in lean or

obese subjects for both components (Fig. 2).

The source analysis revealed significant insulin-mediated

changes in a neural network involving visual, temporal and

parietal areas with the strongest change in activity in the inferior

occipital region (Fig. 3).

Discussion

Previous studies suggested that the increase in cortical activity

during a hyperinsulinemic-euglycemic clamp is prominent in lean

subjects whereas this effect was suppressed in obese subjects [14]

which indicates insulin resistance in the brain. As it has been

demonstrated in various mouse models, insulin resistance in the

brain is one factor in the pathogenesis of overeating and obesity

[13,18,32–34]. We therefore evaluated the processing of food

pictures by using the MEG technique and its modulation by

insulin in lean and obese subjects. Food- and non-food pictures

were matched for visual complexity and to account for alterations

in the periphery and at the level of the blood brain barrier, insulin

was administered intranasally to enter the brain via the olfactory

nerve and bulb without affecting metabolic parameters in the

periphery [19,20].

In our study, the increase of the M1 component for food

compared to non-food stimuli during the basal measurement

replicates the finding for lean, satiated subjects [24]. Furthermore,

an equivalent increase was shown in lean and obese subjects after

an overnight fast in the current study. The reduction of RT and

increase of accuracy, as shown in our previous study [24], is

related to the memorization of the preceding food picture. The

behavioral measures and the M1 and M2 component of the

evoked fields were not statistically different in lean and obese

subjects.

Besides the fact that M1 and M2 components are not different

at the basal level between lean and obese subjects, we found that

food-related brain activity in the visual area was increased in lean

subjects following intranasal insulin application, while obese

subjects showed no effect and therefore displayed cerebral insulin

resistance.

An insulin-mediated increase in cerebral activity in lean subjects

was previously described in a study from our group during a

hyperinsulinemic-euglycemic clamp with systemic insulin admin-

istration [14]. Another support for insulin action in the brain was

found in a functional magnetic resonance imaging study with

intranasal administration of insulin on a visual recognition task

using food and non-food pictures [22]. After insulin administra-

tion, there was significantly reduced activity in the presence of

food pictures in the right and left fusiform gyrus, the right

hippocampus, the right temporal superior cortex and the right

frontal middle cortex that might be linked to the termination of

food intake.

As insulin did not modulate brain action in lean subjects when

non-food pictures were presented [22], we conclude that insulin

Figure 1. Basal evoked potentials in lean and obese subjects. Time traces of evoked magnetic fields quantified by RMS for food and non-food
conditions during the baseline measurement for lean (left) and obese subjects (right). The time point zero indicates the time when the ‘‘current’’
stimulus was shown. For lean and obese subjects, a significant difference in the M1 and M2 components were found for the factor ‘‘current’’ stimulus,
e.g. an increase in M1 and M2 for food versus non-food stimulus.
doi:10.1371/journal.pone.0019482.g001

Table 2. RMS and latency of the components M1 and M2 for
the four experimental conditions.

FF NF FN NN

RMS Lean-M1 (fT) 5764 6063 5363 5263

RMS Obese-M1 (fT) 6462 6462 5762 5562

RMS Lean-M2 (fT) 7263 7763 6362 6362

RMS Obese-M2 (fT) 7463 7763 6062 6062

Mean Latency Lean-M1 (ms) 12461 12361 12261 12261

Mean Latency Obese-M1 (ms) 12662 12562 12462 12562

Mean Latency Lean-M2 (ms) 17062 17262 16861 17563

Mean Latency Obese-M2 (ms) 17161 17061 17262 17162

All data are given as mean 6 SEM.
fT = femto Tesla, 10215 Tesla.
doi:10.1371/journal.pone.0019482.t002
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has a specific effect on brain activity related to identification and

categorization of food, which is also confirmed by results at the

source level. This might be the reason why other protocols like

checkerboard visual tasks, as used in the study from Seaquist et al.

[16], were not able to discriminate the effect of insulin on visual

evoked potentials.

Source space analysis revealed the largest significant activity

change in the inferior occipital areas including the fusiform gyrus

in lean but not in obese subjects. This indicates that during this

task, mainly perceptional brain areas are activated. In keeping

with this, lean subjects showed increased activity by food objects in

perceptional visual areas which were significantly attenuated by

two days of overfeeding [35]. In that study, it was not reported

whether there was a change in insulin sensitivity in these subjects

during this intervention; however it can be speculated that

overfeeding promotes insulin resistance in the brain to diminish

brain activity. Further studies should aim to elucidate the

connection of the perceptional effect on reward and cognitive

processing that are related to feeding behavior. Based on the work

by Figlewitz and Benoit [36] it is suggestive that insulin interacts

with feeding related reward areas especially through the midbrain

dopamine system which is altered in obese subjects [37].

We want to acknowledge some limitations of the present study.

First of all, the number of subjects investigated was rather small. As

Hallschmid et al. [20] showed that intranasal insulin reduced body

fat in men but not in women, a limitation of our study is that we

used more female than male subjects. However, females were

shown to have greater prefrontal neuronal responses to food cues

compared to males [38]. Furthermore, as demonstrated by Clegg

et al. [39], insulin action in the brain is influenced by gonadal

hormones. In our study, the time of measurement was not

concerted with the menstrual cycle, but in a recent study [40] it

was demonstrated that mainly activity in the corticolimbic system

is affected by the menstrual cycle during visual food stimulation. In

Figure 2. Evoked potentials before and after insulin application. Time traces of evoked magnetic fields quantified by RMS for the
measurements before (red line) and after intranasal (green line) insulin application. In the upper row, the response of lean (a) and obese (b) subjects
to food stimuli as ‘‘current’’ stimulus are shown. In the lower row, the responses to non-food-pictures are shown (c: lean, d: obese). Only for lean
subjects, a statistical significant difference between basal and insulin in the M2 component was found.
doi:10.1371/journal.pone.0019482.g002

The Cerebral Insulin Effect Depends on Body Weight

PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e19482



addition, studies reporting gender differences during visual food

stimulation demonstrated mainly effects by physiological interac-

tions (satiated versus hungry) or changes in higher processing areas

[40]. Based on these studies, we assume that our results are not

affected by these factors. Secondly, it would have been an

advantage to have accurate insulin levels in the cerebrospinal fluid,

however, we were not able to add this procedure to our setting.

The dose of insulin was based on a study from Benedict et al. that

used 160 IU of intranasal insulin per day to demonstrate

significant changes in memory [17,41] and previous studies

detected elevated insulin levels in the cerebrospinal fluid with

doses as low as 40 U of insulin intranasally [19]. We chose to not

take real food as stimuli of neuronal activation as food-related

information is primarily processed by the visual system and it is

well established that food pictures differentially activate brain

regions compared to non-food pictures [42,43]. Therefore,

stimulation with food pictures is a powerful and easy to handle

tool in investigating the mechanisms of food intake.

Taken together, our data show that insulin in the brain

potentiates food-related neuronal activity in the components that

represent identification and categorization of food pictures in lean

subjects, while this was absent in obese. Whether this contributes

to overeating and the pathogenesis of obesity needs to be evaluated

in further studies.
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