
The Ensemble Folding Kinetics of the FBP28 WW Domain
Revealed by an All-atom Monte Carlo Simulation in a
Knowledge-based Potential

Jiabin Xu1, Lei Huang1, and Eugene I. Shakhnovich1

1 Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street,
Cambridge MA, 02138, USA

Abstract
In this work, we apply a detailed all-atom model with a transferable knowledge-based potential to
study the folding kinetics of Formin-Binding protein, FBP28, which is a canonical three-stranded
β-sheet WW domain. Replica exchange Monte Carlo (REMC) simulations starting from random
coils find native-like (C α RMSD of 2.68Å) lowest energy structure. We also study the folding
kinetics of FBP28 WW domain by performing a large number of ab initio Monte Carlo folding
simulations. Using these trajectories, we examine the order of formation of two β –hairpins, the
folding mechanism of each individual β– hairpin, and transition state ensemble (TSE) of FBP28
WW domain and compare our results with experimental data and previous computational studies.
To obtain detailed structural information on the folding dynamics viewed as an ensemble process,
we perform a clustering analysis procedure based on graph theory. Further, a rigorous Pfold
analysis is used to obtain representative samples of the TSEs showing good quantitative agreement
between experimental and simulated Φ values. Our analysis shows that the turn structure between
first and second β strands is a partially stable structural motif that gets formed before entering the
TSE in FBP28 WW domain and there exist two major pathways for the folding of FBP28 WW
domain, which differ in the order and mechanism of hairpin formation.
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Introduction
Understanding the folding mechanism of β– structure is crucial for general and
comprehensive understanding of protein folding kinetics. Compared to α-helical proteins,
structure prediction and study of folding kinetics of β-proteins is more computationally
challenging because β hairpin is an extended structure with a large number of long-range
contacts, making it more difficult to reach its correct structure in an atomistic computer
simulation.1 Therefore, most simulation studies on folding of β-proteins are limited to small
β-sheet domain, for example, the WW domain.2–8 Formin-binding protein 28 WW domain
(FBP28) is one member of the WW domain family. FBP28 is a small three-stranded β-sheet
protein with high content of hydrophobic and aromatic residues. The characteristic features
of WW domain are that this family of proteins has two highly conserved tryptophan residues
and a strictly conserved proline residue. The native structure of FBP28 has been resolved by
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NMR.9–10 The FBP28 makes interactions with many signaling and regulatory proteins,11

and can also form complexes which have been implicated in a number of diseases such as
Alzheimer’s and Huntington’s disease.12 FBP28 unfolds reversibly in both denaturant and
thermal denaturation experiments10,13–17, but it can also form amyloids at elevated
temperature.18 Temperature jump experiment showed that folding of FBP 28 is a
cooperative, two-state process without any intermediate state detected.13 Another laser-
temperature jump experiment suggests that there are two decay phases for wild-type FBP28,
the fast one is about 30μs and the slow one is >900μs at low temperature.19 The
heterogeneity suggests that a third state has to be considered in the folding process.
Moreover, a large number of Φ values have been obtained experimentally by mutational
analysis on FBP28, which may serve as a benchmark for simulation studies.8

Many computational studies have been performed on FBP28 or other family members of
WW domain to gain insight into the formation of β structures. These studies can be grouped
into the following categories: the first type of simulations employ high temperature
unfolding 8 The drawback of this approach is that the reconstructed high-T folding pathways
do not necessarily dynamically coincide with ones at ambient temperature 20–21. The second
type of simulations used replica exchange method, e.g. REMD (Replica Exchange
Molecular Dynamics)22 and multiplexed Q–replica molecular dynamics3, to study
equilibrium thermodynamics of the protein and derive the folding pathway indirectly from
the free energy landscape. However the issue of how to derive dynamics from low-
dimensiuonal projections of energy landscape remains unresolved 23–24. The third type of
simulations used the structure-based G model to directly study the folding dynamics at a
fixed temperature from extended random coils2,5. There are no attractive non-native
interactions in the G model which may be unphysical – several studies showed the
importance of transient stabilizing non-native interactions at various stages of folding25–27

Recent simulation used “physics-based” force field to study folding dynamics of WW
domains at fixed temperature.6,28 However, this method, while highly desirable, is still too
computationally costly to produce sufficient number of folding events for detailed statistical
anlysis.

Recently, we developed an all-atom knowledge-based potential, which succeeded in folding
a diverse set of proteins to their near-native conformations.29 In addition, our potential,
combined with dynamic Metropolis Monte Carlo (MC) simulation methods, has been used
to study folding dynamics of α-helical proteins directly from extended random coils at a
fixed temperature.30–31 Our group used structural kinetics cluster analysis in combination
with transition state ensemble analysis and Φ value calculation to analyze folding pathways
of α-helical proteins.30,32 Good agreement with experiment suggests that this approach can
reproduce folding dynamics of proteins efficiently and with good accuracy. The key feature
of our approach is that it uses an all-atom model to provide an atomistically resolved picture
of the folding process. However, it is somewhat coarse-grained dynamically making it
efficient enough to generate a large number of long-time trajectories to glean statistically
significant robust features of the folding process. Here we apply this approach to get insights
into folding mechanism(s) of β– proteins using FBP28 as our model. There are several
fundamental questions concerning folding of FBP28 as a prototypical β– protein. For
instance, in what order are two β –hairpins formed in FBP28? What’s the folding
mechanism(s) of individual β hairpins? Are they the same or different? What’s the TSE
(transition state ensemble) and nucleation center during the folding process? The purpose of
this paper is to address these questions by direct all-atom folding simulation.
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Models and Methods
The detailed description of the simulation model could be found elsewhere29–30. Here we
give a brief summary of the model and simulation technique. First, all heavy-atom positions
of the FBP28 WW domain were acquired from the NMR structure (residues 6–32 of Protein
Data Bank id 1e0l), with the unstructured tails truncated.10 The N-terminal sequence is
conformationally flexible and does not interact with the remainder of the WW domain so the
truncation of the N-terminal residues had no observable effect on the stability of the domain.
19 The truncation of the C-terminal residues decreases the stability of the protein because of
the deletion of Leu-36, which forms a hydrophobic core with Trp-8, Tyr-20 and Pro-33 in
the wild-type native state. Nevertheless, previous experimental work showed that the
truncation does not result in significant structural change of the native state.19 In addition,
Periole et. al. performed simulation of the full-length FBP28 WW domain using three types
of models( all-atom and explicit solvent, all-atom and implicit solvent, and C α-atom) and
confirmed that the truncation does not affect the stability of the peptide.33 Therefore, many
simulation papers used the truncated version of the FBP28 WW domain, making simulation
study more computationally accessible.7,33 There are 27 residues and 238 atoms in total. In
our model, Tyr-11, Tyr-19, Tyr-21 and Trp-30 form main hydrophobic core. Trp-8 and
Tyr-20 form another hydrophobic core. The all-atom “knowledge-based” transferable
energy function takes the form as:

[1]

where Econ is the pairwise atom-atom contact potential, Ehb is the hydrogen-bonding
potential, Etrp is the sequence-dependent local torsional potential based on the statistics of
sequential amino acid triplets, and Esct is the side-chain torsional angle potential.

To test the ability of the potential to identify near-native state as lowest energy one, we use
the REMC simulation to sample the conformation space with 32 replicas at different
temperatures, ranging from 0.15 to 1.50. In the REMC simulation, we can move ψ and χ
angles of all residues and φ except in proline and we use three different move sets to
increase the sampling efficiency: backbone moves, side-chain moves, and “knowledge-
based” moves. The backbone move has two types with equal probability: global move and
local move. A global move is to rotate the dihedral angle (φ or ψ) of a randomly selected
residue. A local move moves seven successive torsional angles with other residues
unchanged. The step sizes of the global and local moves for the backbone are drawn from a
normal distribution with zero mean and standard deviation of 2° and60°, respectively. A
side-chain move consists of rotating all χ angles in a randomly selected nonproline residue.
The step size of the side-chain rotation is drawn from a normal distribution with zero mean
and standard deviation of 10°. The knowledge-based moves were discussed in details
elsewhere.34 A knowledge-based move of a residue during simulation entails setting the
dihedral angles of the residue randomly to one of the clustered φ/ψ angles. The knowledge-
based move can efficiently sample low energy states. For folding kinetics study, we perform
2304 independent Monte Carlo simulations, starting from different random coil
configurations at T = 0.50 for 108 steps. The ensemble of initial random coil conformations
is obtained by first running 5×105 MC steps at very high temperature, T = 1000 for each
trajectory. Snapshots were stored at every 5×105 MC steps. Backbone moves and side-
chains moves are still used in folding kinetics simulation. To satisfy the detailed balance
condition, a knowledge-based move used in REMC simulation was not used, and the local
move set was modified.35 A new sampling method rather than the conventional Metropolis
rule is used to conserve detailed balance. The probability of accepting a move from the old
state o to the new state n for the local move set is given by
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where N is the number of solutions, U is the potential energy, T is temperature, and J is the
Jacobian determinant.

Not all of the 2304 trajectories contain native-like low-energy structures. Therefore, before
turning to the folding kinetics, we make an initial objective selection of a set of
“representative” trajectories. There is one minimum energy structure in each of the 2304
trajectories and we select 100 trajectories whose minimum energy structures have the lowest
energies. To better quantify the structure similarity between the simulation structure and
native structure, we use fraction of nonlocal native contacts (|i−j|>2) as our order parameter
to monitor the folding process. Two residues are in contact if any two of their heavy atoms
are in contact. Two heavy atoms are defined to be in contact if the distance between them is
less than λ(rA + rB), where rA and rB are their van der Waals radii and λ = 1.8.29

A simulated Φ value is defined according to Vendruscolo and co-workers 36 as

where  is the average number of native contacts made by residue I in the transition state
ensemble, and  is the number of native contacts made by residue I in the native state.

Results
First, we check whether our potential can identify a set of near-native conformations of FBP
28 as global energy minimum. To that end, we performed replica exchange Monte Carlo
(REMC) simulation with our energy function, starting from random coils. We obtained a
total of 14719 structures and the energy landscape is shown in Figure 1(A). The minimum
energy structure (Figure 1(B)) has the correct topology with three β strands correctly folded
and a C α RMSD of 2.68Å. Some differences between the simulated lowest energy structure
and the experimental structure are: first, Ser-6 has no contacts with other residues in the
experimental structure, while it has contacts with Asn-23 and Arg-24 in the simulated
structure. Second, Trp-8 has several contacts with Glu-27, Ser-28 and Thr-29 in the
experimental structure, while such contacts are not observed in the simulated structure.
Third, the β strand 3 in our simulated minimum energy structure is longer than that in the
native structure. Importantly, our simulation correctly predicts two hydrophobic cores and
side-chains belonging to these two hydrophobic cores are in the correct position. The results
show the power of our knowledge-based potential to discriminate between near-native
conformations and misfolded ones.

Folding Dynamics and Secondary Structure Formation
We selected 100 trajectories out of total 2304 for detailed analysis of folding dynamics. The
temperature used in our dynamic Monte Carlo simulation is 0.5 in arbitrary units of
temperature used in our simulations. We relate our temperature units to real temperature
using the simulated melting curve simulation (Figure 2), which shows mid-transition at ~
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0.6, while the experimental folding temperature of FBP28 is 337K.8 Therefore, our
simulation temperature of 0.5 corresponds to real temperature of ~281K.

The average fraction of total native contacts Q and the native contacts between β1 and β2,
betweenβ2 and β3, within loop 1 and between loop 1 and other residues, and within loop 2
and between loop 2 and other residues (averaged over all of 100 folding trajectories) are
shown as a function MC time-steps in Figure 3(A). The formation of the native contacts
between β1 and β2 is faster than the formation of the native contacts between β2 and β3.
Also, there is a rapid formation of these structures at early stages of folding.

To further understand the details of the folding process, we plot the probabilities of contacts
at different stages of folding (Q between 0.0 and 0.5) in Figure 3(B–F). All 100 trajectories
are used to make the plot in Figure 3. At 0.0<Q<0.1, the contact pair between the Tyr-21
and Arg-24 has the highest contact probability (0.225). The majority of the contacts are
neighboring contacts, indicating that the structures are still in the random coil state. At
0.1<Q<0.2, the highest contact probability locates at loop1 region for β hairpin 1 and the
contact probability decreases outward from the turn to the end of the hairpin. The highest
contact probability for β hairpin 2 locates at loop2 region for β hairpin 2. At 0.2<Q<0.3, the
contact probability for β hairpin 1 continues to increase over 0.40 and the contact probability
for β hairpin 2 has little change compared to 0.1<Q<0.2, indicating that the formation of β
hairpin 1 could occur earlier than the formation of β hairpin 2. At 0.3<Q<0.4, the contact
probability in the loop1 region increases to over 0.50 along with increased probabilities of
other contacts within loop1 and between β1 and β2. For β hairpin 2, the contact probability
increases to about 0.4 for two regions and in between these two green regions there is a blue
region with a lower contact probability. At 0.4<Q<0.5, the contact probabilities for pair
residues in β hairpin 1 reach over 0.7 and the contact probabilities for pair of residues in β
hairpin 2 are over 0.3. The above results suggest that statistically there are more folding
pathways whereby the β hairpin 1 forms first and β hairpin 2 forms later. For the folding
mechanism for each β hairpin, we observed that the contacts are first formed near the turn
and then propagate outward for β hairpin 1. For β hairpin 2, the contacts first formed at two
separate regions in the hairpin and later the whole β hairpin is formed.

Folding Mechanism for Individual β Hairpin Formation
It is worth noticing that a contact between two residues does not necessarily imply that there
is a hydrogen bond between them. In order to see the formation of hydrogen bonds in both
hairpins, we monitor eleven main chain H-bond contacts at different folding stages (Q
values) shown in Figure 4(A) and Table 1. Since we use a heavy atom model, we measure
the distance between the N atom and O atom of two residues to determine formation of a
hydrogen bond. If the distance between the N atom and O atom is smaller than 3.5 Å, then
we define that there is a hydrogen bond between these two residues. From Figure 4(B), we
can see that the probability of H1 in β hairpin 1 is always highest from 0.0<Q<0.4 and the
probability decreases outward from the turn region to the end of the β hairpin 1, indicating
that the formation of hydrogen bonds starts from the turn region to the end of the hairpin for
β hairpin 1. For β hairpin 2, the probability is different, where the probability is lowest near
the turn and it increases outward from the turn region to the end of the hairpin, indicating
that the formation of hydrogen bond starts from the end of the hairpin to the turn region for
β hairpin 2.

Structural Kinetic Cluster Analysis
In order to identify possible obligatory intermediates during the folding process, we use a
structural cluster procedure developed before32. The cluster procedure uses a “structural
graph” of geometrically clustered conformations to provide a coarse-grained structural and
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kinetic information during folding process. The structural clustering procedure is different
from kinetic clustering employed by several authors37–39 and is carried out in two steps. In
the first step, all snapshots from 100 representative trajectories are clustered in a single-link
graph. Each node in this graph represents a conformation. Two nodes are linked together by
an edge if their structural similarity distance measure d is smaller than the cutoff value dc.
Therefore, we will get several clusters in our “structural graph” after the first step. The
largest cluster, which contains near-native conformations, is called the Giant Component
(GC). In the second step, an important quantity flux, F, which is defined as the fraction of all
trajectories passing through the cluster, is introduced to characterize the clusters kinetically.
Therefore, the clusters with high F constitute major folding intermediates (on or off-
pathway). Clusters with F=1 are the set of conformations constituting obligatory
intermediate states. In addition, we also calculate the mean-first passage time (MFPT) and
the mean least-exit time (MLET) for each cluster. Finally, one representative structure,
defined as the structure with the highest number of edges, is extracted from each cluster.
These quantities, together with the representative structure from each cluster, provide a
detailed picture of folding process from an ensemble perspective.

In this paper, we follow Hubner et al.32 and use rmsd, distance rmsd(drms) and Rg as our
order parameters for clustering. Each order parameter provides different complementary
perspectives on the folding process. Table 1–3 in Supplemental Information show the results
of structural kinetic cluster analysis for FBP 28 WW domain. When we use drms and rmsd
as order parameters, we find only one single dominating cluster with high flux, which is the
native state cluster. The absence of high flux clusters at early time of the folding process in
the drms and rmsd structural cluster result means that at the initial stage of folding, there is
no accumulation of a structurally well-defined folding intermediate. When we use Rg as
order parameter, we observe a large number of clusters at early time of folding process with
large variation of Rg. The largest cluster (GC) is a low-Rg cluster with MFPT ≈ 4×106 MC
steps. However, the GC in the Rg cluster must contain not only conformations that are part
of the native conformational ensemble but also pre-TSE low Rg conformations. We observe
some representative structures with folded β –hairpin 2, but fragments of β1 form a small α–
helix.(Figure 5) This type of structures is observed in a recent unfolding simulation using
explicit solvent7 and high temperature unfolding MD simulation.8

Transition State Ensembles
Transition state ensembles (TSEs) are key to understand the folding pathways. We use Pfold
analysis to construct the TSEs from putative TSEs.23 The Pfold analysis is based on the fact
that simulations starting from a transition state conformation have equal probability of
reaching the native state and a conformation belonging to the unfolded state. The way we
get the putative TSEs is to select structures that immediately precede entry into the Giant
Component (GC), which is the largest cluster in the RMSD structural cluster graph, which
gives us 239 putative transition-state structures. For each conformation in the putative TSEs,
we perform 256 independent short MC simulations with 106 MC steps. If the trajectory
contains at least one structure whose RMSD to the minimum energy structure obtained from
the REMC simulation is smaller than 3.5 Å, then we count this trajectory as a trajectory that
reached the native state ensemble. Conformations with 0.4 < Pfold < 0.6 constitute the TSE.
This procedure generates a set of 15 “true” transition state structures for FBP 28 WW
domain. (Figure 6)

There are 10 transition state structures having formed hairpin 1 of β1 and β2 with an
unformed hairpin 2 of β2 and β3. Two transition state structures have a well-formed hairpin
2 of β2 and β3 with an unformed hairpin 1 of β1 and β2. The remaining 3 transition state
structures do not have secondary structures formed. This type of transition state structures
with no secondary structures formed are also observed in the previous study of high
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temperature unfolding MD simulations.8 The structural analysis of the transition state
ensemble demonstrates that the dominant folding pathway is that first β hairpin forms first
and second β –hairpin forms later. The minor folding pathway is that second β hairpin forms
first and first β hairpin forms later.

Having obtained the true TSEs by Pfold analysis, we are now ready to use these structures to
calculate thetheoretical Φ values for FBP 28 WW domain. Following previous
conventions36, Φi for a residue i is interpreted as the number of contacts present in the TSE
for residue i divided by the number of native contacts(of the same residue i). Simulation Φ
values with their standard deviations, averaged over all TSE conformations are given in
Figure 7. Experimental Φ values have been obtained previously for FBP 28 WW domain.8
The agreement between theory and experiment is good. Exceptions are Trp-8, Thr-9, Glu-10
and Ser-28 in our protein model, where the simulated Φ values are much higher than the
experimental Φ values. The reason for the discrepancy is that there are very few native
contacts for these residues in native structures so the simulated Φ values are not reliable –
they can be very high and have large standard deviation. Another important reason is that
our model uses implicit solvent. In reality these residues will form hydrogen bonds with
water molecules while in simulation they will form other intramolecular contacts, resulting
in apparently high Φ values. We find that, the most structured regions in the TSE is the turn
between β1 and β2, as indicated by high Φ values, which forms a native-like β hairpin turn.
There is another peak of Φ values in the region between β2 and β3, which suggests that the
hairpin structure between β2 and β3 is also weakly formed. This picture is in good
agreement with the result obtained by detailed all-atom high temperature unfolding
molecular dynamics simulation.8

Discussion
Most probable folding pathways

Using a relatively simple transferable knowledge-based all-atom model, we performed a
large number of ab initio protein folding runs for FBP28 WW domain that provided us with
necessary data to study the folding kinetics as an ensemble process. By combining our
results, we obtained a detailed picture of the folding dynamics of the three β-strand FBP28
WW domain. The dominant folding pathway includes first formation of β –hairpin 1 which
consists of β1 and β2, followed by formation of β– hairpin 2 which consists of β2 and β3.
The other non-dominant folding pathway is formation of β hairpin 2 first, followed by the
formation of β hairpin 1. This non-dominant folding pathway was found earlier in improved
Gō model simulations40 and in a recent study using multiple rare event simulations.7 Our
finding of the propensity of hairpin 1 to form first during folding for FBP28 WW domain
agrees with the result of Juraszek et al,7 who found that the free energy barrier between
unfolded states and intermediate state with only hairpin 1 formed is much lower than the
free energy barrier between unfolded states and intermediate state with only hairpin 2
formed. In addition, our simulations qualitatively agree with the results by Luo et al. on Pin1
WW domain using the Gō model Molecular Dynamics simulation, which showed that Pin1
WW domain also has two folding pathways that differ by sequence in which hairpins are
formed.5 Our findings are also consistent with the simulation results by Ensign and Pande on
the Fip35 in implicit solvent, in which it was found that the mechanism is heterogeneous,
but that the larger hairpin (first) is more likely to form first.41 Previous high-temperature
unfolding simulation has shown that the contacts of the first β hairpin forming early in the
folding process is the dominant folding pathway8 and our result showed that this dominant
pathway is still the same at ambient condition. Moreover, we also observed a structure with
α-helix in the N-terminus with a relatively large Rg, which has been reported before in high
temperature unfolding simulation8 and bias-exchange metadynamics unfolding simulation7.
A possible reason for the observation that dominant folding pathway involves an early
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formation of hairpin 1 is that hairpin 1 has more aromatic residues, which belong to the
hydrophobic core of the native protein, than hairpin 2. There are five aromatic hydrophobic
residues (Trp-8, Tyr-11, Tyr-19, Tyr-20 and Tyr-21) involved in stabilizing β hairpin 1,
while there are only two aromatic hydrophobic residues (Tyr-19 and Trp-30) involved in
stabilizing β hairpin 2. Therefore, the assembly of β hairpin 1 is enthalpically more
favorable than β hairpin 2. In addition, the lengths for loop 1 and loop 2 are almost the same
so the entropic contributions are almost the same for two loops. Taken together these factors
indicate that, - it is more likely that β hairpin 1 will get formed first.

Folding mechanism of two β hairpins
There are two proposed mechanisms for β hairpin folding. The first mechanism is the
“zipper” model proposed by Munoz et al,42 which involves the initial folding of the turn
structure and following formation of hydrogen bonds zipping from the turn to the end of the
hairpin. The other mechanism is the hydrophobic collapse mechanism proposed by Dinner et
al, stating that the hydrophobic collapse nucleates the hairpin formation.43 Our simulations
show that the folding mechanism for β hairpin 1 follows the “zipper” model while the
folding mechanism for β hairpin 2 follows the hydrophobic collapse mechanism. Previous
study using high temperature unfolding method showed that the folding mechanism for β–
hairpin 1 was hydrophobic collapse8. There are several possible explanations for the
discrepancy between our results and the previous results. First, the previous simulation study
was performed at high temperature (373K) and the native contacts for the hydrophobic
interactions are more stable to withstand the thermal fluctuations than the native contacts at
the turn area for β –hairpin 1. Therefore, previous high temperature unfolding simulation
probably favored the hydrophobic collapse mechanism. Our simulation is performed at low
temperature (~281K) and the first formation of hydrogen bonds near the turn is entropically
more favorable because these contacts are spatially closer. It is therefore possible that the
folding mechanism of β hairpin 1 is temperature dependent. At high temperature, the folding
mechanism for β hairpin 1 may involve hydrophobic collapse and at low temperature, the
folding mechanism for β hairpin 1 may follow the “zipper” model. Luo et al. used G model
to fold Pin1 WW domain and found that β1 – β2 hairpin folded via a turn zipper mechanism
at low temperatures but a hydrophobic collapse mechanism at the folding-transition
temperature.2 The difference of the folding mechanism for the two hairpins can be
understood as follows. For β1 – β2 hairpin, the closest hydrogen bond to the turn region is
between Thr-13 and Gly-16, which are only two residues apart. Therefore, it is relatively
easy to get this hydrogen bond formed first due to spatial proximity. For β2– β3 hairpin, the
closet hydrogen bond to the turn region is between Asn-22 and Glu-27, which are four
residues apart. Therefore, it is relatively hard for this hydrogen bond to form first at low
temperature. In this case, the hydrophobic interaction is the major driving force to form β2–
β3 hairpin.

Transition State Ensemble and Nucleation Center
Our simulation suggests that the β-turn structure in the first β hairpin is the most structured
region according to the result of Φ value analysis. We also observed relatively high Φ values
in the β-turn region in the second β hairpin, which corresponds to transition state
conformations with only β2 and β3 formed. Our prediction from simulated Φ values analysis
agrees with the previous REMD simulation by Mu et al,22 who predict the turn-1 formation
as the transition state. However, we also get other types of “non-dominant” transition state
structures in our simulation, e.g. transition states with no β structures formed, which were
also observed in high temperature unfolding MD simulation.8
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Conclusion
We use our transferrable knowledge-based energy potential to perform multiple folding
trajectories, which allows us to get a complete picture of the folding kinetics from an
ensemble perspective. Further, we use the most reliable method, the pfold analysis, to
identify the transition state ensembles and calculate simulated Φ values for all residues of
the FBP28. The statistically significant number of folding events, combined with the
structural cluster analysis technique, provides a complete and detailed outline of the
ensemble pathway of the FBP28 WW domain folding, and possibly an insight into general
features of kinetics of β-sheet formation. The conclusion we get from this study is that, first,
there are two folding pathways for FBP28 WW domain. The dominant folding pathway
involves formation of β hairpin 1 first, followed by the formation of β hairpin 2. The other
non-dominant folding pathway is the first formation of β– hairpin 2, followed by the
formation of β– hairpin 1; second, at low temperature, the folding mechanism for the two β–
hairpins are different. β hairpin 1 follows the “zipper” folding mechanism and β– hairpin 2
follows hydrophobic collapse folding mechanism. Third, Φ-value analysis suggests that the
turn region in β –hairpin 1 is the nucleation center and the transition state ensembles can be
categorized as three types of conformations: 1) structures with β1 and β2; 2) structures with
β2 and β3; 3) structures without secondary structures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
Fig. 1(A) The energy landscape for FBP 28 WW domain in Ab initio REMC simulations as
projected onto RMSD axis.
Fig. 1(B) Superposition of the backbones of the native structure (in blue) and minimum
energy structure (in red) obtained through the REMC simulations. The RMSD and C α
RMSD between the minimum energy structure and the native structure are 3.79 Å and
2.68Å, respectively. Structures were created by using PyMOL44
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Fig. 2.
Simulated melting curve for the FBP28 WW domain in terms of average size of the
molecule (Rg) vs temperature
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Fig 3.
Fig. 3(A) Fractions of native contacts averaged over all 100 trajectories as a function of MC
time steps at T=0.50. The total fraction of native contacts (Q) is shown in black. The fraction
of native contacts between β1 and β2 is in red, between β2 and β3 is in green, within loop 1
and between loop 1 and other residue is in blue, and within loop 2 and between loop 2 and
other residues is in cyan.
Fig. 3(B–F) Probabilities of native residue-residue contact at various stages of folding
according to the Q values. The folding temperature is 0.50.

Xu et al. Page 14

Proteins. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 4.
Fig. 4(A) Eleven hydrogen bonds for β1 and β2 which are monitored during MC
simulations.
Fig. 4(B) Probabilities of 11 H-bonds at various stages of folding categorized according to
the Q values of 100 folding trajectories at T=0.50. The H-bond indices are defined in the
text.
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Fig. 5.
Two representative structures from two large Rg clusters with α-helical structures at N-
terminus.
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Fig. 6.
The transition state ensemble of 15 structures determined by the Pfold analysis.
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Fig. 7.
Comparison between simulated and experimental Φ values. Error bars denote the standard
deviation σ of 15 Φ values calculated from 15 structures of transition state ensemble.
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Table 1

Eleven hydrogen bonds monitored during folding simulation

H1 Thr-13-N --- Lys-17-O

H2 Tyr-19-N --- Tyr-11-O

H3 Tyr-11-N --- Tyr-19-O

H4 Tyr-21-N --- Thr-9-O

H5 Thr-9-N --- Tyr-21-O

H6 Glu-27-N --- Asn-22-O

H7 Asn-22-N --- Glu-27-O

H8 Thr-29-N --- Tyr-20-O

H9 Tyr-20-N --- Thr-29-O

H10 Glu-31-N --- Thr-18-O

H11 Thr-18-N --- Glu-31-O

Proteins. Author manuscript; available in PMC 2012 June 1.


