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Summary
A data coordinating team performed on-site audits and discovered discrepancies between the data
sent to the coordinating center and that recorded at sites. We present statistical methods for
incorporating audit results into analyses. This can be thought of as a measurement error problem,
where the distribution of errors is a mixture with a point mass at 0. If the error rate is non-zero,
then even if the mean of the discrepancy between the reported and correct values of a predictor is
0, naive estimates of the association between two continuous variables will be biased. We consider
scenarios where there are 1) errors in the predictor, 2) errors in the outcome, and 3) possibly
correlated errors in the predictor and outcome. We show how to incorporate the error rate and
magnitude, estimated from a random subset (the audited records), to compute unbiased estimates
of association and proper confidence intervals. We then extend these results to multiple linear
regression where multiple covariates may be incorrect in the database and the rate and magnitude
of the errors may depend on study site. We study the finite sample properties of our estimators
using simulations, discuss some practical considerations, and illustrate our methods with data from
2815 HIV-infected patients in Latin America, of whom 234 had their data audited using a
sequential auditing plan.
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1. Introduction
Data quality is often assessed with an audit, in which the values recorded in the database for
a random subset of records are compared to their corresponding entries in primary source
documents. Data audits are common in multicenter clinical trials, where error rates are
expected to be low. However, many research studies use existing datasets which are
observational and retrospective, and the importance of checking the validity of these data
sources is particularly important given their higher propensity for error. Based on our
experience, audits of this type of data almost always reveal errors, leaving the research team
with a difficult decision: use the existing data, discard the data, or correct the errors in all
records. Obviously it is best to have accurate data; incorporating data with errors can yield
biased results (Mullooly, 1990). However, re-abstracting and re-entering all data, followed
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by a second audit, can be very time-consuming and expensive, and may not be feasible or
worth the effort when error rates are low or moderate.

For example, the Caribbean, Central and South America Network for HIV Research
(CCASAnet) is a multi-site cohort which uses existing clinical databases to address
questions about the HIV epidemic in Latin America (McGowan et al., 2007). A team from
the CCASAnet data coordinating center recently conducted on-site data audits at
participating sites, comparing data in the CCASAnet database with data in patients’ clinical
charts. The audit team found non-negligible error rates for some variables, and asked one
site to re-enter a key variable which had what the data coordinating center felt to be a
particularly high error rate. However, it was not possible to re-enter all variables at all sites.
Therefore, although subsequent studies using the CCASAnet data acknowledged that errors
were discovered during an audit, their analyses used the original data which had only been
corrected for the relatively small proportion of audited records (Tuboi et al., 2009).

An alternative approach would be to adjust estimates based on audit findings. Here we
present statistical methods for incorporating results from audits into an analysis.
Specifically, we will consider measuring the association between two continuous variables
when there are data errors in some of the records. Our problem is similar to that of classical
measurement error (Fuller, 1987; Carroll et al., 2006) where the true value of the variable is
taken to be the value in the source document (e.g., the clinical chart) and the observed value,
possibly recorded with error, is what is found in the database. However, there are important
differences between our problem and classical measurement error. First, not all records have
data entry error: the distribution of the errors can be thought of as a mixture distribution with
a point mass at zero. Second, both the predictor and outcome variables could be incorrectly
entered in the database, and the existence and magnitude of these errors could be correlated.
To our knowledge, neither scenario has been explicitly addressed in the measurement error
literature.

In this manuscript we show how to incorporate the error rate and the magnitude of the error,
estimated from the audit data, to compute unbiased estimates of association and proper
confidence intervals. We will consider situations where for an unknown proportion of
records 1) the value for the predictor variable is incorrect, 2) the value of the outcome
variable is incorrect, and 3) the values of the predictor and/or outcome variables are
incorrect where the error probability is correlated between variables, as well as the
magnitude of the error. In each situation, we demonstrate the extent to which naive estimates
of the association will be biased. We then propose methods to correct estimates and
confidence intervals based on audit findings. We then extend these results to multiple linear
regression where multiple covariates may be incorrect in the database and the rate and
magnitude of the errors may depend on study site. We demonstrate the finite sample
performance of our estimators using simulation studies and discuss some practical
considerations. We then illustrate our methods using data from 2815 HIV-infected initiators
of antiretroviral therapy (ART) in the CCASAnet cohort, of whom 123 had their data
checked in an initial audit, followed by a second audit of 111 additional patient records.
Finally, we discuss results and offer suggestions for future research.

2. Methods
In this section we study scenarios where 1) the predictor, 2) the outcome, and 3) the
predictor and the outcome are sometimes incorrect in the database. We then extend these
results to settings where there are multiple covariates and the errors may differ by site.

Shepherd and Yu Page 2

Biometrics. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.1 Predictor is sometimes incorrect in database
Let Y and X be the outcome and predictor variables, respectively, and their relationship is
given by the equation

(1)

where ε has mean zero and is independent of X. Instead of X, the analyst has W recorded in
the database:

(2)

where S is an indicator variable that X is not correctly recorded in the database, and U is the
discrepancy between the true predictor value (i.e., the value in the chart) and that in the
database. We assume that U has expectation zero and

where A ⫫ B indicates that A is independent of B. The predictor X is treated as a random
variable and thus the model (1)–(2) is structural (Carroll et al., 2006). The values of U and S
are not known unless an audit has been performed. Let V be the indicator that a data audit is
performed, so that (X, S, U) are known if V = 1. We assume that V is independent of the
other variables; this is ensured by randomly selecting records to be audited. Let (Yi, Xi, Wi,
Si, Ui, εi, Vi) for subjects i = 1, · · ·, N be identical and independent draws from (Y, X, W, S,
U, ε, V ).

Our goal is to estimate β1. Notice that this set-up is essentially the classical measurement
error problem (Fuller, 1987), except the inclusion of S ensures that only an unknown
proportion of the predictors are measured with error. Following Section 1.1.6 of Fuller, it
can easily be shown that if we fit the model E(Y|W) = γ0 + γ1W, then our least squares
estimate of γ1, denoted γ ̂1, will be a biased estimate of β1. Specifically, E(γ ̂1) = β1λ, where

(3)

with , and p ≡ Pr(S = 1). Notice that λ is between 0 and 1, so the
estimated regression coefficient is attenuated. The seriousness of the attenuation depends on
the proportion of predictor variables with error (p) and the variance of the error magnitude
( ), relative to the variance of the predictor ( ). These results are similar to results from
the classical measurement error problem, the only difference being the inclusion of p in the
denominator of λ. In the measurement error literature, λ is sometimes referred to as the
“reliability ratio.”

We can use the audit data to get an unbiased estimate of β1. A natural estimator for β1 is
simply γ ̂1/λ ̂1, where
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The estimates , and p̂ are all obtained from the audited data as follows:

where X̄ = Σ ViXi/ΣVi.

Confidence intervals around the corrected estimate can be computed by applying M-
estimation techniques and appealing to large-sample theory (Stefanski and Boos, 2002).
Specifically, let  where μx is the mean of X. Our estimates, θ ̂, solve

the equations , where

Define

Then the variance of θ ̂ can be estimated as V (θ ̂) = A(θ ̂)−1 B(θ ̂) A(θ ̂)−1/N. Define
. Therefore,

and from the delta method, an approximation of the variance of γ ̂1/λ ̂1 can be computed by an

estimate of the variance of the asymptotic normal law for γ ̂1/λ ̂1, .

There are other consistent estimators of β1 which incorporate audit results. Notice that the
reliability ratio, λ, could also be estimated as
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where . One could also use standard measurement error
techniques, estimating λ without estimating the proportion incorrect p. Specifically, define T
as equal to 0 if S = 0 and equal to U if S = 1. T has expectation zero, is independent of ε and
X, and . Therefore, another consistent estimator of β1 is γ ̂1/λ ̂3 with

where . Confidence intervals for these estimators using λ ̂2 and λ ̂3
can be constructed in a manner similar to that described above using λ ̂1.

2.2 Outcome is sometimes incorrect in database
Suppose now that some values of the outcome are incorrect in the database, such that

(4)

where Y* is the outcome observed in the database, Sy is the indicator that the outcome is
incorrect in the database, and Uy is the discrepancy between the true value of the outcome
and that in the database. The true relationship between X and Y is given by (1), with Sy, Uy ⫫
ε, X, and X is observable. Instead of regressing Y on X, we regress Y* on X, fitting the model
E(Y*|X) = γ0 + γ1X. What is the relationship between γ1 and β1?

It is well-known that if Y is measured with error (i.e., Pr(Sy = 1) = 1), then the least squares
estimate of γ1 is a consistent estimator of β1 (Fuller, 1987). The answer is the same in our
situation: from (1) and (4), we can write Y* = β0 + β1X + SyUy + ε and since X and ε are
independent of Sy and Uy, the regression of Y* on X will be consistent with the regression of
Y on X.

2.3 Predictor and outcome are sometimes incorrect in database
Now consider the case where the value for the predictor and/or the outcome may be
incorrect in the database. The true relationship between X and Y is given by (1), but instead
of observing X and Y we observe W and Y* where W = X + SU as given in (2) and

(5)

where Sy, Uy, and S are as defined earlier, and U* denotes the shift in the outcome variable
due to an error in the predictor variable. Notice that this model is similar to combining the
models of the previous sections except we now allow some errors in the predictor variable to
lead to errors in the outcome. This model is particularly motivated by our audits of the
CCASAnet dataset, where X was date of ART initiation and Y was the CD4 count
measurement taken closest to date of ART initiation. (Low CD4 count suggests that an
individual’s immune system has been compromised.) If the date of ART initiation was
incorrect in the database, then the CD4 count at ART initiation recorded in the database was
likely incorrect, shifted by some amount U*. It is also possible that there are data errors in
the outcome which are unrelated to data errors in the predictor; hence the inclusion of Sy and
Uy in the model.
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Therefore, we can think of there being two sets of errors: those related to a recording error in
the predictor (S, U, U*) and those related to a recording error in the outcome (Sy, Uy). We
assume that these sets of error variables are independent: S, U, U* ⫫ Sy, Uy. Notice that we
make no assumption of independence between U and U*, as we expect these errors to be
associated. For example, if date of ART initiation is incorrect (S = 1) then we might expect
the magnitude of the induced error in the CD4 count at ART initiation (U*) to be correlated
with the magnitude of the error in the date of ART initiation (U). Similar to the previous
sections, we assume that U, Uy, and U* are centered at 0, and that ε ⫫ X, S, U, Sy, Uy, U*.

Consider the naive analysis where we fit the model E(Y*|W) = γ0 + γ1W. In the online
supplement we show that the expectation of the least squares estimate of γ1 is

where λ was defined earlier by (3) and

where σu,u* = Cov(U, U*).

Some intuition describing the bias is warranted: Errors in X lead to attenuation or a flatter
estimate of the slope. Errors in X and Y which are positively correlated tend to tilt the slope
in a positive direction, whereas errors in X and Y which are negatively correlated tend to
make the slope more negative. For example, if X and Y are positively correlated and both
have positively correlated errors (i.e., σu,u* > 0), then the errors in X will flatten the slope
towards 0 whereas the positive correlation between the errors of X and Y will act in the
opposite direction and steepen the slope. The direction of the bias will therefore depend on
the relative magnitude of these two different components of error.

Notice that if U and U* are not correlated, then σu,u* = 0 and we are left with the same bias
derived when there were only errors in the dataset for the predictor. This makes sense, as we
have seen that estimates are unbiased when only the outcome variable has errors, so if both
the outcome and predictor have errors but these errors are independent, then we would
expect the same attenuation as in the scenario where only the predictor has errors.

As we have an expression for the bias of the least squares estimate of γ1, we can correct the
bias using data from an audit in a manner similar to that described earlier. Specifically, we
can estimate β1 with

We have already described estimation of all these quantities except for σ ̂u,u*, the covariance
between U and U*. The covariance between U and U* is equal to the covariance between the
residual error terms Y* − Y and W − X given S = 1, because of the independence of U and

(Sy, Uy). Therefore, we can estimate σu,u* as .
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Confidence intervals for β1 can be constructed using M-estimation techniques as described
in Section 2.1 with only a few adjustments: define θ1 = (θ, σu,u*), add the line

 to the estimating equations given in section 2.1, and define
, so that

2.4 Including Covariates
The models and methods described above can be extended to include covariates. Now
suppose X consists of multiple variables that are sometimes incorrect in the database, and let
W be the value of X recorded in the database, S a vector of error indicators, and U the
magnitude of the errors (centered at 0) with W = X + SU. Notice that under this scenario, the
error rates p and magnitudes U may be different for different variables and may be
correlated. Suppose there are also covariates Z that are recorded without error in the
database. Let Y = β0 + βxX + βzZ + ε. Similar to section 2.1 but conditional on Z, we assume
that S, U ⫫ ε, X and ε ⫫ X. We also allow Y to be incorrectly recorded in the database with
Y* = Y + SyUy + SU*, where Sy and Uy are independent of all other variables conditional on
Z, but U* may be correlated with U. For notational convenience, define T = (S1U1, · · ·,
SkUk) and  where k is the dimension of X. Notice that this model
encompasses all of those presented in sections 2.1–2.3.

Consistent, moment-based estimators of (βx, βz) are

(6)

where Σ̂ab designates the sample covariance between the variables A and B. However, from
the database, instead of Σ̂xx, Σ ̂zx, Σ ̂xy, and Σ̂zy, we have Σ̂ww, Σ ̂zw, Σ ̂wy*, and Σ̂zy*. If we fit the
model, E(Y*|W, Z) = γ0 + γxW + γzZ, then (γ ̂x, γ ̂z) are biased estimates of (βx, βz).

We can obtain consistent estimates of (βx, βz) using the audit data. We know that Σxx = Σww
− Σtt, Σxz = Σwz, Σxy = Σwy* − Σtt* 1, and Σzy = Σzy*. Therefore, a consistent estimator of (βx,
βz) is

(7)

The estimates Σ̂tt and Σ̂tt* 1 are available from the audit data. Notice that as before there are
several potential approaches for estimating these quantities. For example, suppose there are
two variables that are sometimes incorrect in the database. Analogous to the single predictor
case (section 2.1), one could directly compute Σ̂tt among those with V = 1 or as
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where p2|1 = Pr(S2 = 1|S1 = 1); alternatively instead of computing Σ̂ww − Σ ̂tt, one could
simply compute Σ̂xx from the audit data. Depending on the specific context of the analysis,
one may also be willing to make certain assumptions that will force some quantities to be 0.
For example, one might assume that an error in X never induces an error in Y, therefore
forcing Σtt* = 0.

In practice, it is likely that the error rate and/or magnitude differ by site. This would lead to
a model of the following form:

In practice, it is also likely that the audited charts are randomly selected within site, or that
conditional on Z, V is independent of all other variables. Under these models, estimation still
is based on equation (7), only now one estimates Σxx with Σww − Ez(Σtt|z), or estimating site-
specific error variances based on the audits and then taking a weighted average based on the
proportion of all records belonging to a particular site. The models given above can also be
slightly altered. For example, depending on the context one could assume that the
distribution of (Uz, ) is the same across some or all sites, perhaps improving precision.

Confidence intervals for parameter estimates can be constructed using M-estimation
techniques in a manner similar to that described in sections 2.1. Code implementing these
computations is given in the online supplement.

3. Simulations
We investigated the finite sample properties of our estimators using simulation experiments.
First we performed simulations under scenarios where the predictor only was sometimes
incorrect in the database (corresponding to the methods of Section 2.1). In each simulation
we generated N = 1000 vectors (Y, X, W, S, U, ε) using the models described in Section 2.1,
with X, U, and ε normally distributed, S generated from a binomial distribution with success
probability p ∈ (0.05, 0.10, 0.20, 0.30), σu ∈ (20, 50), and (β0, β1, σε, σx, μx) = (6, −0.01, 0.5,
50, 200). These parameter values were chosen to roughly mimic the relationship between
CD4 count (X) and log-transformed HIV viral load (Y). Within each simulation experiment,
we computed estimates with the number of audited charts (nv) being 0, 25, 50, 100, 200,
300, and 1000. Zero audited charts corresponded to no audit, and the resulting estimates
were simply the naive estimates obtained by regressing Y on W. One thousand audited charts
corresponded to having correct data for all records and estimates were obtained by
regressing Y on X. When the number of audited charts was 25 to 300, we estimated β1 and
computed 95% confidence intervals (CI) using λ ̂1 as described in Section 2.1; for those
records with V = 0, we treated X, S, and U as if they were unknown. The audited records
were selected independently of all other variables. If no errors were discovered in the
audited data (i.e., ΣViSi = 0), then our corrected estimate was set equal to the naive estimate
regressing Y on W. If only one error was discovered in the audit (i.e., Σ ViSi = 1), then

. We performed 5,000 simulation replications for each of the data-generating
scenarios. All simulation and analysis code is provided in the Supplementary Materials.
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Simulation results are given in Table 1. With few errors of low relative magnitude (e.g., p =
0.05 and σu = 20), the bias of naive estimates was minimal and the coverage probability of
95% CI was good. However, as the error rate (p) and variance of the magnitude of the error
(σu) increased, the bias of naive estimates increased and the coverage of 95% CI declined.
Naturally, as the number of randomly audited charts increased, the performance of the
corrected estimates improved. Bias greatly improved over the naive estimates by auditing as
few as 25 charts, although with so few audits there was generally little, if any, information to
estimate σu, and hence the variance of estimates was quite high and coverage did not achieve
its nominal level. Coverage improved as the number of audits increased, achieving the
nominal 95% level in our simulations after auditing approximately 50 and 200 charts for σu
= 20 and 50, respectively. Despite the universal improvement over naive estimates in terms
of bias and coverage, the mean squared error of corrected estimates were worse than the
mean squared error of naive estimates for p = 0.05 and nv = 25, 50 as well as p = 0.1 and nv
= 25, highlighting the importance of auditing a sufficient number of records. The
performance of estimators was primarily driven by the number of records audited, not the
overall sample size, as results were simular with N = 500 and 100 (Supplementary Material).
In additional simulations, when few records were audited (e.g. ≤ 50), estimates based on λ ̂1
tended to outperform estimates using λ ̂2 and λ ̂3 in terms of mean squared error; performance
was similar when more records were audited (Supplementary Material).

Next we performed simulations to examine the behavior of our estimators when the
predictor and outcome were sometimes incorrect in the database (corresponding to the
methods of Section 2.3). In each simulation we generated N = 1000 vectors (Y, X, W, S, U, ε)
as described above. In addition, we generated Sy from a binomial distribution with success
probability 0.2; Uy from a normal distribution with mean 0 and standard deviation 1; U*

from a normal distribution with mean 0, standard deviation 0.5, and correlation with U set as
ρu,u* ∈ {−0.5, 0, 0.5}. We subsequently generated Y* using equation (5). Again, we varied
p, σu, and N across simulation experiments (5,000 replications per parameter setting) and nv
within each simulation experiment. Simulation results for σu = 50 and N = 1000 are shown
in Table 2.

For ρu,u* = −0.5, depending on the error rate p, fairly large audits were needed to perform as
well as the naive estimator. For p = 0.05, bias and coverage of corrected estimators were
only better than the naive estimator when nv = 100, whereas an improvement in mean
squared error required nv = 300. In contrast, for ρu,u* = 0 and 0.5, bias and coverage were
better than the naive analysis in all simulation scenarios, even with audits as small as 25;
mean squared error was typically better with audits of size 50–100, depending on the error
rate. These phenomena can be explained in part because the bias of naive estimators was not

very large for ρu,u* = −0.5. The percent-bias of naive estimates is . Since
β1 < 0 in our simulations, when ρu,u* > 0 (and hence ν> 0) then the percent-bias was more
negative than it would have been if ρu,u* = 0; when ρu,u* < 0 then the percent-bias was less
negative. The simulation results given in Table 1 were based on a model which assumed
ρu,u* = 0; therefore the percent-bias for naive estimators under ρu,u* = 0 given in Table 2 was
similar to those of Table 1. The performance of our estimators was slightly worse in Table 2,
however, because the estimation procedure did not assume ρu,u* = 0. Standard errors and the
mean squared error were also slightly larger because in these simulations data were
generated including independent errors in the outcome (Sy and Uy).

Finally, we repeated simulations including one additional covariate recorded without error in
the database (corresponding to a simple case of the methods described in Section 2.4). Z was
randomly generated from a normal distribution with mean 0, variance 1, and correlation with
X of 0.3. The coefficient βz was set at 1. All other parameters were fixed at their values
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described above for generating simulated datasets with errors in both X and Y. Simulation
results are given in the Supplementary Material. In summary, the performance of estimators
of βx were similar to that shown in Table 2. In general, the bias and coverage of naive
estimates of βz worsened for larger values of p and σu, although bias and coverage of naive
estimates were not as poor for βz as for βx. For σu = 50, it generally took audit sizes of 50–
100 for corrected estimates of βz to have lower mean squared errors than naive estimates.
For σu = 20, the mean squared errors of naive estimates of βz were quite similar to those of
corrected estimates at all audit sizes considered.

4. Practical Considerations
The primary purpose of an audit is to examine and confirm the accuracy of data. To this end,
an audit is often performed by an independent group, and the rate of errors, p, and the
distribution of the magnitude of the errors, U, are of primary interest. The sample size of an
initial audit should therefore depend on the desired precision for estimating the error rate.
Audit sizes have been discussed elsewhere and are based on standard formulas (e.g., Arens
(2008), page 593).

The audit sample size needed to accurately correct estimates of association may need to be
larger, or smaller, than the size of the initial audit. Therefore, depending on results of the
first audit, a second audit may be desirable. The purpose of this second audit would be to
refine estimates of p, , and ρu,u* to reduce standard errors of corrected estimates.
Therefore, sample sizes of these second audits can be based on the desired precision or mean
squared error for a regression of Y on X, and preliminary data from the first audit. We were
unable to derive a simple formula to estimate the audit size needed to obtain a given level of
precision. We therefore recommend computing sample sizes for the second audit through
simulation. A second audit may not be necessary in sites less prone to errors based on data
from the first audit.

Given the purpose of a second audit, an internal audit or self-assessment of the data by local
investigators may be sufficient and reduce study costs over performing a second audit by an
independent group.

5. Data Example
Data were collected on 3480 HIV-positive individuals from CCASAnet sites in Argentina,
Brazil, Chile, Honduras, Mexico, and Peru. To preserve the anonymity of the clinics, we
have labeled them randomly as sites A-F. Each site sent a database containing patient
characteristics at initiation of antiretroviral therapy (ART). The CCASAnet data
coordinating center at Vanderbilt University randomly selected 191 records, approximately
30 per site, to be audited, and sent a team to each site to compare the values of key variables
in the database with those found in the charts for these records. One hundred sixty seven of
the 191 randomly selected records were initially audited (16 records could not be located or
were unavailable because they were needed for patient care, 8 records were not audited
because of time constraints). Audited values for each variable for each record were coded as
one of the following: 1) correct, 2) minor or rounding error, 3) major error – value in
database did not match value in chart, 4) missing – value recorded as missing in the database
found in the clinical record, or 5) sourceless – value recorded in the database not found in
the clinical record. For our analysis, sourceless errors (code=5) were treated as not audited
(V = 0). Records missing either the outcome or predictor variable in the database were not
included in analyses; therefore, we excluded records missing a variable that was later found
during the audit (code=4). Finally, those 24 records that were supposed to be audited but
were not were assigned V = 0. These three analysis decisions essentially assume that the
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distribution of analysis variables for individuals with these types of errors/missing data is
similar to that of individuals included in the study.

We considered the association between date of ART initiation and CD4 count. Patients who
start ART at higher CD4 counts tend to have a better prognosis, so there has been a push to
treat patients at higher CD4 levels (Stohr et al., 2007). Therefore, a positive trend between
date of ART initiation and CD4 count would indicate that in recent years HIV-positive
patients have been starting their medications in less advanced stages of HIV-disease.
Unadjusted analyses of the original data suggest that  was on average 0.044 cells1/2

lower per year (95% CI −0.15, 0.06). (CD4 was transformed to make it less skewed.)
However, after adjusting for study site the trend was towards higher CD4 levels among
patients initiating ART in more recent years: 0.11 cells1/2 per year (95% CI −0.01, 0.24).

Data audits were performed and 18/123 (15%) of audited ART initiation dates had a value in
the database different from the value in the clinical charts. The range of the discrepancy was
−76 days to 1489 days (4.1 years), with a median of 7 days. As discussed in Section 2.3, if
date of ART initiation was incorrect in the database, then the CD4 count recorded in the
database at the incorrect date was often not the same as the CD4 measurement at the true
date of ART initiation. For those 18 patients with an incorrect date of ART initiation, Figure
1A is a scatterplot of the magnitude of the error in date of ART initiation versus the
magnitude of the induced error in . (Note that CD4 at ART initiation was defined as
the CD4 measurement taken closest to, but no more than 7 days after or 180 days before, the
date of ART initiation (Tuboi et al., 2009). Therefore, for many of the minor errors in date
of ART initiation, the previous baseline CD4 measurement was still the measurement closest
to the date of ART initiation, and hence the change in CD4 was 0.)

In an initial analysis applying the methods of Section 2.3, the corrected unadjusted estimate
for β1 was

or that  at ART initiation was on average 0.035 cells1/2 higher per year (95% CI
−0.17, 0.24). This estimate is substantively different from the uncorrected estimate (−0.044
cells1/2 per year), and its confidence interval is substantially wider and includes 0. However,
the corrected estimate was largely driven by one extreme value (seen in Figure 1A). With
this record removed, the estimated variance of the magnitude of the error for date of ART
initiation ( ) and its covariance with the magnitude of error for  greatly
decreased, and hence the estimate for β1 was −0.043 cells1/2 per year (95% CI −0.15, 0.06),
very similar to the uncorrected estimate.

To refine our estimates, we decided to perform additional targeted audits. The error rates
and magnitudes seen in the initial audit were quite variable across sites (see Table 3). For
example, 0 of 25 audited charts in Site F had errors in the date of ART initiation whereas 6
of 20 audited charts in Site C had errors and the variance of the magnitude of the errors was
large. Using site-specific parameter estimates from the initial audits, we simulated datasets
and applied the methods of Section 2.3 to determine the impact of additional audits on the
bias, confidence interval width, and mean-squared error of our estimates for each site
(details in the online Supplement). We decided to audit approximately 50 additional records
from Site C and 25 from Sites A, B, and E. Sites A and D had similar low error rates and
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magnitudes; we sampled additional records from Site A because our data audit team was
going to be on-site for a different purpose. Charts for auditing were randomly selected
within site by the data coordinating center. The second audits were performed by local
investigators at all four sites, although in Sites A and C our data audit team verified the
accuracy of the local audit by re-auditing the same records. Error rates and magnitudes
between the first and second audits were similar within sites (see Table 3). Because some of
the selected charts were missing CD4 or were unavailable at the time of the audit, the actual
number of additional audits included in these analyses were 19, 22, 44, and 26 for Sites A,
B, C, and E, respectively.

In analyses applying the methods of Section 2.3 using the combined data from the first and
second audits (which ignored the fact that we selected charts to audit conditional on study
site), our new estimate of β ̂1 was 0.006 (95% CI −0.16, 0.17). Using the data from both
audits, the correlation between the magnitude of errors in date of ART initiation and 
was less extreme and results were not as dependent on a single outlying measurement (see
Table 3 and Figure 1B). Naturally, the confidence interval for the estimate was also more
narrow, although not as narrow as that of the naive estimate.

We then applied the methods of Section 2.4 to adjust for study site and to properly
acknowledge that audit selection depended on site. In this analysis we also allowed error
rates and magnitudes to vary by site. (Results were nearly identical if we assumed the error
distributions were the same for Sites A, B, and D; data not shown.) The estimated adjusted
slope in this analysis was 0.18 (95% CI 0.00, 0.37), compared to the naive estimate of 0.11
(95% CI −0.01, 0.24). The corrected estimate suggests a slightly stronger trend towards
patients initiating ART at higher CD4 in more recent years. The corrected estimate’s wider
confidence interval reflects additional uncertainty in our estimate to correct the bias using
the audit data.

Finally, we performed a similar analysis also adjusting for age at ART initiation and sex.
Sex was correctly recorded in all audited records, but there were 26 errors in age at ART
initiation (11% of audited charts), 4 of which were due to incorrect dates of ART initiation
in the database. (Note that age was recorded in years whereas date of ART initation was in
terms of days.) Therefore, S2 and U2 (indicator and magnitude of error in age, respectively)
were correlated with S1 and U1 (indicator and magnitude of error in date of ART initiation),
and also free to differ between sites. In this analysis,  (magnitude of error in  due to
error in date of ART initiation) also was free to vary by site. We assumed that errors in age
did not induce errors in CD4, so our model did not include . Results of this analysis for all
variables are shown in Table 4 compared to their corresponding estimates in naive analyses
that ignored the database errors. Effect estimates for all variables differ from their naive
counterparts, although general conclusions are the same except for date of ART initiation,
where corrected 95% CI no longer include zero.

6. Discussion
We have developed methods to correct linear regression estimates when some variables
have errors in the database that are discovered by an audit. Our methods incorporate data
from the audit and are applicable to settings with multiple incorrect variables, correlation
between error rates and magnitudes across variables, and differing error rates across
variables and sites. Our methods also extend measurement error models to scenarios where
only a portion of records have errors and to scenarios where there are possibly correlated
errors in both the outcome and the predictor.
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Data audits are an important component of biomedical research – particularly observational
studies which may be especially prone to data errors. When errors are found in an audit, our
methods provide investigators with an alternative to either ignoring audit results or re-
abstracting all data. Of course, if error rates and magnitudes are particularly high one may
need to re-enter all data. Alternatively, if error rates and/or magnitudes are low, results
incorporating audit findings using our methods may be similar to naive analyses. Even in
this case, computing corrected estimates is worthwhile, as they demonstrate the validity of
results.

In our example analysis, there were several records that were supposed to be audited but
were not, and there were several records where a value for a variable was in the database but
was not found in the clinical charts. Our analyses assumed the distribution of variables
among these records was the same as among those that were not selected to be audited. In
our data example, we also removed records in which the outcome or predictor was missing
in the database, implicitly assuming the data were missing completely at random. These
assumptions could presumably be relaxed by incorporating techniques for addressing
missing data (Little and Rubin, 2002). More generally, our problem could be framed as a
missing data problem where the true value of variables is only observed in the audited
subgroup, but can be predicted/imputed using values in the database.

Other potential directions for future research include developing methods for settings where
the errors are not centered at 0, or where the relationship between X and Y and/or U and U*

are nonlinear. We have seen that results were sensitive to extreme values; approaches for
dealing with outliers and small audit sizes perhaps along the lines of Fuller (1987) or Cheng,
Schneeweiss, and Thamerus (2000) are warranted. As seen from our simulations, when few
records are audited the improvements in bias of our corrected estimates may not be worth
their added variability. We would also like to extend these methods to analyses with other
outcomes such as binary and right-censored time-to-event outcomes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The magnitude of the error in date of ART initiation versus the magnitude of the induced
error in square-root transformed CD4 at ART initiation. A. Data from first audit. B. Data
from first and second audits combined.
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Table 4

Effect sizes and 95% confidence intervals for naive and corrected estimates of .

Variable

Naive Corrected

Estimate (95% CI) Estimate (95% CI)

Date of ART initiation (per year) 0.12 (−0.01, 0.24) 0.19 (0.01, 0.37)

Age (per 10 years) −0.02 (−0.21, 0.18) −0.05 (−0.25, 0.16)

Male Sex −0.73 (−1.18, −0.29) −0.73 (−1.18, −0.28)

Study Site

 Site A 1.28 (0.54, 2.03) 1.32 (0.67, 1.97)

 Site B 0.94 (0.27, 1.60) 1.07 (0.40, 1.75)

 Site C 2.76 (2.20, 3.32) 2.83 (2.24, 3.43)

 Site D 2.40 (1.60, 3.19) 2.64 (1.74, 3.54)

 Site E 0.58 (−0.07, 1.23) 0.64 (0.01, 1.28)

 Site F (reference category) 0 – 0 –
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