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Abstract
Functional neuronal recovery following injury arises when severed axons reconnect with their
targets. In C. elegans following laser-induced axotomy, the axon still attached to the cell body is
able to regrow and reconnect with its separated distal fragment. Here we show that reconnection of
separated axon fragments during regeneration of C. elegans mechanosensory neurons occurs
through a mechanism of axonal fusion, which prevents Wallerian degeneration of the distal
fragment. Through electron microscopy analysis and imaging with the photoconvertible
fluorescent protein Kaede, we show that the fusion process re-establishes membrane continuity
and repristinates anterograde and retrograde cytoplasmic diffusion. We also provide evidence that
axonal fusion occurs with a remarkable level of accuracy, with the proximal re-growing axon
recognizing its own separated distal fragment. Thus, efficient axonal regeneration can occur by
selective reconnection and fusion of separated axonal fragments beyond an injury site, with
restoration of the damaged neuronal tract.

Keywords
Axonal fusion; axonal regeneration; C. elegans; axonal degeneration

Introduction
For an axon to regenerate after injury, the affected neuron must transform its damaged
proximal stump into a regrowing axon with a growth cone, which then must extend past the
injury site and re-establish connection with its original target tissues. Growth cone formation
and axonal extension are regulated by both the intrinsic regenerative growth capacity of the
adult neuron, as well as the extrinsic, often inhibitory, microenvironment of the developed
organism (Harel and Strittmatter, 2006; Yiu and He, 2006; Hilliard, 2009). Calcium and
cAMP levels, as well as the DLK-1 mitogen-activated protein kinase-signaling pathway and
genes of the Krüppel-like transcription factor family, have been shown to be essential
intrinsic factors for growth cone initiation and extension (Neumann and Woolf, 1999; Spira
et al., 2001; Neumann et al., 2002; Hammarlund et al., 2009; Moore et al., 2009; Ghosh-Roy
et al., 2010). A crucial inhibitory role for the regenerating axons was found for molecules
such as Nogo, myelin associated glycoprotein and oligodendrocyte myelin glycoprotein, and
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their receptors Nogo receptor, P75, TROY and LINGO (Harel and Strittmatter, 2006; Yiu
and He, 2006). Furthermore, developmental axonal guidance molecules such as UNC-6/
Netrin, Slit, Ephrin B3 and Semaphorin 4D, have also been shown to affect regenerative
axonal outgrowth and guidance (Pasterkamp et al., 2001; Benson et al., 2005; Wu et al.,
2007; Gabel et al., 2008; Low et al., 2008). However, what happens to an axon beyond the
injury site and how target re-innervation occurs, remains poorly understood. In different
models proposed, target reconnection might occur through precise regrowth of the axon
from the injury site toward its target following the original axonal path, or along an ectopic
path, or through sprouting from an axonal region far from the injury site along an ectopic
path (Harel and Strittmatter, 2006; Hilliard, 2009). Axonal fusion is an alternative form of
axonal reconnection, whereby regenerating axons can bridge the site of damage and re-
establish connection with their separated axonal fragments. This fusion process has been
described in crayfish, earthworm and leech (Hoy et al., 1967; Birse and Bittner, 1976;
Deriemer et al., 1983; Macagno et al., 1985), although the cellular and molecular
mechanisms regulating this process remain unknown. The development of laser-based
surgery to transect individual axons in C. elegans (Yanik et al., 2004), has enabled this
animal to become a crucial genetic model system to study axonal regeneration at the cellular
and molecular level (Ghosh-Roy and Chisholm, 2010). Different C. elegans neurons have
been widely reported to undergo robust regeneration following axotomy (Yanik et al., 2004;
Yanik et al., 2006; Wu et al., 2007; Gabel et al., 2008), and recent evidence suggests that
axonal regeneration in C. elegans deficient in the cAMP phosphodiesterase gene (pde-4)
may occur through axonal fusion (Ghosh-Roy et al., 2010). A fusion process also regulates
pruning of excessive dendritic branches in the PVD neuron (Oren-Suissa et al., 2010).

Here, we conclusively demonstrate that following laser-induced axonal transection the C.
elegans mechanosensory neurons ALM and PLM undergo specific axonal fusion as a
regenerative mechanism. We find axonal fusion to be critical for survival of the separated
axonal fragment. We show that upon fusion membrane continuity of the axonal tract is
reconstituted, and that both anterograde and retrograde cytoplasmic diffusion is restored.
Furthermore, we present evidence for a high level of specific recognition regulating fusion
between the separated proximal and distal axonal fragments, suggesting the presence of
error-checking or cross-talk to ensure accuracy of the repair mechanism.

Results
The axons of the ALM and PLM mechanosensory neurons extend in an anterior direction
from their cell bodies on both sides of the animal; ALM (left and right) in the anterior half
and PLM (left and right) in the posterior half of the animal mediate detection of light
mechanical stimuli applied to the head and tail regions, respectively (Bounoutas and Chalfie,
2007). The cell bodies and neurites of these neurons were visualized using green fluorescent
protein (GFP) driven by the mec-4 promoter (Pmec-4::GFP) (Fig. 1A). Following UV-laser
axotomy, both neurons underwent extensive regrowth in over 90% of cases (Yanik et al.,
2006) (Fig. 1B–F), as characterized by the formation of a growth cone at the tip of the
proximal axon that on average extended 50–100 μm (Wu et al., 2007). Such regrowth
frequently (71% for ALM; 48% for PLM) resulted in the proximal axon making contact
with its separated distal fragment (Fig. 1B,C,F), an event that was essential for the survival
of the separated fragment and for the restoration of the axonal structure (Fig. 1F). In the
absence of proximal-distal axon reconnection, the distal process invariably underwent
Wallerian degeneration, as evidenced by axonal beading, fragmentation and ultimately
disappearance of the distal axonal fragment (Fig. 1D,E). In a minority of cases (2% ALM;
21% PLM), reconnection between the separated axonal fragments was detected by visual
analysis but degeneration of the distal fragment still progressed (Fig. 1F), indicating that
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either a successful contact was not established or that it had occurred too late to prevent
degeneration from progressing.

To establish whether reconnection of the regrowing axon with its distal fragment was indeed
a fusion of the two membranes, we performed transmission electron microscopy (TEM)
analysis of serial sections taken from a wild-type animal twenty-four hours post-axotomy.
As shown in Fig. 2, PLM regrowth proceeded through extension of a branch from the
proximal axon (Fig. 2, sections 1342, 1376) that circumvented the injury site (Fig. 2,
sections 1412 – 1480) and reconnected with the distal fragment (Fig. 2, sections 1508,
1509). We found continuation of the plasma membrane between the regrowing axon and its
distal fragment (Fig. 2, section 1508), demonstrating that the proximal-distal reconnection
occurs through a fusion of the axonal membranes.

We then asked if this membrane fusion was sufficient for the re-establishment of
cytoplasmic continuity. To address this, we analyzed both anterograde and retrograde
cytoplasmic diffusion across the injury site using the Kaede protein. Kaede is a large
tetrameric green fluorescent protein that can be irreversibly converted to fluoresce red
(Ando et al., 2002), and that is too large to pass across gap junctions (Simpson et al., 1977;
Loewenstein, 1981; supplementary Fig. S1 online). We generated a transgenic strain in
which the Kaede coding sequence was driven by the mec-4 promoter (Pmec-4::Kaede), and
thereby expressed specifically within the mechanosensory neurons. First, to study
anterograde cytoplasmic diffusion we performed laser axotomies on ALM and PLM neurons
expressing Kaede and irradiated the cell body and a short section of the attached process to
convert Kaede from green to red specifically within this region. In the absence of proximal-
distal reconnection, the converted, red form of the protein did not diffuse into the distal axon
(supplementary Fig. S2A,C online), indicating that cytoplasmic movement had been
disrupted and that the axon had been completely transected. Twenty-four hours post-
axotomy when proximal-distal reconnection had occurred, Kaede converted in the cell body
was observed traversing the injury site and within the distal axonal segment (Fig. 3A,C;
supplementary Fig. S2D online; quantified in supplementary Fig. S2B,E online), showing
that anterograde diffusion had been reestablished. Second, to analyze retrograde diffusion,
we again performed axotomies on ALM and PLM, but converted Kaede in the distal axon
and visualized movement of the red protein towards the cell body. When regeneration
proceeded without proximal-distal reconnection, converted, red Kaede could not diffuse into
the proximal axonal segment (supplementary Fig. S3A,C online). However, when
reconnection occurred, Kaede converted within the distal axon could diffuse into the
proximal axon and cell body (Fig. 3B,C; supplementary Fig. S3D online; quantified in
supplementary Fig. S3B,E online). In every instance of proximal axon regrowth that failed
to result in reconnection with the distal fragment, neither anterograde nor retrograde
movement of Kaede was observed across the cut site (Fig. 3C). A minor proportion of
regrowing axons failed to display anterograde (6% ALM and 13% PLM) or retrograde (3%
ALM and 13% PLM) diffusion despite the proximal and distal axon fragments appearing
visually reconnected. Interestingly, in these animals the distal axon underwent Wallerian
degeneration, indicating that proper axonal fusion had failed, and that it is crucial for
efficient axonal regeneration and survival of the distal fragment. Lack of complete axonal
fusion is also the most plausible explanation for the distal fragment degeneration found in a
minority of GFP-expressing neurons in which reconnection was observed (compare Figs.
3C,1F). Taken together these results conclusively demonstrate that axonal regeneration
occurs by way of axonal fusion, with re-establishment of both membrane and cytoplasmic
continuity.

We next asked whether axonal fusion displayed specificity, whereby regenerating axons
could selectively find their own separated fragments. To analyze this, we generated a
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transgenic strain in which we could visualize sets of two axons running in close association
but labeled with two different fluorophores. The ALN and PLN neurons are each bilateral,
with cell bodies in the lumbar ganglion and a long process that extends almost the entire
length of the animal, terminating within the nerve ring (White, 1986). The ALN and ALM
neurites fasciculate for much of the length of ALM, whereas PLN and PLM fasciculate for
approximately three quarters of the length of the PLM axon (White, 1986). TEM analysis of
serial sections taken at the site of axotomy revealed fasciculation of PLM and PLN at the
site of axotomy (supplementary Fig. S4 online). We expressed mCherry from the lad-2
promoter (Plad-2::mCherry) to visualize PLN and ALN, while ALM and PLM were
visualized as previously described with GFP (Pmec-4::GFP) (Fig. 4A). We first asked
whether a regrowing axon could fuse non-specifically to an intact, second axon. We
performed axotomy of ALM and PLM and analysed the ALN and PLN neurons for the
presence of GFP. Diffusion of the GFP into the mCherry-expressing neuron would imply
that an aspecific fusion event had occurred. GFP was never observed in ALN nor PLN (Fig.
4B), indicating that when a single axon is severed, the regenerating process can specifically
fuse with its own distal fragment. We then asked whether a regrowing axon could maintain
its ability to specifically fuse with its own distal fragment even when in the presence of a
second severed axon of another neuron. To achieve this we performed paired axotomies on
ALM and ALN, as well as PLM and PLN and twenty-four hours post-axotomy analyzed
each pair of neurons for the transfer of fluorophores. We found a high rate of specificity for
both ALM (94%) and PLM (100%) (Fig. 4B). However, a small number of aspecific fusion
events, occurring concurrently with specific fusion, were observed in both ALM and PLM
(ALM 4/31; PLM 1/11); complete aspecific fusion (not associated with specific fusion) was
never found in PLM, and only two cases were observed in ALM. Interestingly, we observed
that both ALN and PLN axons displayed a high propensity for regeneration and that they
also presented specific proximal-distal reconnection (supplementary Fig. S5 online).
Overall, axonal fusion displayed specificity in almost every instance for both ALM and
PLM, even when an adjacent axon was simultaneously severed. These findings may suggest
the existence of signaling and cross-talk between the distal fragment and its regrowing axon
to ensure specific reconnection and fusion occurs.

Discussion
We demonstrate here that axonal fusion with restoration of membrane and cytoplasmic
continuity is a key mechanism of axonal regeneration in C. elegans neurons. We observe
that axonal fusion is necessary to re-establish the original axonal tract, and to prevent
degeneration of the separated distal fragment that otherwise invariably occurs in a Wallerian
fashion. Our results support and extend to a genetically amenable organism previous
observations in different invertebrate species where axonal fusion has been described as an
important mechanism underlying successful axonal regeneration after injury (Hoy et al.,
1967; Birse and Bittner, 1976; Deriemer et al., 1983). An interesting prediction for the
fusion model is that the regrowing axon must be able to find its own separated fragment in
order to reform the correct axonal shaft. Our experiments indeed show that the regrowing
proximal axons of both ALM and PLM neurons can specifically recognize their own
separated distal fragments, even in presence of a second distal fragment of another severed
neuron. These results strongly suggest that specific signaling events regulate self-recognition
between separated fragments of the same axon to ensure accuracy. Compared to traditional
models of axonal regeneration, axonal fusion represents a fundamentally different
mechanism by which restoration of the original axonal tract can be achieved. This modality
appears highly efficient for the reestablishment of connection with target tissue, in that
transected axons can restore their trajectories by bridging just the damage site instead of
regrowing their entire length beyond an injury site. Membrane fusion has been described
and extensively studied in important biological events such as endocytosis, exocytosis,
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plasma membrane sealing, mitochondrial fusion and viral infection, and several molecules
have been identified in each of these processes (Harrison, 2008; Martens and McMahon,
2008; Rizo and Rosenmund, 2008). It would seem likely that some of the molecules
regulating membrane fusion in these biological processes are also key elements in axonal
fusion during regeneration.

The nematode-specific fusogen Epithelial Fusion Failure 1 (EFF-1) has been reported to be
required for axonal reconnection (Ghosh-Roy et al., 2010), however disruption of the eff-1
gene led to a significant reduction in regrowth after axotomy and its role in mediating
specific axonal fusion is still unclear. EFF-1 functions in homotypic fusion of epithelial and
muscle cells (Mohler et al., 2002), and has recently been shown to regulate dendritic pruning
in the C. elegans PVD neuron (Oren-Suissa et al., 2010). EFF-1, along with the other
nematode specific fusion molecule AFF-1 (Anchor cell Fusion Failure) (Sapir et al., 2007),
appears to play an essential role in most, if not all cellular fusion events in C. elegans. The
finding of axonal fusion events in different species (Hoy et al., 1967; Birse and Bittner,
1976; Deriemer et al., 1983) may imply that conserved molecules are required for the
process to occur, and the discovery of these molecular players will be critical for furthering
our understanding of this regenerative mechanism. It is tempting to speculate on the
existence of a ‘save-me’ signaling pathway to mediate recognition between the dying distal
fragment and the regrowing proximal axon segment. Such a signaling mechanism could be
reminiscent of the ‘eat-me’ signaling pathway that occurs during the process of apoptotic
cell recognition by phagocytic cells. This signaling pathway begins with the presentation of
phosphatidylserine on the surface of the dying cell (Fadok et al., 1992), which is then either
directly or indirectly recognized by several different classes of receptors on the phagocytic
cell surface (Erwig and Henson, 2008; Fadeel and Xue, 2009). Furthermore, it has become
apparent that secreted molecules, such as the nucleotides ATP and UTP (Elliott et al., 2009)
and the transthyretin-like protein, TTR-52 (Wang et al., 2010) are integral components of
this recognition process. However, an alternative and equally plausible hypothesis is that the
unique local extracellular environment of the axon mediates specificity of axonal fusion by
giving it easier access to its own separated fragments. Moreover, intrinsic neuronal
differences, for example type of neurotransmitter used (ALM and PLM use glutamate, while
ALN and PLN use acetylcholine) may also have a role in ensuring fusion occurs
specifically. Whether specific molecules, such as those involved in phagocytosis or whether
other factors unique to individual neurons mediate self-recognition during axonal fusion
remains to be determined.

Peripheral and central nerve injuries cause significant life-long disabilities because repair
rarely leads to reinnervation of the target tissue. Our results suggest that similar mechanisms
might be in place, or could be exploited, to enhance axonal regeneration and repair in higher
mammals including humans and provide mechanistic insight and support for the
development of therapeutic strategies for nerve injuries based on facilitating axonal
membrane sealing and reconnection.

Experimental Procedures
Strains and genetics

Standard techniques were used for C. elegans maintenance, crosses and other genetic
manipulations (Brenner, 1974). All experiments were performed at 22°C. The wild-type N2
Bristol isolate, and the following transgenes were used: zdIs5[Pmec-4::GFP],
vdEx128[Pmec-4::Kaede (10 ng/μl)], vdEx166[Plad-2::mCherry (25 ng/μl), Podr-1::dsRED
(30 ng/μl)]. The zdIs5 strain was kindly provided by Scott Clark.
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Molecular biology
Standard molecular biology techniques were used. The Pmec-4::Kaede plasmid was
generated through modification of the Pmec-4::GFP plasmid in which the GFP coding
sequence was excised with KpnI/EcoRI and replaced with the full Kaede coding sequence
(amplified from plasmid pMH22, containing Pdyf-7::Kaede) (Heiman and Shaham, 2009).
The Plad-2::mCherry plasmid was created through insertion of a 5.25 kb FseI/AscI
fragment of the lad-2 5′UTR (amplified using the following primers: external forward 5′-
aatttaccttggtcctcggg-3′; external reverse 5′-tagtgcgaagtaccttcaacc-3′; internal forward 5′-
tcagtgggccggccagcgaattgcccacttttggcaacc-3′; internal reverse 5′-
tcagtgggcgcgcctgttggaaaaatccaaaaaaaaagtctgc-3′) and a KpnI/EcoRI mCherry amplicon into
the pSM vector (a gift from Cori Bargmann).

Laser axotomy and microscopy
Animals were anaesthetized on agar pads using 0.01–0.05% Tetramisole. We performed
laser axotomy using a MicroPoint Laser System Basic Unit attached to a Zeiss Axio Imager
A1 (Objective EC Plan-Neofluar 100x/1.30 Oil M27). This laser delivers 120 μJoules of 337
nm energy with a 2 – 6 nsec pulse length. Axotomies were completed with 20 to 30 pulses
on larval stage 4 animals at a point approximately 50 μm anterior to the ALM, PLM and
PLN cell bodies, and approximately 500 μm from the cell body of ALN. Animals were
analyzed with a Zeiss Axio Imager Z1 equipped with a Photometrics Cool Snap HQ2 camera
and analysis was performed using Metamorph software. Axon regrowth was quantified by
measuring the length of the longest ALM or PLM process beyond the cut site 24 hrs post-
axotomy; neurons that underwent axonal fusion were excluded from these quantifications.

Conversion of Kaede
Kaede experiments were performed with a LSM 510 META confocal microscope and Zen
2008 software. Green fluorescence was analyzed with a 488 nm laser and red fluorescence
was visualized with a 543 nm laser. Conversion was achieved with 100 iterations of 405 nm
irradiation (1% transmission at 30 mW) to a region of interest (created around the cell body
and a short section of the attached processes for analysis of anterograde diffusion; around
the distal axon anterior to the cut or fusion site for retrograde studies; or around the entire
ALM neuron, except for the nerve ring branch, for analysis of diffusion across gap
junctions). For maximum conversion twenty to thirty repetitions across the region of interest
were needed, requiring a total of 5–10 mins on average. Exposure to 488 nm light did not
cause green-red conversion of Kaede, as analyzed by prolonged exposure (10 mins) to this
wavelength and subsequent analysis of fluorescence intensity (data not shown). Diffusion of
Kaede, either before or after axotomy, has never been observed across the gap junctions
formed between the mechanosensory neurons and their contacting neurons (as judged by
complete lack of fluorescent signal in these neurons).

Changes in fluorescence intensity were calculated using ImageJ software. Mean
fluorescence was measured in the middle of each axon with a line scan on the proximal
axonal end immediately adjacent to the transection site and on the distal axon end adjacent
to the site of axotomy or fusion. Identically sized regions were used for each group of
images. Ratios were calculated between mean fluorescence after conversion and mean
fluorescence before conversion, and these were calculated for both green and red
fluorescence. As such, a value of 1.0 indicated no change had occurred, a value greater than
1.0 indicated an enhancement of fluorescence in the region of interest, and a value lower
than 1.0 indicated reduced fluorescence.
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Electron microscopy
Twenty-four hours post-axotomy of PLM, fluorescence imaging of animals was used to
compare cell anatomy prior to fixation. Single animals were fixed in buffered aldehydes,
then in osmium tetroxide, en bloc stained with uranyl acetate, and positioned in groups in
agar cubes prior to embedment in Epon resin (Hall, 1995). Serial thin sections were
collected onto plastic-coated slot grids (Pioloform) from multiple animals at once, and post-
stained with uranyl acetate. Digital TEM images were collected using iTEM software on an
Olympus Morada camera mounted on a Philips CM10 electron microscope. Sites of damage
and repair were located due to their proximity to the rectal valve cells; this consistent locale
helped to re-locate damage sites efficiently within several thousand serial sections.

Statistical analysis
Statistical analyzes were performed using Primer of Biostatistics 3.01. Error of proportions
was used to assess variation across a single population. Two-way comparison was
performed using the Student’s t test.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Axonal regeneration in the C. elegans mechanosensory neurons. (A) A wild-type
zdIs5(Pmec-4::GFP) animal, illustrating the ALM and PLM mechanosensory neurons.
Anterior is left and ventral is down in these and all other images. Reconnection between
proximal and distal segments in ALM (B) and PLM (C), twenty-four hours post-axotomy.
(D,E) Degeneration of the distal axon occurs in the absence of reconnection. Filled
arrowheads point to site of axotomy; open arrowheads show fusion site; asterisks highlight
intestinal auto-fluorescence; scale bars: 25 μm. (F) Quantification of regenerative
phenotypes, with regrowth defined as sprouting from proximal end, distal contact
representing the proportion of regrowing axons that made proximal-distal contact, and distal
maintenance showing the percentage of reconnecting neurons that preserved the distal axon
segment. Error bars: standard error of proportion; n values: 77 and 95 for ALM and PLM,
respectively.
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Figure 2.
Analysis of axonal reconnection with transmission electron microscopy. Serial thin sections
of a wild-type animal 24 hrs post-axotomy are shown, along with a scheme to demonstrate
how the PLM axon regrew around the laser damage zone. High magnification micrographs
show the original axon (blue) and the new process (yellow) as it branched off from the
original axon (section #1342), travelled inwards from the body wall (section #1376),
traversed the damage site (section #1412 – #1480) and then fused as a very thin process
(yellow) to the distal axon segment (blue) at section #1509. The fusion site is shown at
higher power in section #1508, where the white arrow indicates the fusion zone. Local
membrane whorls and voids (red asterisks) caused by collateral laser damage in the
hypodermis can be seen in sections #1412, #1450 and #1480. Extracellular space below the
PLM axon in section #1342 is swollen by mantle protein (black arrow), a characteristic
feature of the mechanosensory neurons. Scale bars: 0.5 μm and 0.2 μm in sections #1509
and #1508, respectively.
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Figure 3.
Axonal fusion re-establishes cytoplasmic continuity. Kaede was converted in PLM in the
bracketed regions 24 hrs post-axotomy to analyze anterograde (A) and retrograde (B)
cytoplasmic diffusion. Representative images show green and red fluorescence before
conversion in panels (i) and (ii), and after conversion in panels (iii) and (iv). Proximal-distal
reconnection permitted anterograde (A) and retrograde (B) diffusion of red fluorescent
Kaede across the site of axotomy (A,iv; B,iv). Filled arrowheads point to site of axotomy;
open arrowheads show fusion site; scale bars: 25 μm. (C) Quantification of animals
displaying either anterograde or retrograde diffusion of Kaede in the absence (no contact) or
presence of reconnection for both ALM and PLM. Error bars: standard error of proportion; n
values within each graph. Note the presence of a weak background signal before conversion
through the red filter (A; B).
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Figure 4.
Specificity in axonal fusion. (A) Schematic diagrams of the zdIs5(Pmec-4::GFP);
vdEx166(Plad-2::mCherry) strain where ALM and PLM were visualized with green
fluorescence and ALN and PLN with red fluorescence. (B) Quantification of the number of
axons displaying specific or aspecific fusion following axotomy of either ALM or PLM (left
bars, one axon cut), or after simultaneous axotomy of both ALM and ALN, or PLM and
PLN (right bars, two axons cut). Error bars: standard error of proportion; n values within
each graph.
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