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Abstract
Neuromodulators have complex effects on both the presynaptic release and postsynaptic detection
of neurotransmitters. Here we describe recent advances in our understanding of synaptic
modulation by metabotropic GABAB receptors. By inhibiting multivesicular release from the
presynaptic terminal, these receptors decrease the synaptic glutamate signal. GABAB receptors
also inhibit the Ca2+ permeability of NMDA receptors to decrease Ca2+ signals in postsynaptic
spines. These new findings highlight the importance of GABAB receptors in regulating many
aspects of synaptic transmission. They also point to novel questions about the spatiotemporal
dynamics and sources of synaptic modulation in the brain.
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Introduction
Neurons throughout the brain communicate via the release and detection of chemical
neurotransmitters. Release involves the fusion of vesicles at the presynaptic terminal and
detection involves the activation of receptors in the postsynaptic membrane. Both processes
are constantly changing, allowing synaptic transmission to be highly plastic over many time
scales. These changes can reflect either the intrinsic properties of synapses or the influence
of extrinsic chemical neuromodulators. In this review, we describe recent advances in our
understanding of the impact of these neuromodulators at the level of individual synapses.
We focus on regulation by GABAB receptors (GABAB–Rs), drawing comparisons when
possible to other neuromodulators working via similar mechanisms. Finally, we discuss
important questions that remain about synaptic modulation and the technologies that may
help provide answers.

Receptor diversity
Gamma aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and
acts via ionotropic and metabotropic receptors to control the electrical and biochemical
properties of neurons [1]. GABAB-Rs are metabotropic G-protein coupled receptors found at
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both excitatory and inhibitory synapses in almost all regions of the brain [2]. These receptors
are usually thought to release Gβγ subunits that inhibit Ca2+ channels [3] and activate K+

channels [4]. They also release Gαi/Gαo subunits that inhibit adenylyl cyclase (AC) to
reduce cAMP levels and decrease protein kinase A (PKA) activity [5]. By interacting with
multiple downstream signaling cascades, it is likely that GABAB-Rs have many
physiological roles that we have only begun to characterize (Figure 1).

In order to function, GABAB-Rs require two distinct subunits known as GABAB1 and
GABAB2 [6–8]. GABAB1 is needed for activation by external agonists and GABAB2 is
responsible for both signaling and membrane targeting [9,10]. Gene splicing divides
GABAB1 into two isoforms known as GABAB1a and GABAB1b, which differ in their N-
terminal regions, where only GABAB1a contains a pair of sushi domains [11]. These
domains preferentially target GABAB1a to the presynaptic terminals of excitatory synapses,
where it modulates glutamate release [*12]. On the postsynaptic side, both isoforms are
found in the dendrites, but only GABAB1b is located in spines [*12]. This isoform seems to
provide the majority of coupling to K+ channels, as knocking out GABAB1b reduces
postsynaptic K+ currents, whereas knocking out GABAB1a has no effect [*12]. GABAB1b is
also responsible for inhibition of dendritic Ca2+ spikes [13], possibly via a direct effect on
voltage-sensitive Ca2+ channels (VSCCs) [*14].

Before the advent of gene cloning, pharmacological studies predicted a wide range of
GABAB-R isoforms with different functional properties [15,16]. It was thus surprising when
only two isoforms were ultimately discovered [17], which have similar agonist binding and
signaling properties [2]. This discrepancy was recently resolved by the discovery of
auxiliary binding proteins including KCTD (potassium channel tetramerization domain-
containing) proteins [18,19], Mupp1 [20], and GISP [21], which together help confer the
diversity observed in earlier studies. Understanding the roles of different GABAB-R
isoforms and auxiliary binding proteins in synaptic modulation remains an exciting topic for
future study.

Presynaptic release
GABAB-Rs are one of many neuromodulatory receptors that can powerfully influence the
release of neurotransmitters. Release requires a presynaptic action potential to open VSCCs
and allow Ca2+ influx to activate the molecular machinery of vesicle fusion. GABAB-Rs
inhibit VSCCs to decrease Ca2+ influx and reduce release at both excitatory and inhibitory
synapses [22,23]. GABAB-Rs can also inhibit release by activating K+ channels, which
shunt the presynaptic action potential and indirectly limit Ca2+ influx [24]. Moreover,
GABAB-Rs can reduce vesicle priming by decreasing cAMP concentrations in the
presynaptic terminal [25]. Results from other neuromodulators suggest that Gβγ subunits
can also interact with the fusion machinery to change the mode of release [26]. Thus, GABA
and other neuromodulators can act through multiple targets to tightly regulate presynaptic
release.

Measuring presynaptic modulation at single synapses is challenging but can be
accomplished with a variety of imaging probes. For example, presynaptic Ca2+ signals can
be imaged with Ca2+-sensitive dyes [22,23], vesicle sorting probed with styryl dyes [27],
and GABAB-R subunit interactions studied with FRET measurements [27]. In some cases,
modulation of glutamate release can be detected with two-photon optical quantal analysis
[28,29]. With this approach, release properties are measured using large NMDA-R Ca2+

signals evoked in dendritic spines, where successful events are clearly separated from
failures. The influence of different modulators is then assessed by the impact of
pharmacological agonists on release probability. This approach has now been used to
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demonstrate that GABAB [**30] muscarinic [*31], and adenosine receptors [32] all inhibit
presynaptic release onto postsynaptic spines.

Multivesicular release
Until recently, each presynaptic action potential was usually thought to release only a single
vesicle from the presynaptic terminal. However, it is now clear that many different synapses
have the ability to release multiple vesicles in response to a single action potential [33].
Multivesicular release (MVR) is pronounced at high release probabilities and is dynamically
regulated by activity [32,34]. The ability to release multiple vesicles at individual boutons
shifts the synaptic glutamate concentration from a binary to a graded signal. Because
postsynaptic glutamate receptors are often not saturated [29,35], this increases the
information capacity by extending the dynamic range of synaptic communication.

Recent evidence shows that presynaptic GABAB-Rs suppress MVR to modulate glutamate
signals at synapses [**30]. As predicted, GABAB-Rs increase the number of failures
detected by optical quantal analysis, suggesting a decrease in release probability.
Surprisingly, GABAB-Rs also decrease the amplitude of postsynaptic Ca2+ signals evoked
by successful release events. Although inhibition of these Ca2+ signals could reflect direct
modulation of NMDA-Rs, blocking postsynaptic G-protein signaling has no effect on this
attenuation. Instead, decreasing the extracellular Ca2+ concentration to reduce MVR
occludes the GABAB-R-evoked decrease in these Ca2+ signals. By inhibiting MVR,
GABAB-Rs can decrease the synaptic glutamate concentration and thereby control
postsynaptic responses in a graded fashion. Similar results have also been found for
muscarinic receptors in the striatum [*31], suggesting that regulation of MVR may be
common throughout the brain.

Postsynaptic conductances
The rapid detection of neurotransmitter is accomplished at synapses throughout the brain by
ionotropic receptors. At excitatory synapses, these include a variety of both AMPA and
NMDA receptors [36]. It is well known that these receptors possess multiple sites for post-
translational modifications [37]. Phosphorylation is often considered in terms of receptor
trafficking, especially during synaptic plasticity [38]. However, this modification can also
change open times, agonist affinity and ion selectivity of channels. For example, the Ca2+

permeability of NMDA-Rs is usually under tonic up-regulation by constitutive PKA activity
[*39]. By targeting different signaling cascades, GABAB-Rs have the potential to change
many properties of postsynaptic transmission.

It has been difficult to detect postsynaptic modulation of ionotropic glutamate receptor
function by GABAB-Rs. One complication is the widespread prevalence of presynaptic
inhibition, which is difficult to avoid in most experiments. Two-photon glutamate uncaging
bypasses the presynaptic terminal and allows direct study of modulation at single spines
throughout the dendritic arbor (Figure 2A) [40,41]. Given that GABAB-Rs are located in
close proximity to glutamate receptors [42], it was initially predicted that GABAB-Rs would
modulate glutamate receptors. Surprisingly, however, GABAB–Rs do not impact either
AMPA-R or NMDA-R EPSCs at pyramidal neuron spines in the prefrontal cortex [**30].
This is also true for D2-R modulation at striatal synapses [**43], despite the clear role these
and other neuromodulatory receptors play in synaptic plasticity.

Postsynaptic calcium signals
In addition to generating postsynaptic conductances, NMDA-Rs are the predominant source
of Ca2+ signals in the spines of many neurons throughout the brain [29,44]. These signals
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are particularly important for initiating the physiological and morphological changes that
occur during synaptic plasticity [38]. GABAB-Rs are usually thought to inhibit these signals
by opening a variety of K+ channels [45] found in both dendrites and spines [42]. The
resulting hyperpolarization enhances Mg2+ blockade of NMDA-Rs to reduce their overall
current and thus Ca2+ influx [46,47]. However, the impact of this GABAB-R-evoked
hyperpolarization on postsynaptic Ca2+ signals remains unexplored at the level of individual
spines.

Recent results demonstrate that GABAB-Rs exert direct and powerful inhibition of Ca2+

influx through NMDA-Rs (Figure 2B) [**30]. Even though GABAB-Rs do not inhibit
NMDA-R EPSCs, they can reduce postsynaptic Ca2+ signals by approximately half. This
effect is independent of Gβγ subunits, K+ channel activation, VSCC activation and internal
Ca2+ stores. Instead, it is mediated by Gαi/Gαo subunits, which inhibit AC to decrease
cAMP levels and suppress PKA activity. Because PKA normally enhances Ca2+ influx
through NMDA-Rs, this enables GABAB-Rs to inhibit Ca2+ signals in spines. Similar
results have been found for D2-R modulation in the striatum [**43], suggesting this may be
a widespread function of neuromodulators that signal via Gαi/Gαo subunits. However, the
molecular mechanisms for the selective reduction of NMDA-R Ca2+ permeability still need
to be resolved. In addition, it will be interesting to determine the roles of auxiliary proteins
including AKAPs (A-kinase anchoring proteins) in this new form of synaptic modulation
[48].

Future directions
We now know a great deal about how GABAB-Rs and other neuromodulatory receptors
regulate synaptic transmission, but there are many important questions remaining. To finish,
we briefly explore three future directions in the study of synaptic modulation, addressing
new technologies that may help provide answers.

Targets of modulation
Both excitatory post-synaptic potentials (EPSPs) and synaptic Ca2+ signals are shaped by
interactions between channels and receptors in spines. For example, opening R-type VSCCs
generates a Ca2+ signal that activates Ca2+-sensitive K+ Channels and generates a
hyperpolarization to block NMDA-Rs [49]. How do GABAB-Rs regulate voltage- and Ca2+-
sensitive ion channels to influence these local feedback loops? Recent results indicate that
GABAB-Rs can inhibit VSCCs in spines and dendrites throughout the dendritic arbor of
cortical pyramidal cells [*14]. It will be interesting to determine if this inhibition leads to
any changes in EPSPs and synaptic Ca2+ signals, as seen for D2-Rs in the striatum [**43].
GABAB-Rs may also regulate Ca2+-sensitive K+ channels themselves, as recently
discovered for muscarinic receptors in the hippocampus [50], leading to an entirely new
kind of synaptic modulation.

Timing of modulation
GABAB-Rs initiate multiple signaling cascades to influence ion channels and glutamate
receptors in pre- and postsynaptic structures. What is the temporal profile over which these
different cascades regulate the release and detection of glutamate? Answering this question
is difficult with classical pharmacology involving the tonic application of specific agonists.
Fortunately, a range of caged compounds is now available that are rapidly released with
either one- or two-photon excitation. Local uncaging generates a brief pulse of GABA
whose effects on EPSCs and Ca signals can be studied over time [*14,51]. FRET probes can
also be used to study how this time-locked GABAB-R activation influences protein-protein
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interactions in different subcellular compartments [27]. These approaches may help reveal
different kinetic profiles for GABAB-R modulation via both Gβγ and Gαi/Gαo subunits [52].

Sources of modulation
Anatomical studies show that a variety of inhibitory interneurons innervate distinct
subcellular domains in pyramidal neurons [53]. For example, parvalbumin-positive neurons
synapse near the cell body, while somatostatin-expressing neurons target dendrites. Which
interneurons are responsible for supplying the GABA that modulates the release and
detection of glutamate at excitatory synapses? In some cases, paired recordings can be used
to target individual interneurons and assess their modulatory impact. For example,
neurogliaform cells release clouds of GABA that can activate GABAB-Rs on dendritic
spines [52,54]. Novel optogenetic tools can also be used to target different populations of
interneurons and control their firing properties [55,56]. These approaches may ultimately
help define the activity patterns needed to activate presynaptic and postsynaptic GABAB-Rs
and trigger synaptic modulation [57].

Summary
GABAB-R modulation plays a central role in the ability of neurons to function in circuits.
This is highlighted by the consequences of disrupted modulation in the prefrontal cortex in
neuropsychiatric diseases [58]. Recent studies have revealed new ways in which GABAB-Rs
can control synaptic responses. Thus, GABAB-Rs can suppress MWR to decrease the
synaptic glutamate concentration. Unexpectedly, GABAB-Rs can also act via the PKA
pathway to decrease postsynaptic NMDA-R Ca2+ signals. By also inhibiting VSCCs in
spines and dendrites, GABAB-Rs are thus poised to potently regulate Ca2+ -mediated
plasticity. In addition to GABAB-Rs, these effects are also found with other modulators like
acetylcholine and dopamine, suggesting that these processes are occurring at diverse
synapses throughout the brain. However, many questions remain about the spatial, temporal
and cell-type specific effects of neuromodulators. A variety of new technologies will allow
us to better understand the properties of synaptic modulation in normal physiology and
disease states.
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Figure 1. Post-synaptic intracellular GABAB-R signaling
GABA binding to GABAB-R heterodimers releases Gβγ subunits that locally diffuse to open
K+ channels and close Ca2+ channels. In addition, released Gαi/Gαo subunits inhibit
adenylyl cyclase (AC), which constitutively produces cAMP to activate PKA, with
potentially many downstream targets including NMDA-Rs.
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Figure 2. Modulation of postsynaptic NMDA-R Ca signals
A, Left, Two-photon image of dendrite and spines, showing uncaging location (asterisk) and
line-scan position (dashed yellow line). Right, Line-scans (top) show a change in green Ca2+

signal after two-photon uncaging, quantified (bottom) before (red) and after (black) wash-in
of the NMDA-R antagonist CPP. B, Average NMDA-R currents (left) and Ca2+ signals
(right) before (red) and after wash-in of the GABAB-R agonist baclofen (black) (adapted
from Chalifoux & Carter, 2010).

Chalifoux and Carter Page 10

Curr Opin Neurobiol. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


