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Abstract
Effective virtual screening relies on our ability to make accurate prediction of protein-ligand
binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-
Boltzmann (or Generalized Born) Surface Area approach, we have evaluated the binding affinity
of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent
kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-
glucosidase A and coagulation factor Xa. The effect of protein dielectric constant in the implicit-
solvent model on the binding free energy calculation is shown to be important. The statistical
correlations between the binding energy calculated from the implicit-solvent approach and
experimental free energy are in the range 0.56~0.79 across all the families. This performance is
better than that of typical docking programs especially given that the latter is directly trained using
known binding data while the molecular mechanics is based on general physical parameters.
Estimation of entropic contribution remains the barrier to accurate free energy calculation. We
show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the
binding free energy prediction. Inclusion of conformational restriction seems to be promising but
requires further investigation. On the other hand, our preliminary study suggests that implicit-
solvent based alchemical perturbation, which offers explicit sampling of configuration entropy,
can be a viable approach to significantly improve the prediction of binding free energy. Overall,
the molecular mechanics approach has the potential for medium to high-throughput computational
drug discovery.
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Introduction
It takes on average 11.4 to 13.5 years to develop a new small-molecule drug based on the
statistics from 2000 to 2007 1. With an approximate $50 billion annual R&D spending by
top pharmaceutical companies, the average cost to bring an innovated drug to market is
estimated to be $1.8 billion. A series of technologies, from functional genomics 2 to
combinational chemistry 3 and high-throughput screening 4, are utilized to accelerate the
drug discovery process. With the rapid development of computing technology, computer-
aided drug design, has attracted a great deal of attention due to its promise for high
efficiency and low cost. With the aid of computers, candidates are searched or designed in
silico and thus the need for the more expensive and time-consuming experimental synthesis
and characterization is reduced. Since 1995 when the computer-designed drug (carbonic
anhydrase inhibitor dorzolamide 5) was first introduced, numerous successful cases were
reported, e.g. Imatinib, a tyrosine kinase inhibitor designed specifically for the Bcr-Abl
fusion protein that is characteristic for Philadelphia chromosome-positive leukemias 6,
Zanamivir, for therapeutic or prophylactic treatment of influenza infection 7, and
Dorzolamide, a carbonic anhydrase inhibitor used to treat glaucoma 8.

A key step in drug discovery is to identify novel chemical molecules (hits and leads) that
interact with specific biomolecular targets, in most cases, proteins such as enzymes, ion
channels and transmembrane receptors 9, 10. However, the pharmaceutical industry is facing
an “innovation deficit” in which an insufficient number of new chemical entities are
discovered each year even with billions of research dollars spent 1, 11. Virtual screening
techniques such as molecular docking have been developed to facilitate the rapid
identification of potential leads. In docking, with the structure of protein targets obtained
from either X-ray or NMR, a library of ligands are brought to the proximity of the specific
binding site of the target and possible poses and conformations of the ligands are sampled.
For each pose a “score”, which is the measure of the empirical binding free energy of the
receptor-ligand system, is calculated in accordance to the “scoring function”, which is
typically constructed based on an over-simplified empirical force field for the sake of
computational speed 9.

Although efficient, molecular docking has a series of inherent limitations 12. In typical
docking approaches, ligands are allowed to make conformational changes while proteins are
treated either as rigid or with limited flexibility. A binding score is assigned to each static
pose even though the binding free energy is an ensemble-averaged thermodynamic quantity
including vibrational, rotational and conformational contributions. The treatment of solvent
effects is often inadequate even though solvent plays a crucial role in the binding. In
addition, the scoring function contains a set of empirically determined parameters which are
derived from its training set, a series of complexes with known binding structures and
affinities. The choice of training set affects the resultant parameters and thereafter the score;
a ligand that is chemically different from those in the training set may not be accurately
described. Although consensus enrichment may improve docking reliability, it seems to
mostly improve the accuracy of structure rather than the binding affinity 13. In a previous
work which evaluated a series of popular scoring functions on a set of 100 protein-ligand
complexes, only 4 out of 11 scoring functions were able to give correlation coefficients over
0.50 with experimentally measured binding affinities 14. Limited accuracy of binding
affinity prediction remains a problem for molecular docking because true hits may be
eliminated even when docking poses are correctly predicted. Other studies provide a similar
conclusion that scores generated by docking programs are barely correlated with
experimental data and weakly predictive of binding affinity across a series of systems 15–17.
The over-simplification of the solvent model, negligence of configurational entropy, and
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insufficiency in conformational space sampling 18, all limit current docking approaches from
a promising future virtual screening tool.

Molecular mechanics simulation and analysis, a more rigorous and ab initio method broadly
used in computational chemistry since 1970s, may be a prospective candidate for the next
generation virtual screening tool. It overcomes the conceptual flaw in molecular docking by
generating a sequence of “snapshots” with physical methods (e.g. molecular dynamics or
Monte Carlo) to represent the ensemble of accessible microstates of a system, followed by
computing the ensemble-average of a particular thermodynamic quantity of interest,
including binding thermodynamics. Furthermore, the parameters used in molecular
mechanics simulation, originated either from quantum mechanics calculation or
experiments, are typically atomistic and more transferred than those used in empirical
scoring functions that are derived from fitting in training set. Molecular mechanics
approaches have been shown to be effective for virtual lead optimization 9, 18, 19. However,
alchemical approaches, in which a molecule is gradually transferred into another, offer
detailed sampling of configurational space in response to perturbations in protein binding
sites, ligands and water dynamics. However, they are computationally too expensive for
high throughput application.

Recently, more and more advanced molecular simulations and free energy calculations have
been successfully applied to the optimization of lead compounds, such as the search of non-
nucleoside inhibitors of HIV reverse transcriptase and inhibitors of the binding of the
proinflammatory cytokine macrophage migration inhibitory factor to its receptor CD74
applying free energy perturbation calculations in conjunction with Monte Carlo statistical
mechanics simulations for protein–inhibitor complexes in aqueous solution, “double
decoupling”—a method to calculate the free-energy changes associated with making the
inhibitor ‘disappear’ from the complex with the enzyme and for making the inhibitor
disappear in bulk water, a recent approach called “steered molecular dynamics” to compute
the force that is required to extract inhibitors from complexes with enzymes, in which
molecular-dynamics simulations are employed to predict the energy changes for a harmonic-
spring-attached inhibitor being pulled at constant velocity into the surrounding water 19–21.
S.P. Brown and S.W. Muchmore applied an implicit solvent molecular mechanics
simulation in the context of a distributed-computing paradigm to estimate relative binding
affinities to three targets: urokinase, PTP-1B, and Chk-1 22. The so called molecular-
mechanics Poisson-Boltzmann Surface Area (MM-PBSA), first introduced by Kollman and
colleagues 23, was used. The observed correlation coefficients with experiments are in the
range of 0.72–0.83. While this is a small data set, the results seem to be significantly better
than those typically reported from docking when using a scoring function 15–17. C. Gao and
et al 24 adopted a method based on perturbation theory using a quasi-harmonic model as
reference to account for the free energy change originated from 1) enthalpic change; 2)
entropic loss due to different and more restricted configurations of a bound ligand relative to
its free solvated state, which is often neglected or treated crudely in predicting binding
affinity. For the 16 protein pocket targets tested, in most cases, the ligand conformation in
the bound state was significantly different from the most favorable conformation in solution.
Both entropic and enthalpic contributions to this free energy change are significant. And in
general, the correlation between measured and calculated ligand binding affinities, including
the free energy change due to ligand conformational change is comparable to or better than
that obtained by using an empirically-trained docking score. The molecular mechanics
method has its weakness too. For example, these calculations are computationally intense
compared to molecular docking and are often imprecise for large targets and compounds as
large as typical drugs 21, 24.
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Although there have been many studies of protein-ligand binding using implicit solvent
based molecular mechanics approaches with various parameters and settings 25–29,
systematic investigations of its potential as a semi-high throughput screening tool on a series
of reliable experimental data is still lacking. In this work, we apply molecular mechanics to
calculate the binding affinities of 7 protein families with a total of 156 ligands. With explicit
solvent MD simulation, conventional MM-PBSA and MM-GBSA (molecular-mechanics
Generalized-Born Surface Area) 23 were applied to estimate the binding free energy. The
entropic contribution, including ligand conformational restriction, to protein-ligand binding
was evaluated using different methods. The effect of solute dielectric constant on the
calculated affinity was carefully examined. The overall efficiency and accuracy found from
this study suggest that a molecular simulation is a viable approach for medium-throughput
virtual screening. Future directions to further improvement were also presented.

Materials and Methods
Systems selection

The complexes of proteins and ligands were chosen from the refined set of PDBBind
database 30. Experimental crystal structures and binding affinities were reported for all the
systems. We selected seven disparate families of proteins, i.e. trypsin β, thrombin α, cyclin-
dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen
activator, β-glucosidase A and coagulation factor Xa, with the numbers of ligands in
corresponding families being 57, 28, 11, 8, 19, 18 and 15, separately (see Table-S1 for
details). We combined data of cyclin-dependent kinase and cAMP-dependent kinase which
results to 6 groups in reality (in the following we use “CDK+PKA” for this group). We
selected ligands from each family according to the following rules: a) the number of heavy
atoms of the ligand is less than 50; b) the number of rings in the ligand is no greater than 5;
c) the maximum number of atoms in a ring is no greater than 30; and d) the number of
rotatable bonds in the ligand is no greater than 10.

Amber simulation
Molecular dynamics simulations using Amber 31 version 9 were performed to generate an
ensemble of conformations for each protein-ligand complex in water, followed by MM-
GBSA/MM-PBSA 23 calculations to estimate the binding free energy.

In the MD simulations, the entire protein from PDB rather than only the pocket was
included. Missing protein residues were added using Modeller 32 version 9.4 with sequences
given by experiments. The Amber ff99SB force field 33 was used for proteins. The
generalized AMBER force field force field parameters were assigned to the small molecules
34. The ligands’ atomic partial charges were generated by the empirical charge model—
AM1-BCC 35 by using the Antechamber module 36 version 1.27. The protonation of
proteins was assigned by the LEaP module of Amber 9 37, which was also used to generate
the parameters and coordinates files for PMEMD (Particle Mesh Ewald Molecular
Dynamics) simulations. Each complex was solvated in a TIP3P water box 38 with a
minimum distance 10.0 Å from the surface of the complex to the edge of the simulation box.
Each system was neutralized by adding Na+ or Cl- ions. Scripts were used to automate the
above process of converting PDB and MOL2 formatted experimental structures to Amber
simulation input files 39.

The solvated complex was subject to an initial energy minimization with solute restrained
followed by a complete minimization with no restrains. Each energy minimization consisted
of a 2,500-step steepest descent minimization and then another 2,500-step conjugated
gradient. Subsequently, a 100-ps MD simulation was performed with the complex subject to
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positional restraint. The 100-ps MD simulation was used to heat the system from 0 to 300 K
in NVT ensemble. Finally, a 2-ns unrestrained NPT simulation was performed, with
temperature and pressure controlled at 300 K and 1 atm, respectively, by applying
Berendsen weak-coupling algorithm 40. The particle mesh Ewald (PME) method 41, 42 was
used to treat the long-range electrostatic interactions. The cutoff distances for the real-space
of PME and the Van der Waals interactions were set to 10 Å. All bonds involving hydrogen
atoms were constrained using the SHAKE algorithm 43. An integration time step of 2.0 fs
was used. Atom coordinates were recorded every picosecond. The snapshots generated in
the 2-ns MD simulation were input into the post-simulation MM-GBSA/MM-PBSA
calculations of binding free energy.

MM-GB(PB)SA calculation
In MM-GBSA/MM-PBSA method, the binding free energy is computed as the following 44:

(1)

where ΔGbind,solv and ΔGbind,vac are the binding free energies in solvated state and in
vacuum, respectively. ΔGcomplex,solv, ΔGprotein,solv and ΔGligand,solv are solvation free
energies of complex, protein and ligand, respectively. The solvation free energy, based on
the implicit solvent models, include the polar and the non-polar contributions:

(2)

The polar component of solvation free energy ΔGsolv,polar was calculated by either
Generalized Born (GB) or Poisson Boltzmman (PB) approach. GB is developed to
approximate the exact or linearized PB solutions 45. The non-polar solvation part
ΔGsolv,non-polar was computed from the surface area (SA) of the molecule of concern 46. The
first term on the right hand side of Eq. (1), i.e. vacuum binding free energy ΔGbind,vac can be
decomposed into the enthalpic and entropic:

(3)

where ΔEbind,vac is the gas-phase potential energy (including valence, electrostatic and Van
der Waals terms) change upon binding. In the second term on the right hand side, ΔS is the
entropy change upon binding in vacuum. Therefore, the binding free energy in solution can
be reformulated as:

(4)

in which ΔEMM = ΔEbind,vac since the latter is also called molecular mechanics (MM)
energy. The Δ symbol refers to the difference between the complex and the protein and
ligand in isolation.

The MM-PBSA module 23 of Amber 9 was utilized to calculate ΔGbind,solv from Eq. (4).
The vacuum state as mentioned above is, in reality, a “reference state”, which means it does
not need to have the characteristics of “vacuum” in its ordinary sense. Hence, the relevant
parameter, i.e. relative dielectric constant of the reference state is not necessarily “1” as
defined in real vacuum. As long as dielectric constant of the reference is used consistently in
each and every component of MM, GB (or PB), SA and entropy, the choice of values has
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flexibility. For simplicity we require that the reference dielectric constant equals that of the
solute in our MM-GB(PB)SA calculation such that solvation energy of solutes in the
reference medium is zero. As a result, the GB reaction field energy of the complex, for
example, is simply:

(5)

In Eq. (5) ε and εsolv are dielectric constants of complex (or “vacuum”, equivalently) and
solvent, respectively. qi and qj are atomic charges. fij is a function of distance between atoms
i and j, and their effective Born radii 45, 47. In this work, the dielectric constant of solvent is
always and uniformly 78.0. However, the solute’s dielectric constant is a quantity to be
specified. We let it vary between 1.0 and 10.0 which is a typical range for binding pockets
48, 49. In MM-PBSA the Amber 9 PB solver was used and the lattice spacing was specified
as 0.25 Å 50. Energy estimations with GB were made with the Onufriev’s parameters (igb =
2 which is the default value in Amber 9’s MM-PBSA module) 51. For each of complex,
protein and ligand, the non-polar solvation term Δ Gsolv,non-polar was calculated from the
solvent-accessible surface area (SASA), for example,

(6)

where SASA was determined with the molsurf method using a probe radius of 1.4 Å. A
constant γ = 0.0072 kcal mol−1 Å−2 was used with Amber PB/GB polar solvation energies
46, 52, 53.

The change in solute entropy ΔS during ligand association was estimated by a normal mode
analysis with the “nmode” module of Amber, which computes the molecular mass, principal
moments of inertia, symmetry factor and vibrational frequencies to derive translational,
rotational and vibrational entropies for each of the complex, the protein and ligand 54, 55.
Before normal mode calculations, the complexes were energy minimized with distance-
dependent dielectric constant using a maximum of 50,000 steps and a convergence criterion
for the energy gradient less than 10−4 kcal mol−1 Å−1. The dielectric constant in nmode had
an r2 dependence with distance.

We also performed alchemical free energy calculations with implicit solvent to elucidate the
effects of configurational change due to binding that are not addressed properly. The free
energy difference of binding between two ligands to a common protein is depicted by a
thermodynamic cycle 44. The relative binding energy then is computed as with the explicit
solvent calculations by mutating one ligand into another in 10 steps. The difference is that
here implicit solvent is used. The Bennett Acceptance Ratio (BAR) 56,57, a free energy
estimation method that minimizes variance by utilizing forward and reverse perturbations
was applied to perturb and calculate the free energy difference between neighboring
perturbation states. Snapshots for free energy calculations were generated with TINKER
molecular dynamics 58 using the AMOEBA polarizable force field 59. The electrostatic
contribution to solvation energy was calculated implicitly using the polarizable Generalized-
Kirkwood (GK) model developed by Schnieders et al 60. The nonpolar contributions to
solvation energy are composed of cavitation and dispersion terms 61–64. The soft-core 65

buffered 14-7 potential 66 was used to prevent energetic instabilities as annihilated atoms
could be penetrated by other atoms. This interaction replaces Halgren’s buffered 14-7
interaction only between annihilated and non-annihilated atoms. In addition to the soft-core
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treatment, the radii of annihilated atoms still need to be scaled to zero to annihilate its
contribution to implicit polar and nonpolar solvation energy. The RATTLE algorithm 67 was
used to constrain bonds involving hydrogen atoms. The time step was 1.5 fs and each
simulation at the intermediate perturbation states was run for 150 ps. Since the
configurational degrees of freedom of water are already incorporated in the implicit
solvation contribution, less simulation time is required.

Results and Discussion
The binding free energies calculated by MM-GB(PB)SA analysis have been compared with
experimental data. The quality of the computational prediction has been evaluated by the
Pearson product-moment correlation coefficient (PMCC), R. According to its definition R
falls in the range [−1, 1]. Figures 1A-F give illustrations of correlations between MM-
GBSA (entropic contribution excluded) and experimental pKa’s for all the protein families
we have investigated. The solute dielectric constant 4.0 has been used. Overall all predicted
binding affinities display visible correlations with the experimental data. Four families,
trypsin β, thrombin α, CDK+PKA, urokinase-type and plasminogen activator all have
PMCC greater than 0.7 while the other two, β-glucosidase A and coagulation factor Xa
show slightly worse R values but still sufficiently larger than 0.5—a number that only
sophisticated molecular docking can achieve 14, 17, 68. Although there is clearly room for
improvement, e.g. β-glucosidase A (see Figure 1E) has a cluster at the top right which seems
to give a different correlation, the overall results are encouraging. Note that unlike docking,
the molecular simulation approaches we adopted here utilized general and transferable force
fields that were not parameterized against any known binding data.

When comparing calculation with experiment, one must pay attention to the quality of
experimental data. With careful examination, it turns out the majority of the “Ki” values for
coagulation factors under investigation are actually “apparent” values, as they were
measured in complex biological environments such as blood and living organisms, rather
than true thermodynamic Ki values obtained in biochemical assays. We have labeled such
apparent Ki’s in the supporting material (see Table-S1). It is possible there is a systematic
correlation between the apparent and true Ki if the experiments are done under the same
condition. However given the different sources of these experimental data, this is unlikely to
be the case. This may explain the inferior performance we see for the coagulation factor
family. We present the comparison here but readers need to be cautious about the quality of
these “experimental data”.

In addition, the sequences can be somewhat different among proteins within the same
family. According to Binding MOAD (mother of all databases) data 69, 70, we divided each
protein family into subfamilies based on the criterion of 90% homology (see Table-S1). For
example, trypsin β can be split into three sub-families and coagulation factor Xa four. The
PMCC for each sub-family consisted of no less than 3 members is calculated for ε=4.0 using
MM-GBSA. For example, the R values are 0.74 and 0.79 for two trypsin subfamilies
respectively, 0.94 and 0.55 for coagulation factor (note the issue with apparent Ki), 0.80 and
0.77 for urokinase. To ensure the statistical significance of our results, we report the
correlation for the whole protein families below.

The effect of dielectric constant
The dielectric constant ε of a solute (including protein and ligand) is a predetermined
parameter chosen by users in MM-GB(PB)SA calculation. This is an approximation since ε
is only applicable to macroscopic systems and is unlikely a constant from one solute to
another. However for high-throughput virtual screening with molecular simulations,
specifying individual dielectric constants for a huge number of complexes is not practical.
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So here we examine carefully in this section how the theoretical prediction depends on the
values of ε. Again, the free energy of binding excludes the entropic contribution, i.e. –TΔS
(see Eq. 4). As is shown in Table I, for both GB and PB, a dielectric constant of 4.0 results
in predictions significantly better than 1.0 for all the protein families. The β-glucosidase A is
the most affected system, for which calculations display rather poor correlation with
experiments for both GB (0.18) and PB (0.16) when the dielectric constant of the complex
was set to 1.0. Overall, PB and GB methods give similar results.

To further examine how the dielectric constant affects the binding prediction, we expanded ε
from 1.0 to 10.0. Figure 2 shows how the correlation coefficient between MM-GBSA
evaluations and experimental binding free energy respond to the variation of dielectric
constant. The steeper change takes place only for ε=1.0 to 4.0 for all the families. When ε is
beyond 4.0, the curves all saturate and each stays at a quasi-steady level. The MM-PBSA
displays exactly the same trend as GB (curves not shown here). As can be seen from Eq. (5),
when the dielectric constant is far less than 78.0, i.e., that of water, the GB reaction field
energy scales roughly inversely with ε. And the “vacuum” electrostatic energy scales exactly
with inverse ε. The two components typically have opposite signs and the residue
contributes only a minor portion to the binding free energy when solute dielectric constant is
relative large, e.g. > 4.0. This is why all the curves saturate beyond 4.0. However, if the
solute dielectric constant is reduced, e.g. ε=1.0, meaning the screening effect is very weak,
the addition of reaction field and “vacuum” electrostatic energies becomes a significant
contribution. In addition, it is found that enhanced correlation with experiments does not
promise better absolute values of binding free energies (data not shown here). Negligence of
entropic contribution may be an important attribution. But relative binding potency is of
more interest than the accurate value of absolute binding free energy at the current stage.
Figure 2 indicates that ε=4.0 provides the best prediction in the MM-GB(PB)SA calculations
of relative binding affinity for 5 out of 6 protein groups in the current study. For urokinase,
2.0 performs slightly better that 4.0. Hou and et al did similar study using MM-GB(PB)SA
to a) compute binding free energies of 59 ligands interacting to 6 proteins and b) rescore a
set of 98 multi-family protein-ligand complexes that underwent previous molecular docking
evaluation 14, 26, 27. They also computed MM-GB(PB)SA correlation coefficients with
experiments. It is found that for some families, e.g. the cytochrome C peroxidase family,
ε=4.0 gives a worse R than ε=1.0 and ε=2.0. And ε=2.0 outperforms ε=4.0 in linear
correlation coefficient, using MM-PBSA on the study of the 98 complexes. They also
defined a polar solvent accessible surface difference that is roughly correlated with best
interior dielectric constant in all the protein families they studied. The set of proteins in the
current study seems to be more “polar” than those investigated by Hou et al. Dong et al
studied electrostatic interactions in the binding stability of Barnase and Barstar by
performing Poisson-Boltzmann calculations, also specifying protein dielectric constant εp=4
71. However, aside from employing “solvent-exclusion” (SE) surface determined by solvent
probe as we did, they addressed the dielectric boundary using the van der Waals (vdW)
surface of the protein. The major difference between the vdW and SE surfaces lies in the
many small crevices around the interface, which are left as part of the low protein dielectric
in the SE specification but treated as part of the high solvent dielectric in the vdW surface
specification. The authors suggested that vdW surface is a solution to reduce the desolvation
cost and charge-charge interaction strength that is typically overestimated when a single
static structure is used, and the “vdW + εp=4” protocol results in quantitative agreement with
experimental data. In this work, we have performed molecular dynamics simulations to
sample many configurations of the protein complex which effectively provides more
electrostatic screening and thus we believe that the use of SE surface is appropriate.

The β-glucosidase A family shows distinctively poor correlation when the protein dielectric
constant was set to 1.0. Figure 3 is the binding pocket for PDB I.D. 1oif. In the vicinity of
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the ligand, there are two GLU residues (GLU 351 and GLU 166) with their carboxyl groups
pointing to each other. The contribution of these acidic groups to electrostatic potential is
sensitive to the pre-assigned dielectric constant as well as the protonation states. PropKa
calculation 72 gives pKa values 9.72 for GLU 166 and 5.13 for GLU 351. So GLU 166 has a
high possibility of being protonated and GLU 351 deprotonated at neutral pH. The results
we reported so far were determined by protonating GLU 166 and keeping GLU 351 charged.
Note that the LEaP module in Amber leaves the choice of protonation either to user or by
default, the latter deprotonated both GLUs. We performed MD simulation and MM-GBSA
calculations for both situations. The correlation coefficients between MM-GBSA predictions
and experiments, when both the GLUs deprotonated are: -0.109, 0.167, 0.547, 0.615, 0.623
and 0.622 for dielectric constant ε being 1.0, 2.0, 4.0, 6.0, 8.0 and 10.0, respectively. For
comparison, the corresponding values when GLU 166 is deprotonated are: 0.175, 0.517,
0.605, 0.605, 0.601 and 0.598. The computational prediction does improve when the charges
are correctly assigned, especially at low solute dielectric constant where electrostatic
interaction is stronger, e.g. ε=1.0 or 2.0. On the other hand, by using large dielectric
constants, the “error” due to incorrect protonation assignments seems to have “smeared” out.
Nonetheless, before the simulation and MM-GB(PB)SA calculation, it is paramount to
assure that the protonation states are reasonable, otherwise the results would be
unpredictable.

The introduction of a global dielectric constant is a convenient but coarse treatment to
account for the diminishment of electrostatic interactions screened by environment. Solvent
water has an extremely high dielectric constant, but mostly due to the orientational response
of water molecules. Since our simulations have explicitly sampled protein-ligand motion,
this dielectric component is arguably unnecessary. However, electrostatic distortion by
polarization effects also contributes to dielectric response. A previous study employing a
polarizable force field 73 showed that polarization results in significant screening in the
charge-charge interaction between benzamidine and trypsin. Thus, the use of a high
dielectric constant is effectively “picking up” the missing polarization effect in fixed-charge
models. In Figure 2, it is also noted that both β-glucosidase A and CDK+PKA families
require ε=4.0 and above, while the others saturate earlier at 2.0. It is likely that stronger
polarization occurs in the β-glucosidase A and CDK+PKA binding pockets.

Incorporation of entropic contribution
In the binding pocket, the vibration motion and conformation of ligands and protein are
likely more restricted. The entropic term –TΔS is non-negligible in general. In the
calculations performed so far, we are relying on the assumption that this term remains
constant throughout a wide range of ligands for the same protein. We have investigated the
possibility of improving the prediction by accounting for entropic contributions explicitly. In
our first approach, the entropy change upon binding was estimated using the rigid rotor,
harmonic oscillator approximation 74, 75 via the normal mode module of Amber 9. The
results are collected to Table II. The inclusion of the entropic contribution calculated by
normal mode appears to make both GB and PB predictions worse. Similar findings were
reported previously that entropy estimation based on computationally expensive normal
mode analysis tends to have a large margin of error that introduces significant uncertainty in
the result 76.

C. Gao et al 24 suggested a sophisticated method to account for the effect of ligand
conformational restriction to protein-ligand binding free energy, in which both entropic and
enthalpic energy changes are addressed. The two combined, gives the so-called
configurational free energy change ΔGconf. Multiple conformational energy wells of the
isolated ligand were sampled, followed by the calculation of configuration integral applying
free energy perturbation based on quasi-harmonic approximation of each well. The
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complexes investigated in the current study have overlap with those by C. Gao. For these
common systems, we compare the correlation coefficients of computational predictions after
including configurational free energy change ΔGconf from C. Gao et al (our binding free
energy without – TΔS but plus Gao’s ΔGconf). Unlike the normal mode entropic estimation
which leads to inferior correlation with experiment, the configurational free energy can
worsen correlation (e.g. R of the thrombin α family decreases by ~0.15 for both GB and
PB), improve it (e.g. R of urokinase-type plasminogen activator gains ~0.17), or have
negligent effect (e.g. trypsin β, β-glucosidase A and coagulation factor Xa) (see Table III).
To achieve better correlation, more sophisticated techniques beyond Quasi-harmonic
approximation may be necessary. We have further investigated an alchemical perturbation
approach to rigorously sample the configuration entropy in implicit solvent. In our previous
study 44, we examined the binding free energy of 5 benzamine analogs to trypsin using a
PMPB/SA (Polarizable Multipole Possion Boltzmann/Surface Area) method that is similar
to MM-PBSA. The binding free energy calculated via PMPB/SA with and without entropic
terms, estimated based on harmonic approximation, compared to experimental values 77–82

yielded correlations of 0.667 and 0.708, respectively. Here we recomputed the relative
binding free energy by perturbing one ligand into another in 10 steps. At each step, 150 ps
MD simulations in Generalized Kirkwood (GK) implicit solvent were performed to sample
the protein-ligand configuration. The free energy changes between the neighboring steps
were computed using Bennett Acceptance Ratio (or BAR, see Method section for additional
computational details), and the total relative binding free energy is the sum of contributions
from the intermediate steps. Thus, in this approach, relative binding free energy including its
entropic contribution was explicitly sampled. The “only” approximation is the continuum
solvation model. The addition of intermediate steps, which is completely ignored by
traditional end-state only MM-PBSA approaches, apparently has a significant effect. A
correlation of 0.933 between the calculated and experimental binding free energy was
achieved using the implicit solvent based GK/BAR alchemical perturbation (see Figure 4).
The calculated relative binding free energies have been offset by absolute binding free
energy of trypsin-benzamidine calculated from explicit water simulation 73. Note this offset
has no effect on the correlation we are reporting here. The most significant improvement is
the slope of the calculated binding free energy, which is typically exaggerated by both MM-
PBSA and PMPB/SA. This suggests that the “slower” perturbation between end-states in the
GK/BAR method helps capture the configurational entropy, nonetheless with a ten-time
increase in computational cost. The trypsin-benzamidine systems are relatively “rigid” and
sampling is somewhat easier to converge. The general applicability of implicit solvent based
perturbation approaches requires further investigation of a broad range of protein
complexes, using polarizable and fixed charge force field.

Effect of simulation length
In the above sections, free energy calculated in MM-GB(PB)SA has been averaged on the
entire snapshots across the entire 2 ns MD simulation, starting from the crystal structures. It
is of interest to discern whether shorter simulations will provide similar prediction and how
the R values vary over the period of simulations. We choose trypsin family as an example.
Figure 5-A shows the correlation coefficient R between GB predicted and experimental
binding free energies using the 400, 800, 1,200, 1,600 and up to 2,000 ps MD trajectory
segments, either in the forward (starts from the beginning of simulation) or backward (starts
from the end of simulation) direction. The comparison indicates that the earlier simulation
snapshots gave better predictions, but only slightly. Given that our simulations started with
crystal structures, it is understandable that the conformations close to initial structures tend
to offer better results than those relatively dissimilar. However the difference is non-
substantial, which suggests the initial and later conformations are structurally alike. Figure
5-B compares two free energy calculation methods: MM-GBSA and MM-PBSA. The family
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of concern is also trypsin. The two analysis methods display a highly analogous trend. The
same examinations were applied to all the other families, GB and PB predictions
consistently have similar trends, in both the forward and backwards directions (results not
shown here). In general, no significant difference (< 2% in R values) was found when
different segments of the 2 ns simulation trajectories were used except for urokinase. For
urokinase, the correlation coefficient dropped from 0.78 (2-ns trajectory) to 0.70 if the last
400-ps trajectory was used. Therefore, if starting from or near crystal structure, a reduced
simulation time, e.g. 200–400 ps, could lead to reliable prediction of rankings of different
ligands as demonstrated by the correlation coefficient. This result is consistent with a
previous work on 3 kinases where 10-ps simulations seemed to work reasonably well when
starting from crystal structures 22. However, for a novel system with unknown initial
structure, long simulations would become necessary to obtain equilibrium binding
structures.

Computational Cost
The Amber simulation was executed using PMEMD. The PMEMD simulation was
performed on the supercomputer—Ranger, at Texas Advanced Computing Center (TACC),
each complex is allocated with a compute node of 16 cores total except the glucosidase
family which has a significantly longer backbone hence was allocated 48 cores. The wall-
clock time for the 2-ns simulation of one complex is roughly 20 hours.

For each complex in explicit solvent, a 2-ns MD simulation was performed and the system
configurations were recorded every pico second leading to 2,000 snapshots. MM-
GB(PB)SA were adopted to ensemble-average all the 2,000 snapshots except the
computation-intense normal mode computation where snapshots from every 20 ps were
used. For each complex with water molecules removed, it took about 15 hours to complete
the MM-PBSA calculations of all the 2,000 snapshots using a single CPU core. The cost of
MM-GBSA is much lower, which is about 3 hours. The entropy calculation was split into 2
steps: minimization and normal mode entropy calculation. The frequency to extract
snapshots is every 20 ps, so a total of 100 snapshots were accounted for. For each snapshot,
complex, protein and ligand were treated separately. The ligand computation time is prompt.
For complex and protein, it took ~6 hours to minimize each snapshot, followed by ~4 hours
to perform the normal mode calculation. As we discussed earlier, the expensive entropy
estimation based on normal mode analysis may not improve the prediction. If we neglect the
entropy estimation, and use 200-ps MD simulation trajectory, the cost of evaluating each
protein-ligand complex using MM-GBSA binding would be around 40 hours in a ~2.3 GHz
compute core.

In the configurational entropy calculation reported by Gao et al 24, most CPU time was spent
on MD simulation of the ligands in the multiple wells representing the free-state. The actual
simulation time was case-dependent. For example, for a 38-atom ligand with 30 wells, the
calculation took ~6 hours on a single AMD Opteron 246 (2.0 GHz) processor. In our
implicit-solvent alchemical perturbation approach, the computationally expensive part is the
ten-step perturbation to change one ligand to another. Each of the ten steps is a 150 ps long
TINKER MD simulation in GK solvent using AMOEBA polarizable force field. It takes
roughly 27 hours to run a 150 ps simulation of trypsin complex on 10 CPU-cores (AMD
Opteron 2.4 GHz).

Conclusions
From the study of binding to all the families of protein targets, we show that the molecular
mechanics approach, explicit-solvent MD simulations followed by MM-GB(PB)SA free
energy calculation, provides fairly reasonable prediction of experimental binding free energy
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(R > 0.55 for all the protein families). Also we show that applying molecular mechanics to
virtual screening is practical on today’s regular computing clusters. MM-GB(PB)SA seems
robust for the analysis of a range of protein targets as well as ligands if the correlation with
experiment, rather than the absolute binding affinity, is of concern. We find that the
specification of solute (protein-ligand) dielectric constant is important in the MM-
GB(PB)SA calculation—for the families we studied, 4.0 appeared to give better correlated
binding energy. Previously high dielectric values and vdW surface instead of solvent
exposed surface has been found necessary to screen the electrostatic interactions in protein-
protein interactions 71. While in the current approach MD simulations are utilized to obtain
many snapshots for the subsequent PB and GB calculations, we still find a dielectric
constant of 4 is desirable for the complex. This high dielectric constant is likely needed to
account for the dielectric response due to the electronic polarization effect that is missing in
the fix-charge model. The entropic contribution to binding estimated using a rigid rotor
harmonic oscillator approximation, which computationally is rather expensive, actually
deteriorates the predictions. On the other hand, our preliminary results demonstrate that
employing implicit-solvent based alchemical perturbation is promising for incorporation of
entropy. Also, we show that if starting from a crystal structure, the length of explicit-solvent
MD simulation does not seem to affect the prediction, and therefore short simulations are
sufficient to provide meaningful results. In summary, our work shows that physics-based
molecular mechanics models are promising for the next generation of medium to high-
throughput virtual screening. In continuation of this work, we plan to combine the current
molecular mechanics scheme with conventional docking method to eliminate the initial
dependence on the known protein-ligand complex crystal structure and to explore treatment
of entropic effect utilizing implicit-solvent based alchemical perturbation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Correlation between MM-GBSA predicted and experimental binding free energy. The R
values shown in the figures are the Pearson product-moment correlation coefficients. The
protein dielectric constant in MM-GBSA calculation was set to 4.0. A through F refer to the
following protein targets, respectively: trypsin β, thrombin α, CDK+PKA, urokinase-type
plasminogen activator, β-glucosidase A and coagulation factor Xa. The average standard
deviations for MM-GBSA(MM-PBSA) calculations are 3.7(9.0), 2.0(5.6), 1.5(2.3), 1.4(2.0),
1.0(1.8) and 1.2(1.5) kcal/mol for trypsin β, thrombin α, CDK+PKA, urokinase-type
plasminogen activator, β-glucosidase A and coagulation factor Xa, respectively.
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Figure 2.
Correlation between experimental binding free energies and MM-GBSA calculations using
different dielectric constants for the families of trypsin β, thrombin α, CDK+PKA,
urokinase-type plasminogen activator, β-glucosidase A and coagulation factor Xa.
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Figure 3.
Binding Pocket of PDB ID 1oif. The ligand is shown as lines. The two GLU residues close
to each other are represented in sticks. According to PropKa 72, GLU166 has a pKa value
9.72 and GLU351 5.13.
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Figure 4.
Comparison of experimental 77–82 and calculated binding free energies from BAR/GK and
PM-PB/SA calculations for trypsin-benzamidine analogs.
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Figure 5.
The effect of MD simulation lengths on the calculated binding affinity of the trypsin family.
A) correlation coefficients between MM-GBSA calculation and experimental values. One
configuration snapshot was recorded every picosecond. The forward direction (diamond
markers) starts with the first snapshot recorded and is along the trajectory of the simulation.
The backward (square markers) starts from the last snapshot and is along the time-reversed
direction. B) Comparison of MM-GBSA (diamonds) and MM-PBSA predictions. Both use
trajectory segments in forward direction starting from the beginning of simulations.
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Table I

Correlation Coefficients (R) between MM-GBSA or MM-PBSA Calculations and Experimental Binding Free
Energies for Dielectric Constant ε=1.0 or 4.0.

Protein Targets (# of Ligands) MM-GBSA (ε=4.0) MM-GBSA (ε=1.0) MM-PBSA (ε=4.0) MM-PBSA (ε=1.0)

trypsin β (57) 0.72 0.58 0.70 0.40

thrombin α (28) 0.73 0.63 0.74 0.42

CDK+PKA (19) 0.77 0.58 0.78 0.62

urokinase-type plasminogen activator (19) 0.79 0.75 0.78 0.68

β-glucosidase A (18) 0.61 0.18 0.56 0.16

coagulation factor Xa (15) 0.67 0.58 0.67 0.45
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Table II

Correlations Coefficients (R) between Experiments and MM-GBSA or MM-PBSA Predictions with (e.g. MM-
PBSA + N.M.) and without Entropic Contribution estimated from Normal Mode Analysis. All data presented
are calculated at ε=4.0.

Protein Targets (# of Ligands) MM-GBSA MM-GBSA + N.M. MM-PBSA MM-PBSA + N.M.

trypsin β (57) 0.72 0.64 0.70 0.61

thrombin α (28) 0.73 0.65 0.74 0.64

CDK+PKA (19) 0.77 0.65 0.78 0.69

urokinase-type plasminogen activator (19) 0.79 0.70 0.78 0.68

β-glucosidase A (18) 0.61 0.61 0.56 0.55

coagulation factor Xa (15) 0.67 0.61 0.67 0.61
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Table III

Correlation Coefficients (R) of MM-GBSA or MM-PBSA Predictions with Experiments Including and
Excluding Configuration Free Energy ΔGconf. All data presented are calculated at ε=4.0.

Protein Targets (# of Ligands) MM-GBSA MM-GBSA +ΔGconf MM-PBSA MM-PBSA +ΔGconf

trypsin β (37) 0.69 0.67 0.67 0.63

thrombin α (17) 0.81 0.65 0.83 0.68

CDK+PKA (9) 0.73 0.90 0.74 0.92

β-glucosidase A (14) 0.40 0.39 0.36 0.34

coagulation factor Xa (14) 0.59 0.61 0.58 0.59
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