
Epigenetic methodologies for behavioral scientists

Danielle Stolzenberg, Patrick A. Grant, and Stefan Bekiranov#

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine,
Charlottesville, VA 22908, USA.

Abstract
Hormones are essential regulators of many behaviors. Steroids bind either to nuclear or membrane
receptors while peptides primarily act via membrane receptors. After a ligand binds, the
conformational change in the receptor initiates changes in cell signaling cascades (membrane
receptors) or direct alternations in DNA transcription (steroid receptors). Changes in gene
transcription that result are responsible for protein production and ultimately behavioral
modifications. A significant part of how hormones affect DNA transcription is via epigenetic
modifications of DNA and/or the chromatin in which it is entwined. These alterations lead to
transcriptional changes that ultimately define the phenotype and function of a given cell.
Importantly we now know that environmental stimuli influence epigenetic marks, which in the
context of neuroendocrinology can lead to behavioral changes. Importantly tracking epigenetic
states and profiling the epigenome within cells requires the use of epigenetic methodologies and
subsequent data analysis. Here we describe the techniques of particular importance in the mapping
of DNA methylation, histone modifications and occupancy of chromatin bound effector proteins
that regulate gene expression. For researchers wanting to move into these levels of analysis we
discuss the application of modern sequencing technologies applied in assays such as chromatin
immunoprecipitation and the bioinformatics analysis involved in the rich datasets generated.
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Introduction
The fundamental repeating subunit of eukaryotic chromatin is the nucleosome particle. The
nucleosome consists of approximately 147 bp of DNA wrapped around an octamer of two
copies of histone H2A, H2B, H3 and H4. Numerous histone modifications have been
described, which include acetylation, methylation, phosphorylation, ubiquitylation and
sumoylation amongst others. Furthermore DNA is extensively modified by methylation.
Much of today's epigenetic research is converging on the study of such covalent
modifications of DNA and histone proteins and the mechanisms by which such
modifications influence chromatin function. Histone modifications do not simply illicit
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direct structural changes in chromatin, but recruit specific effector proteins to sites of
modification that transduce the epigenetic mark (Daniel et al., 2005). A number of technical
approaches have been devised to identify and characterize epigenetic marks and the effector
proteins that recognize them genome wide. An exciting area of research now involves
characterization of epigenetic changes in behavioral disorders where any underlying genetic
abnormalities are not necessarily obvious. Importantly, current and past environmental
exposure and social experiences can modify chromatin in specific areas of the brain that
influence gene expression and change what is termed the “epigenome” of an individual.
Epigenomics refers to a more global analysis of epigenetic changes across the entire
genome. The main purpose of our review is to detail and review current epigenetic and
epigenomic methods including assays and bioinformatics analysis for researchers interested
in exploring the epigenetic underpinnings of behavior and enabling them to select the best
set of methods for their particular study.

In recent years, as chromatin modifications have been found to mediate gene-environment
interactions, the study of epigenetics has been extended to focus on the epigenetic
mechanisms which mediate the effects of environmental factors (social interactions,
experience, stress, endocrine disrupting compounds, drugs) on brain and behavior (reviewed
in this issue and see; (Crews, 2008; Fagiolini et al., 2009; Laplant and Nestler, 2010;
Meaney and Szyf, 2005). During the prenatal and postnatal periods, environmental signals
produce long lasting effects on developing offspring that persist into adulthood. For
example, both natural variations in maternal care as well as maternal deprivation are
associated with chromatin modifications (histone acetylation and DNA methylation) which
impact gene transcription and subsequent adult social and parental behavior (Champagne
and Curley, 2009; Curley et al., 2010; Roth and Sweatt). Further, some behavioral
epigenetic modifications can be transmitted to future generations via maternal behavior
(Champagne and Curley, 2009), maternal environment (Arai et al., 2009), or via an
epigenetic reprogramming of the germ-line (Crews et al., 2007). In the latter case, effects of
the endocrine disrupting compound vinclozolin were transmitted to future generations that
were not directly exposed to the compound (Jirtle and Skinner, 2007).

In addition to the role of epigenetic modifications in mediating gene-environment
interactions, emerging evidence indicates that one mechanism through which steroid
hormones exert their effects on gene transcription is through alterations in the epigenome.
Therefore, an important application of epigenomics to behavioral neuroendocrinology is to
enhance our understanding of how steroid hormones alter gene expression. For example,
recent data indicates that the masculinization of brain and behavior by testosterone during
the neonatal period is dependent upon DNA methylation and the recruitment of nuclear
corepressors which act as part of the steroid hormone receptor complex and might also
recruit histone deacetylases (HDACs) to repress gene expression ((Auger et al.)). Further,
elucidating the role of epigenetic modifications at steroid hormone receptor complexes
might be an important avenue of investigation for understanding the molecular pathways
involved in regulating reproductive behaviors and the consolidation of reproductive
experience. In support of this idea, administration of the HDAC inhibitor sodium butyrate
has been found to potentiate the effects of sexual experience in female mice (Bonthuis et al.,
2010). Interestingly, the behavioral effects of HDAC inhibition on sexual behavior were
dependent upon estrogen receptor alpha (ERα), because sodium butyrate failed to facilitate
sexual behavior in ERαKO mice. These data are congruent with the finding that the
facilitatory effects of sodium butyrate on the consolidation of memory depend on CREB-
binding protein (CBP) (Vescey et al., 2007), a histone acetyltransferase (HAT) which has
been shown to interact with ERα (Kim et al., 2001). However, it is presently unclear
whether the effects of sodium butyrate on female sexual behavior are associated with
increased histone acetylation at sites where CBP is known to act, and whether these
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epigenetic marks are associated with DNA sequences in the promoter region of ERα targets
or the ERα gene itself. These types of questions can be explored using the techniques
described herein.

Mapping of DNA methylation
In mammalian cells methylation occurs on the fifth carbon of cytosine residues of CpG
dinucleotides, which occur in high density in genomic regions known as CpG islands (Goll
and Bestor, 2005). Typically, DNA methylation is associated with gene repression and
provides a stable and heritable mechanism of epigenetic regulation. In order for these
methylation marks to remain stable and heritable, DNA methyltransferase proteins
(DNMTs) catalyze the de novo formation and maintenance of 5-methylcytosine (5mC)
(Bestor, 2000). Numerous techniques have been devised to study DNA methylation over the
past three decades. Regardless of whether the experimental question asks where methylation
marks are present at a specific gene locus, or where the methylation marks are located across
the entire genome, the first step in most commonly used assays is to distinguish 5mC from
unmethylated cytosine via (1) selective digestion of unmethylated DNA using restriction
enzymes, (2) conversion of unmethylated cytosine by sodium bisulfite treatment or (3)
selective affinity enrichment using antibodies or proteins towards 5mC (see Table 1 and
(Laird, 2010) for more details as well as (Esteller, 2007; Tost, 2009). The products of these
assays can then be analyzed at a single locus or throughout the entire genome. Genome scale
approaches that relied on PCR amplification and gel electrophoresis of the reaction products
have more recently been replaced by array hybridization and sequencing approaches (Laird,
2010). High-throughput sequencing (HTS) platforms enable the sequencing of hundreds of
millions of short DNA fragments in a single run. This has enabled the rapid sequencing of
whole genomes, mRNAs and other novel RNAs for gene expression analysis, DNAse I
hypersensitive sites, genomic variations and DNA associated with epigenetic marks. While
microarray hybridization techniques launched the era of epigenomics, current sequencing
technology has enabled base-pair resolution mapping of DNA methylation. HTS techniques
have recently provided more powerful DNA methylation analysis, enabling higher
resolution while covering the entire genome and avoiding the need for array design and
hybridization.

Restriction enzyme digestion
Methylation sensitive restriction enzymes are inhibited by 5mC and so their digestion
patterns can give a read-out of DNA methylation. The most widely used of these
endonucleases are HpaII and SmaI. When used in combination with methylation-insensitive
enzymes with the same sequence recognition, a methylation digestion map can be
developed. Several array hybridization techniques have been developed that analyze
restriction enzyme digestion products (Laird, 2010). This includes differential methylation
hybridization, which generates a pool of methylation-sensitive restriction enzyme digested
DNA and compares it to a mock digested pool. The DNAs are amplified and labeled with
different dyes for two-color array hybridization (Yan et al., 2009). The relative signal
intensities allow for the identification of loci with DNA methylation. However, using HTS
for a genome-wide analysis would be even more powerful. For example, Methyl-seq
(methylation/bisulfite conversion sequencing) is the term given to an approach that involves
sequence based analysis of HpaII digested DNA libraries (Brunner et al., 2009). A number
of similar restriction enzyme approaches have now been adapted to utilize sequencing
(Table 1). Furthermore, HTS is becoming the method of choice in chromatin
immunoprecipitation assays, discussed below.
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Chemical conversion of unmethylated cytosine
A particularly useful tool in the mapping of DNA methylation marks has been the chemical
deamination of unmethylated cytosines by sodium bisulfite (Frommer et al., 1992). In this
approach unmethylated C’s undergo conversion to T’s. Originally Sanger sequencing of
treated and untreated DNA PCR products gave a readout of base-pair resolution methylation
patterns. Bisulfite-converted DNA has also been used in designer hybridization arrays,
where the mismatches created using this approach lead to lower levels of hybridization
efficiency when compared to non-methylated DNA (Laird, 2010). A further adaptation of
this approach is the Illumina GoldenGate technonology. This approach involves a
multiplexed methylation specific primer extension of bisulfite-converted DNA at around
1,500 CpG sites, which is compared to unmethylated sequences. Each of the primers is
labeled with a different dye and products are hybridized to CpG bead arrays. The Illumina
Infinium DNA methylation analysis involves hybridization of amplified bisulfite converted
DNA to methylation specific oligos linked to beads. This approach analyzes more than
27,500 CpG sites (Laird, 2010). HTS platforms are now being utilized in the analysis of
bisulfite converted DNA, avoiding some of the challenges of array hybridization. Although
this treated DNA has low sequence complexity in relation to untreated DNA, a number of
targeted capture approaches have been developed to reduce sequence redundancy (reviewed
by (Laird, 2010)). However, particularly exciting is whole-genome bisulfite sequencing that
has been achieved in human cells using an Illumina Genome Analyzer, generating base pair
resolution maps of DNA methylation (Lister et al., 2009). Strikingly, bisulfilte sequencing
revealed that nearly 25% of all methylation identified was non-CpG in embryonic stem cells
(Lister et al., 2009). In addition, non-CpG methylation showed enrichment in gene bodies
and depletion in transcription factor binding sites and enhancers (Lister et al., 2009). While
this approach is not free from problems, it is perhaps the wave of the future as sequencing
technology becomes more available and as sequencing costs drop.

Affinity Enrichment
Chromatin Immunoprecipitation (ChIP) is a technique that assays protein-DNA binding in
vivo (Solomon et al., 1988). This approach is described in more detail below in the context
of histone modifications. Briefly, ChIP assays utilize an antibody with specificity against a
selected epigenetic mark or protein bound to chromatin and allows for the enrichment of
DNA fragments that are associated with it. This method allows one to determine whether the
epigenetic mark is linked to a particular target at a particular time point. The isolated DNAs
can then be hybridized to microarrays (ChIP-chip). Such arrays can bear oligonucleotides
that encompass the entire non-repetitive genome or select promoter regions. A recent
adaptation of ChIP involves the sequencing of precipitated DNA fragments, referred to as
ChIP-seq. In contrast to ChIP-chip, ChIP-seq has a number of advantages including higher
resolution mapping of epigenetic marks and lower cost for mammalian genomes. Affinity
enrichment of methylated DNA is achieved using antibodies for 5mC on denatured DNA
(Mukhopadhyay et al., 2004) or methyl-binding proteins on native DNA, such as methyl-
CpG-binding protein 2 (MECP2) or methyl-CpG-binding domain 1 (MBD1) (Cross et al.,
1994; Jorgensen et al., 2006). The enriched products can then be hybridized onto
microarrays (reviewed by (Laird, 2010) or sequenced by next generation sequencing (NGS)
(Down et al., 2008). The approach allows rapid generation of bulk genome-wide maps of
DNA methylation, yet does not yield information on individual CpG sites and may reflect
bias towards the identification of genomic locations of a higher density of CpG methylation.

Recently a second type of DNA methylation, 5-Hydroxymethylcytosine (5hmC), has been
reported (Kriaucionis and Heintz, 2009) arising from enzymatic oxidation of methyl
cytosine by tet oncogene 1 (TET1) (Tahiliani et al., 2009). 5hmC may represent a
biologically important DNA modification or an intermediate in a DNA demethylation
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pathway. Sodium bisulfite treatment of DNA is incapable of distinguishing between 5hmC
and 5mC (Jin et al., 2010). In contrast, techniques based on ChIP with an anti-5mC antibody
(referred to as MeDIP) or proteins that bind to methylated CpG sequences, such as MBD1,
are specific for 5mC and do not detect 5hmC unless both modified bases occur in the same
DNA fragment. Commercially developed antibodies specific to 5hmC have very recently
become available and ultimately the mapping of 5hmC will require the verification of these
reagents in ChIP approaches. This may help shed led light onto the relevance of 5hmC.

Mapping of histone modifications and histone variants
Mapping of histone modifications, histone variants and protein-DNA interactions is key in
understanding the epigenome and its associated regulation of gene expression. Histone
modifications can combine to alter the packaging of DNA, nucleosome positioning and the
recruitment of effector proteins that ultimately influence transcription. The main tool for
mapping the location of histone modifications is ChIP. To perform this technique histones
and other DNA-binding proteins are typically crosslinked to DNA with formaldehyde and
subsequently sonicated to generate small DNA fragments of 150bp or larger. An antibody
specific to a particular histone modification, variant or chromatin-binding protein is used to
enrich for bound DNA fragments by immunoprecipitation. The crosslink is reversed and the
DNA assayed. Alternatively micrococcal nuclease digestion of DNA without crosslinking is
often used to digest linker DNA between nucleosomes and is of particular use to map
nucleosome positions.

Recall in our previous example that although administration of sodium butyrate has been
found to facilitate female sexual behavior (Bonthuis et al., 2010), the mechanism through
which HDAC inhibition modulates sex behavior is presently unknown. ChIP would be a
useful tool to investigate this issue. A potential first step would be to choose an antibody to
either one of the acetylated histone proteins (H2A, H2B, H3, or H4) or to choose an
antibody to a more specific acetylation site that enzymes such as CBP modify (e.g.
H3K14ac). In light of the finding that the facilitatory effects of sodium butyrate on female
sexual behavior are dependent upon ERα, a relevant question is whether H3K14ac and CBP
activity are associated ERα-dependent transcriptional changes. A locus-specific analysis of
the ChIP products would answer the question of whether the mark H3K14ac is associated
with known ERα bound promoters, however, another unbiased way to answer this question
would be to use a genome-wide analysis in order to determine all of the sequences
associated with H3K14ac and ERα across the entire genome. A genome-wide approach,
such as ChIP-seq, would answer the question of whether H3K14ac is associated with the
transcriptional activity of ERα, but it would also potentially determine all of the genes that
are associated with H3K14ac and female sexual behavior.

A critical element in any of these approaches is the validation of the antibody to be used. For
example, it is key that an antibody recognizing a given histone methylation mark, such as
mono methylated H3 at lysine 4 (H3K4me3) does not crossreact with higher methylated
isoforms, other methylated lysines, or other non-histone proteins that likely have different
biological functions. Furthermore, the efficiency of an antibody as being ChIP grade needs
to be established.

ChIP-chip and ChIP-seq
In ChIP-chip the precipitated DNA fragments obtained are identified by hybridization to a
microarray (Blat and Kleckner, 1999; Ren et al., 2000). Tiling arrays allow for interrogation
of the majority of the genome or can be designed to highlight selected regions of the
genome, such as promoter arrays. Much of our progress in the understanding of histone
modifications and their biological roles can be attributed to ChIP-chip approaches over the
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past decade. For example, genome-wide histone modification patterns have been described
for yeast using ChIP-chip, but only partial maps had been generated for mammalian cells
(Reviewed in(Park, 2009). However the rapid development of NGS technology and an
increase in its availability and affordability has encouraged the current surge in the use of
ChIP-seq in the mapping of histones and their modifications. ChIP followed by sequencing
gives a higher resolution, larger genomic coverage and a greater dynamic range than that
afforded by microarray approaches. Typically millions of sequencing reads of around 30–
80bp are generated, and recent sequencing developments promise even longer reads
(Metzker, 2010). While this approach presents some particular bioinformatics challenges,
discussed below, of particular value in this approach is the more precise mapping of
transcription factor and effector protein binding sites and histone locations. For example,
maps for nucleosome positions, 20 histone methylation marks, 18 histone acetylation marks,
RNA polymerase II, the histone variant H2A.Z and the transcription factor CTCF were
generated in human T cells with ChIP-seq using the Illumina Solexa platform (Barski et al.,
2007; Wang et al., 2008). Furthermore histone methylation maps have been generated for
mouse embryonic stem cells (Mikkelsen et al., 2007), reinforcing the discovery of bivalent
domains of methylation that mark developmental genes. In parallel, Roche 454
pyrosequencing technology was used in the mapping of H2A.Z in yeast and flies (Park,
2009).

In ChIP-seq, following the initial purification of histone or other protein-bound DNA,
common adaptors are ligated to the ChIP DNA and amplicon libraries are generated. All
templates are enzymatically extended in parallel, a process that incorporates fluorescent
labels. There are several platforms which can be used to sequence these DNA samples. The
Illumina Solexa Genome Analyzer performs sequencing-by-synthesis of clusters of clonal
sequence fragments. The Roche 454 approach utilizes emulsion PCR, where a PCR reaction
emulsion encapsulates bead-DNA complexes and generates beads containing thousands of
copies of the same template. The Applied Biosystems SOLiD platform uses a DNA-ligase
driven synthesis. The Helicos Heliscope platform allows for single molecule sequencing
where a single DNA molecule is sequenced from an immobilized primer, avoiding the need
for DNA amplification. Pacific Biosciences offers another adaptation in which the
polymerase is immobilized on a solid support, a technology which allows for the sequencing
of larger DNA molecules, resulting in potentially longer read length. Current sequencing
technologies are reviewed in detail by Metzker (Metzker, 2010).

In continuing with the above example, either ChIP-chip or ChIP-seq would be able to assess
the location of the H3K14ac mark across the whole genome (for a good example of the
advantages/disadvantages of using ChIP-chip rather than ChIP-seq using this type of data,
see (Laplant and Nestler, 2010)). An obvious advantage of ChIP-seq over ChIP-chip is that
whole genome analysis is not limited to probe sequences available on an array and that
higher resolution can be achieved (Table 1). ChIP-seq also affords a higher dynamic range
with large numbers of DNA potentially sequenced. Furthermore ChIP-chip requires 10–
100ng of starting DNA, which is then PCR amplified to 2 micrograms or more per array
(Reviewed in (Park, 2009). ChIP-seq requires only 10,000–100,000 cells for whole genome
interrogation studies, which represents two or three orders of magnitude fewer cells than
ChIP-chip. Therefore, this technique might be helpful when examining small regions of the
brain where it might be difficult to get 10–100 ng of starting DNA. Also fewer rounds of
PCR amplification required in the generation of the sequencing libraries reduce concerns of
PCR sampling bias.

Most ChIP-seq studies to date have used input DNA as a control in sequencing reactions to
account for any differences in genomic DNA shearing, solubility and amplification. A
particularly valuable control when considering the mapping of histone modifications is to
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map bulk histones. For example, knowing the genome wide location of histone H3
methylated at lysine 4 is only fully relevant when the genomic location of all H3 histones
within nucleosomes is known. Regions of nucleosome depletion or enrichment may
otherwise skew interpretation of results for a given histone modification. Thus a meaningful
ratio can be drawn between the fraction of nucleosomes that carry a particular modification
relative to those that do not.

Another useful technique is multiplexing which allows for the simultaneous sequencing of
multiple samples in a single run. Independently prepared samples are ligated to different
barcode adaptors (short set of oligonucleotide base pairs) that carry a few unique nucleotides
that enable their identification in a common sequencing analysis (Lefrancois et al., 2009).
This approach will hopefully offset the costs of multiple sequencing runs in the future.

Analysis of Epigenetic Data
The methods outlined above offer the advantage of rapidly sequencing the entire genome,
however, sequencing the entire genome generates massive amounts of data, which need to
be processed and analyzed. For example, one lane of ChIP-seq data (i.e., one sample)
generates ~gigabyte of sequence data. Therefore, when planning these experiments, it is
important to consider how these massive amounts of data will be analyzed. Facilities that
offer sequencing analysis often include some nominal statistical assessments, but this is only
the tip of the iceberg and to justify the time and costs involved it is necessary to mine the
data. For this, the recruitment of a bioinformatician and the use of appropriate hardware and
software will be essential.

In what follows, we have outlined the process by which ChIP-seq data is analyzed using one
of the available HTS platforms, the Illumina Genome Sequencer. Although we review
methylation-based assays above, we will restrict our discussion to ChIP-seq analysis as the
tools are more mature for this application. We focus on the bioinformatic analysis of ChIP-
seq as opposed to ChIP-chip because, as described above, ChIP-seq affords many
advantages including cost, improved dynamic range and ability to identify binding sites at
higher resolution. It is important to note, however, that many of these approaches are either
directly applicable or generalizable to methylation-based HTS assays (e.g., see (Down et al.,
2008) for MeDIP-seq and MeDIP-chip analysis tools). Further, all the biologically
meaningful data mining or high-level analysis steps are the same once significant sites are
identified. Finally, while we focus on the Illumina Genome Analyzer, as it is the most
popular HTS platform, note that the basic analysis steps are similar for the other HTS
platforms.

The Illumina Genome analyzer uses a sequence-by-synthesis method in order to sequence
~10 gigabases of DNA in a few days. Once assayed, ChIP DNA samples are nebulized to
~150bp fragments and ligated to adapters that bind to linker molecules on the surface of a
flow cell. Once bound, the DNA fragments are then amplified through a bridge
amplification step, which generates clusters of sequence clones. The Illumina’s sequence-
by-synthesis process consists of 30–80 sequencing cycles depending on the specific
instrument (i.e., resulting in 30–80 nucleotide read length). Completion of the sequencing
cycles constitutes an Illumina “run”. Each flow cell consists of 8 lanes, which allow 8
independent samples to be sequenced. Each lane is further subdivided into hundreds of tiles.
Four image files—one for each of the four base dyes—are generated for each tile. These
image files constitute the raw data from which the sequence read and sequencing error rate
data are derived using Illumina’s analysis pipeline software.

There are three main stages of the analysis pipeline (each referred to by name; see Figure 1):
image analysis (Firecrest), base calling (Bustard), and sequence analysis (Gerald/Eland).
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The first stage of analysis, Firecrest, involves direct assessment of fluorescent signals from
the Illumina Genome Analyzer. During the Firecrest stage, the Illumina software calculates
intensity values from the images for each raw fluorescent signal. These signal intensities are
then used to determine (“call”) the bases. The second stage of the analysis, Bustard,
determines the sequence of the bases. Bustard also assigns a quality score for each base. The
final stage of the pipeline is executed by Gerald, during which the mapping program, Eland,
aligns the nucleotide reads to a reference genome (i.e. yeast, mouse, etc.). Eland classifies
all reads according to (1) whether they map to repetitive or unique regions of a genome and
(2) the number of mismatches between the read and the reference genome.

The analysis of the raw data generated from the Illumina Genome Analysis pipeline
software can be broadly viewed as two-stage process. The first step consists of low-level
analyses: quality assessment, calculation of enrichment profiles across the genome, and
identify significantly enriched peaks/loci. High-level analysis of the data involves
quantification and visualization of the data, which allows for interpretation of the data in a
biologically meaningful way. The Illumina Genome Analyzer is equipped with two software
packages that perform low (analysis pipeline) and high levels of analysis (BeadStudio or
GenomeStudio), in addition, other open source tools are also available for these types of
analyses as well.

Low-Level Analysis of Epigenomic ChIP-seq Data
Quality Assessment of Illumina Genome Analyzer Data

The analysis pipeline software assesses the quality of the data at each stage of the pipeline
(Figure 1). Bustard assigns a quality score to each of the possible nucleotide calls (i.e., Q-
score), which range from −40 to 40. Ideally, one nucleotide receives a score of 40 and the
remaining three nucleotides receive scores of −40. The Q-score is based on the probability
of an error in base calling. For example, if the probability of error is 1 in 10, the Q-score
would be 10, indicating that a particular base call is 90% accurate. Q-scores of 40, therefore,
indicate that a base call is 99.99% accurate. Many calls are less than ideal in which case the
nucleotide with the highest Q-score is called. An aggregate quality score, QAG—defined as
the maximum Q-score minus the sum of the remaining three Q-scores— is also calculated.
Gerald filters out low quality reads, that would be highly ambiguous, trims the sequences by
excluding low quality ends, and maps the reads to the selected reference genome. Gerald
also generates a summary.html file, which tabulates a number of statistics for each lane of a
run including: (1) number of clusters (i.e., raw and filtered by the Illumina pipeline), (2)
average of four intensities (i.e. one per base type) for filtered clusters at the first cycle, (3)
the ratio of the average of four intensities at the twentieth cycle over that at the first
represented as a percentage, (4) percentage of clusters that pass Illumina’s quality filters, (5)
percentage of filtered reads that were uniquely mapped to the reference genome, (6) the
average filtered read alignment score and (7) the percentage of called bases that do not
match the reference sequence calculated from mapped reads. This is the first file that should
be viewed after a run is completed. It allows an investigator to assess the quality of each
lane of a run. Tools are also emerging that perform additional quality control analysis on
Illumina Genome Analyzer data, which assess data quality and help diagnose problems that
may have caused a failed sequencing run.

Additional tools for quality assessment
TileQC (Dolan and Denver, 2008) provides functions that allow tile-based quality control.
The package contains a number of functions that generate image plots of various Illumina
quality control metrics including the 8 read map categories generated by Eland and QAG.
The metrics are coded according to color and size and placed in the physical locations of the
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reads within a specified tile. Companion histograms of the 8 read map categories appearing
in a selected tile are also generated. A user can generate these images for a specified subset
of cycles. In addition, tileQC contains functions that generate plots of Illumina read map
categories and QAG as a function of sequence cycle and tile. These utilities allow
assessment across tiles and cycles that can isolate artifacts (Dolan and Denver, 2008) or a
particular sequencing cycle that had a high failure rate. This allows investigators to filter out
particularly bad tiles or be cautious in interpreting mismatches that occur at low quality
cycles as single nucleotide polymorphisms (SNPs).

A complementary quality control tool, PIQA (Martinez-Alcantara et al., 2009), generates
graphical representations of cluster densities of sequence clones on the flow cell, base
quality scores and nucleotide frequencies across tiles and cycles. It also provides a statistical
summary of these quality metrics for a user-selected lane of a flow cell. One of the most
important indicators of a successful run is the cluster density. Cluster densities that are either
too high or low can result in 1–2 orders of magnitude reduction in the number of mappable
reads (i.e., far below the 20–40 million (M) expected); hence a failed lane. PIQA generates a
plot of the number of clusters across tiles to assess this important quality metric. In addition,
PIQA generates a number of plots of base call quality metrics as a function of tile or cycle
including: (a) proportion of base calls per cycle and (b) average base calls per tile or cycle.
Because each lane contains randomly fragmented genomic DNA, the proportion of
nucleotides observed in each tile, lane and cycle should be nearly identical. Significant
deviations from this could indicate a sample preparation problem (Martinez-Alcantara et al.,
2009) or a technical problem with the sequencing run. Indeed, in one case, Martinez-
Alcantara highlight a sample where too many adapter sequences were introduced during
sample preparation resulting in sequencing of adaptors rather than sample DNA. This is a
common problem with library construction that can lead to low quality sequence data
including orders of magnitude less mappable sequence reads than expected; hence, a failed
lane or run.

Additional tools for sequence mapping
Although the Illumina pipeline runs Eland which maps sequence reads to a reference
genome, users may want to explore alternative mapping options (e.g., allowing more than 2
mismatches; Figure 1). There are many considerations regarding sensitive and specific
mapping of reads to a genome including number of allowed mismatches, degree to which
reads are trimmed at the more error-prone 3’ end, number of allowed locations to which a
given read can map and alignment scoring. Given that even for one lane, ~40M reads must
be mapped to 3 billion base pairs of the human or mouse genome, there are also important
performance criteria to consider including program speed and memory usage.

Fortunately there are many read-mapping tools emerging that are flexible (i.e., include many
user defined mapping options), memory efficient and fast (Trapnell and Salzberg, 2009)
including Bowtie (Langmead et al., 2009), BWA (Li and Durbin, 2009), MAQ (Li et al.,
2008), Mosaik, Novoalign, SOAP (Li et al., 2008) and ZOOM (see Figure 1 for resource
links). Many of these allow a user to specify the number of allowed mismatches to the
reference genome, perform 3’ end read trimming, number of locations to which a read can
map (with unique mappings being the most informative) and probabilistic scoring of the
mapping taking into account the Illumina quality score and alignment information (e.g.,
number and type of mismatches). These programs achieve relatively high speeds by
indexing the reference genome. Indexing a genome effectively generates a look-up table
similar to the index at the end of a book that allows a rapid search of the subsequences
contained in the reference genome (Trapnell and Salzberg, 2009). Thus, a user first runs a
program that indexes the reference genome and then runs the mapping tool against the
indexed genome. However, the different programs listed above index the reference genome
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using different algorithms which results in significant performance differences. For
example, MAQ uses a space-seeding approach (Li et al., 2008) which requires over 50
gigabytes (Trapnell and Salzberg, 2009) while BWA and Bowtie use the Burrows-Wheeler
transform which in contrast, only requires two gigabytes of memory to store the human
genome (Langmead et al., 2009; Li and Durbin, 2009; Trapnell and Salzberg, 2009). The
Burrows-Wheeler based algorithm is considerably more complex but much faster than a
space-seed based algorithm (Langmead et al., 2009; Trapnell and Salzberg, 2009). In order
to get a sense of the performance of these programs, we note that using a 2.8GHz dual quad-
core MacPro with 32 GB of RAM, BWA mapped reads to the human genome in 3.5 hours.
For relatively high quality data, that pass the quality control filters described above, 70–75%
of the ~40M reads can be mapped to the reference genome, yielding ~30M mapped reads.
Regarding genomic coverage, while 48% of the human genome is non-repetitive, 80% and
89% is mappable, with 30bp and 70bp reads respectively (Park, 2009; Rozowsky et al.,
2009). This is due to the fact that repetitive and unique sequences are interspersed, and even
if only a portion of a read contains unique sequence, the unique segment anchors the read to
a location.

Finally, given that imprinting plays an important role in development and behavior,
understanding whether the maternal, paternal or both alleles contain a mapped mark at a
given locus can be of great interest in a study. Marks that map to loci that contain a
heterozygous SNP allow determination of whether the mark originated from one allele or
both alleles. Thus, once the reads are aligned, an investigator can call and view SNPs using
SAM tools (Li et al., 2009). SAM includes a consensus sequence base caller— algorithm
that identifies the same SNP in overlapping independent reads—and viewer (Li et al., 2009;
Trapnell and Salzberg, 2009).

Calculation of Enrichment Profiles
After the data has been assessed for quality, poor quality reads/tiles have been filtered out
and the reads have been mapped, a common next step in ChIP-seq analysis is to generate
read enrichment profiles and identify significantly enriched loci. Read enrichment profiles
are simply the number of overlapping mapped reads at any given nucleotide position in the
reference genome as a function of genomic coordinate. The Wold lab has developed a handy
tool that performs this task (Figure 1). The mapped read file must first be converted to a
BED file format, which represents that mapped read locations as chromosome start position
and stop position, in order to input the data into the Wold lab calculator. The Wold lab
enrichment calculator outputs the profile in WIG format, a file format that represents the
read enrichment profile as chromosome, start and stop of a constant stretch of overlapping
reads and the number of overlapping reads. The read enrichment profile is useful for both
downstream/high level analysis (discussed below) and visualization of peaks across the
genome. There are a number of genome browsers available for viewing read enrichment
profiles in WIG format (Figure 1). These allow further assessment of the quality of the data.
For example, H3K4me3 is known to mark the 5’ end of active genes. If this mark is used for
ChIP-seq, the lack of peaks at the 5’ end could indicate a bad antibody or another problem
with sample preparation. This is also the exciting beginning of data exploration and
discovery including checking whether or not a mark is present at specific genes, identifying
specific loci wherein broad domains of epigenetic marks occur, and finding intergenic loci
where, if present, peaks could mark regions where enhancers bind or the start sites of poorly
annotated non-coding RNAs.

Although useful, browsing is a powerful qualitative research undertaking, which does not
yield a good global summary of genomic trends in the data nor provide a comprehensive
ranked list of genes, pathways impacted, etc in the data. Thus, a useful next step is to
identify significantly enriched loci/peaks over control (i.e., indentify the signal peaks and
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ignore noise peaks). Fortunately, there are a number of ChIP-seq peak finders that have
recently been developed (Park, 2009).

Calculation of Significantly Enriched Loci or Sites
Currently, the most powerful ChIP-seq peak finders (Boyle et al., 2008; Jothi et al., 2008;
Kharchenko et al., 2008; Park, 2009; Schmid and Bucher, 2007; Valouev et al., 2008; Zhang
et al., 2008) take advantage of the fact that ChIP-seq fragments are sequenced from the 5’ to
the 3’ end. Thus, when the top strand of a ~150bp ChIP-seq fragment is sequenced, a
representative (i.e., 30–80bp) top-strand read is generated from the 5’ end of the fragment
which, when mapped, will appear to the left of the site of a sharply peaked epigenetic mark
on a genome browser. Similarly, when the bottom strand of a ~150bp ChIP-seq fragment is
sequenced, a representative bottom-strand read is generated from the 5’ end of the fragment
which, when mapped, will appear to the right of the site of a sharply peaked mark on a
genome browser. Thus, the mapped reads should form two distributions, one to the left of
the mark on the top strand and one to the right of the mark on the bottom strand. These
distributions should be separated by a fixed distance. Many of these tools identify the
location of the mark/peak by calculating a combined profile and shifting each distribution
towards the center (Kharchenko et al., 2008; Park, 2009; Valouev et al., 2008; Zhang et al.,
2008) while one (Jothi et al., 2008) directly calculates the difference in enrichment between
top and bottom strand reads and identifies the crossover point where this metric reaches
zero. Methods are also being developed that can identify significantly enriched broad
domains of modified histones (Bernstein et al., 2005; Park, 2009). Once the combined peak
is generated, it must be scored. These tools (Boyle et al., 2008; Jothi et al., 2008;
Kharchenko et al., 2008; Park, 2009; Rozowsky et al., 2009; Schmid and Bucher, 2007;
Valouev et al., 2008; Zhang et al., 2008) use a well-motivated null model or noise
distribution (i.e., reads from sequences that were not specifically pulled down by the
antibody). A reasonable null distribution for ChIP-seq data is the Poisson distribution (Park,
2009), which is appropriate for cases where the likelihood of an “event” (e.g., a read
mapping in any given 150bp stretch of the genome) is rare and there are many “events” (i.e.,
there are 20 million 150bp stretches in the human or mouse genomes). Using the Poisson or
another appropriate null distribution, p-values—defined as the fraction of the null
distribution which lies above a given peak value—can be calculated. However, because ~1
million tests (i.e., in 150bp windows) are performed across a mammalian genome, one must
correct for multiple hypotheses testing (Park, 2009). Briefly, if we compared control to
control, we should find no significant peaks; however, we could in principle find ~50,000
peaks by applying a p-value cutoff of 0.05. This follows by the very definition of a p-value:
the probability of finding a given peak by chance. Thus, most of the peak finding tools
correct for multiple hypotheses testing by calculating the False Discovery Rate (FDR)
(Reiner et al., 2003) which is the expected proportion of false positive sites among those
identified as significant. The resultant output file from these programs is the significantly
enriched sites at a user specified FDR (default is usually 5% FDR). These sites can be
uploaded into genome browsers for further viewing along side the read enrichment profiles.
They are also used for downstream high-level analysis.

High-Level Analysis of Epigenomic ChIP-seq Data
Assessing the activating/repressive potential of epigenetic marks

The ultimate goal of epigenetic ChIP-seq analysis in behavioral studies is to understand the
molecular basis of behavior. The Illumina software package also provides a program called
BeadStudio, which performs high level analysis of epigenomic data. High-level analysis
involves biologically meaningful characterization including whether the mark activates or
represses gene expression. Although some targets have known activating/repressive
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potentials, a good first step is to assess this potential regardless. For example, methylated
histone 3 at lysine 4 (H3K4me3) tends to be in the promoter regions of actively transcribed
genes, while methylated histone 3 at lysine 27 (H3K27me3) tends to be spread across the
body of genes that are repressed. Therefore, analysis of the activating or repressive potential
of these known marks serves as a quality control step to assess the quality of the antibody/
sample preparation prior to sequencing. This analysis can be performed using the
enrichment profile or the “sites” data together with either microarray gene expression or
RNA-seq data. Using the enrichment profile data, one can stratify genes according to their
gene expression levels (e.g., into 5 equal size bins or quintiles), align all gene transcription
start sites (TSS) and, for each quartile of gene expression, calculate and plot the average
read enrichment (y-axis) as a function of nucleotide position (x-axis) starting from the
promoter region (e.g., 2kb upstream of the TSS) and ending either 2kb downstream of the
TSS for 5’ associated marks or further for marks that tend to spread across the body of a
gene (Barski et al., 2007) as shown in Figure 2. Read enrichment levels that rise with
increasing gene expression levels/quartiles tends to be activating (Figure 2), whereas read
enrichment levels that fall with increasing gene expression tend to be repressive. As can be
seen from Figure 2, this analysis allows visualization of the average spatial distribution or
deposition pattern of a mark across the promoter and gene and can reveal structural features
(Barski et al., 2007). An alternative approach is to use the significantly enriched site data by
first associating the sites with genes. For example, for a 5’ biased mark, one may require a
site to overlap ±2kb of the TSS for that mark to be associated with a given gene. These rules
can be easily generalized to marks that have different deposition patterns across the body of
genes. One then calculates the distribution of gene expression values of genes with and
without the sites (Bernstein et al., 2005). The two expression distributions can be visually
represented as boxplots (i.e., boxes representing the 25th, 50th and 75th percentiles along
with whiskers representing the 5th and 95th percentiles) as shown in Figure 3. Another
example would be to plot two histograms. In either case, one should observe, increased
expression levels for genes associated with the sites compared to those without for an
activating mark and decreased expression levels for genes associated with sites for a
repressive mark.

Comparison of Epigenetic Sites to Genomic Annotations and Sequences
The association of significantly enriched sites with genes also allows gene lists to be
generated for every sample, which in the case of a behavior study could be different
individuals. Tools have been developed that perform an overlap analysis of sites and
annotations (Quinlan and Hall, 2010; Taylor et al., 2007). Venn diagram analysis can be
applied to distinguish genes that contain mark(s) that are both shared among individuals and
distinct to each individual. One can assess the extent to which particular pathways or
functionally related genes are regulated by a given mark by performing Gene Ontology
analysis (Huang da et al., 2009) and Pathway Analysis (Draghici et al., 2007) using the gene
lists as input.

In the process of mapping epigenetic marks and transcription factors using ChIP-chip, that
are associated with promoters (Bernstein et al., 2005; Cawley et al., 2004), or ChIP-seq
(Barski et al., 2007) we have discovered that while a statistically significant fraction of the
mark’s/factor’s sites map to coding gene promoter regions, a healthy fraction—if not the
majority—map to noncanonical loci including introns, intergenic regions and the 3’ end of
genes. Histone modifications that map to these non-canonical sites could be marking
enhancer regions (Heintzman et al., 2009) that regulate genes in trans. Alternatively, these
modifications could be regulating poorly annotated, non-coding RNAs (Cawley et al., 2004;
Kampa et al., 2004; Kapranov et al., 2002) in cis. For example, we know that H3K4me3
tends to be at the promoter and H3K36me3—a mark that has been implicated in alternative
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splicing (Kolasinska-Zwierz et al., 2009)—tends to rise across the body and peaks near the
3’ end of active genes (Barski et al., 2007). In a recent study, Guttman et al. (Guttman et al.,
2009) hypothesized that searching for this H3K4me3-H3K36me3 pattern in intergenic
regions might reveal poorly annotated functional RNAs. They found ~1,600 large mutli-
exonic RNAs which they named large intervening noncoding RNAs (lincRNAs) that were
evolutionarily conserved. Thus, determining the proportion of enriched sites that are genic,
intergenic, intronic and in promoters for each sample can give an indication whether the
analysis should focus on genic or intergenic regions. This is a good example of why using
relatively unbiased methods like sequencing are so important. In addition, the Venn
diagrams of sites found in different samples can be further subdivided according to genic
and non-genic categories to give an indication if epigenetic regulation of behavior is being
driven by marks in non-canonical regions.

Identifying DNA Sequence Motifs/Putative Co-Factors
One of the significant advantages of ChIP-seq over ChIP-chip has been the ability of the
signal peak to locate the relevant binding motif of a transcription factor. By taking
advantage of the fact that top and bottom strand reads tend to be on the left and right of the
transcription factor respectively, the peak locations that are calculated from the peak finding
methods discussed above tend to be within 10–30bp of the binding motif (Jothi et al., 2008;
Kharchenko et al., 2008; Zhang et al., 2008). In contrast, either using the overall read
enrichment peaks in ChIP-seq (i.e., ignoring strand information) or the peaks called from
ChIP-chip, the peaks tend to be within hundreds of base pairs from the binding motif (Jothi
et al., 2008). Thus, in the case of histone modifications, the peak locations found by these
programs are likely to give more precise locations of the modified tails for sharply peaked
marks. In addition, motif analysis of the sequences within the significantly enriched peaks
could identify co-factors including transcription factors or nuclear receptors that bind to
DNA and recruit the enzymes that deposit the chemical group (i.e., methyl or acetyl) to a
given histone tail residue. For example, in order to determine whether the H3K14ac is
associated with ERα a motif analysis could be performed on the sequences of histone
acetylation sites in order to determine if these sites yield the ERα motif (i.e., the estrogen
response element). A number of powerful motif finding tools have been developed (Park,
2009; Tompa et al., 2005) including MEME (Bailey et al., 2006), MDScan (Liu et al., 2002),
Weeder (Pavesi et al., 2004) and WebMOTIFS (Romer et al., 2007). Thus, using the tools
and high level analyses described above, an investigator can characterize the regulation of
the mapped mark, factors upstream of the mark as well as target genes and downstream
pathways. In this way, ChIP-seq is a powerful tool for characterizing the epigenetic
pathways regulating expression of genes that influence behavior.

Conclusion
Central to the field of behavioral neuroendocrinology is understanding how the external
environment (maternal, social, chemical) and internal environment (fluctuating hormones)
interact in order to produce long-lasting effects on development and behavior. Emerging
evidence supports a role for epigenetic modifications as a mechanism through which the
environment affects brain and behavior. As reviewed above, the technology available for
assessing the role of epigenetic gene regulation in behavior is rapidly expanding and
enabling the characterization of molecular pathways underlying reproductive and social
behaviors. For example, using what are rapidly becoming standardized assays, individual
labs can generate ChIP-seq data to investigate the epigenetic underpinnings not only of
gene-environment interactions, but also of the molecular pathways involved in the
regulation of reproductive behavior and the consolidation of reproductive experience.
Moreover there are a plethora of analysis tools as detailed above. This is not to say that
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ChIP-seq data analysis does not require some bioinformatics skills, it does. Successful and
efficient processing of these data require selection of the best software tools and algorithms,
familiarity with UNIX, and writing programs/tools that reformat the data so that it can be
used in multiple programs. Furthermore, many of the high level tasks are not encoded in
programs that can be downloaded and require software to be written. Finally, the ability to
make and test (including significance analysis and calculation of p-values) highly novel
discoveries in the data requires tailored programs. Thus, a collaboration of investigators
studying behavior, molecular biology and bioinformatics is highly recommended in order to
truly harness the power of ChIP-seq to help define the role of epigenetics in behavior.

Abbreviations

5mC 5-methylcytosine

5-hmC 5-Hydroxymethylcytosine

bp base pairs

CBP CREB-binding protein

ChIP Chromatin Immunoprecipitation

DNMTs DNA methyltransferase proteins

ERα estrogen receptor alpha

HATs histone aceytltransferases

HDACs histone deacetylases

H3K4me3 mono methylated H3 at lysine 4

H3K14ac acetylated H3 at lysine 14

HTS high-throughput sequencing

MBD1 methyl-CpG-binding domain 1

MECP2 methyl-CpG-binding protein 2

Methyl-seq methylation/bisulfite conversion sequencing

NGS next generation sequencing

SNP single nucleuotide polymorphism

TET 1 tet oncogene 1

TSS transcription start site
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Figure 1.
Summary of tools for low-level analysis (both Illumina software and 3rd party tools) as they
apply to the Illumina Genome Analyzer Pipeline.
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Figure 2.
Plot of H3K9/14Ac and H3K4me3 average read number relative to the TSS start site of
genes stratified into 5 bins according to gene expression ranging from the lowest (0–20%) to
highest (>80%): sort the genes on the Affymetrix U133 array according to their expression
level and put the lowest 20% in one bin, the next 20–40% in another and continue until we
have 5 bins with the same number of genes representing low to high expressed genes. For
each group of genes separately, we calculate the number of mapped reads at every genomic
coordinate (ranging from −2kb to +2kb) relative to the TSS of every gene in the group.
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Figure 3.
Boxplots of log2 gene expression levels for genes with no modifications, H3K4me3,
H3K9/14Ac and both H3K4me3 and H3K9/14Ac within 1kb of their 5' ends. We classify a
gene into one of these four categories based on the present or absence of the H3K4me3 and
H3K9/14Ac sites within 1kb of their 5' ends. The lower part of box is 25th percentile; the
thick middle line of box is the median; the upper part of the box is 75th percentile; and the
lower and upper whiskers are 5th and 95th percentile and represent outliers.
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