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Abstract
Logistic regression provides a flexible framework for detecting various types of differential item
functioning (DIF). Previous efforts extended the framework by using item response theory (IRT)
based trait scores, and by employing an iterative process using group–specific item parameters to
account for DIF in the trait scores, analogous to purification approaches used in other DIF detection
frameworks. The current investigation advances the technique by developing a computational
platform integrating both statistical and IRT procedures into a single program. Furthermore, a Monte
Carlo simulation approach was incorporated to derive empirical criteria for various DIF statistics
and effect size measures. For purposes of illustration, the procedure was applied to data from a
questionnaire of anxiety symptoms for detecting DIF associated with age from the Patient–Reported
Outcomes Measurement Information System.
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1. Introduction
Standardized tests and questionnaires are used in many settings, including education,
psychology, business, and medicine. Investigations across numerous disciplines have
identified respondent culture (more generally, any group membership irrelevant of the
construct being measured) as a potential source of systematic measurement variability in survey
research (Andersen 1967). Systematic measurement variability can lead to a number of
problems including errors in hypothesis testing, flawed population forecasts, policy planning
and implementation, and misguided research on disparities (Perkins et al. 2006). Ensuring
equivalent measurement is important prior to making comparisons among individuals or groups
(Gregorich 2006). Evaluations of item-level measurement equivalence have come to focus on
DIF, defined as different probabilities of success or endorsement across construct-irrelevant
groups when controlling for the underlying trait measured by the test (Camilli and Shepard
1994). There are many other frameworks for DIF detection, including explanatory item
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response model formulation (De Boeck and Wilson 2004), the multiple indicators multiple
causes (MIMIC) formulation (Jones 2006), and the SIBTEST framework (Shealy and Stout
1993). This paper addresses the logistic regression framework, which provides a flexible
model-based framework for detecting various types of DIF (Swaminathan and Rogers 1990;
Zumbo 1999).

Previous efforts extended the logistic regression DIF technique into a framework known as
difwithpar (Crane et al. 2006) by using IRT based trait estimates and employing an iterative
process of accounting for DIF in the trait estimate with the use of group-specific IRT item
parameters for items identified with DIF (Crane et al. 2006, 2007b,c, 2004). This framework
has been found to be facile at accounting for multiple sources of DIF and paying specific
attention to DIF impact. It is also able to address covariates with more than two categories,
rather than limiting to only focal and reference groups.

The difwithpar software includes user-specified flagging criteria (or detection thresholds) for
identifying items with DIF, and the developers have investigated the implications of different
choices for these flagging criteria (Crane et al. 2007c). Several values may be used for flagging
criteria in analyzing a single dataset, resulting in varying numbers of items identified with DIF,
but fairly consistent DIF impact for individuals and groups across different values for the
flagging criteria (Crane et al. 2007b). These observations suggest the need for empirical
identification of flagging criteria.

To date, while the difwithpar software is freely distributed on the web (type ssc install
difwithpar at the Stata prompt), it uses the proprietary software packages Stata (StataCorp.
2007) and PARSCALE (Muraki and Bock 2005). Recent developments of free IRT packages
for R ( R Development Core Team 2010), such as eRm (Mair and Hatzinger 2007) and
especially the IRT/latent trait modeling package ltm (Rizopoulos 2006), suggested the
possibility of integrating the framework in a freeware platform. The current investigation
advances the difwithpar technique by creating a computational platform integrating both
statistical and IRT procedures into a single freeware program. Furthermore, we provide a
mechanism to evaluate statistical criteria proposed for detecting DIF using graphical
approaches and Monte Carlo simulations. The resulting R package lordif is available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/package=lordif.

2. Logistic regression/IRT hybrid DIF detection method
2.1. Logistic regression DIF methods

Swaminathan and Rogers (1990) proposed the use of logistic regression in DIF detection for
dichotomous items. Several researchers have extended the technique for polytomous items
(French and Miller 1996; Miller and Spray 1993; Zumbo 1999). For polytomous items, the
proportional-odds logistic regression model (Agresti 1990) is used with the assumption that
the outcome variable is ordinal (as opposed to nominal). Let Ui denote a discrete random
variable representing the ordered item response to item i, and ui (= 0, 1, …, mi − 1) denote the
actual response to item i with mi ordered response categories. Based on the proportional odds
assumption or the parallel regression assumption, a single set of regression coefficients is
estimated for all cumulative logits with varying intercepts (αk). For each item, an intercept-
only (null) model and three nested models are formed in hierarchy with additional explanatory
variables as follows:
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where P(ui ≥ k) denotes the cumulative probabilities that the actual item response ui falls in
category k or higher. The term “ability” is used broadly here to represent the trait measured by
the test as either the observed sum score or a latent variable. Without loss of generality the
term “trait level” may be substituted in each case. In the remainder of this paper, we use these
terms somewhat interchangeably.

2.2. DIF detection
Testing for the presence of DIF (both uniform and non-uniform) under the logistic regression
framework is traditionally based on the likelihood ratio χ2 test (Swaminathan and Rogers
1990). DIF is classified as either uniform (if the effect is constant) or non-uniform (if the effect
varies conditional on the trait level). Uniform DIF may be tested by comparing the log
likelihood values for Models 1 and 2 (one degree of freedom, or df = 1), and non-uniform DIF
by Models 2 and 3 (df = 1). An overall test of “total DIF effect” is tenable by comparing Models
1 and 3 (df = 2). The 2-df χ2 test was designed to maximize the ability of this procedure to
identify both uniform and non-uniform DIF and control the overall Type I error rate. However,
the component uniquely attributable to either uniform or non-uniform DIF can be partitioned
separately by the 1-df tests (Jodoin and Gierl 2001; Zumbo 1999).

The extension of this framework for multiple groups is also straightforward. The β2 and β3
terms from Models 2 and 3 are expanded to include binary indicator variables for all of the
groups except one. For both uniform (Model 1 vs. 2) and non-uniform DIF (Model 2 vs. 3)
twice the difference in log likelihoods is compared to a χ2 distribution with degrees of freedom
equal to the number of groups minus one.

2.3. DIF magnitude
Although the likelihood ratio test has been found to yield good Type I error control (Kim and
Cohen 1998), some researchers have reported good power but inflated Type I error under the
logistic regression likelihood ratio test (Li and Stout 1996; Rogers and Swaminathan 1993;
Swaminathan and Rogers 1990). Because statistical power is dependent on sample size (Cohen
1988), a trivial but non-zero difference in population parameters will be found to be statistically
significant given a large enough sample. In response to this concern, several effect size
measures have been used to quantify the magnitude of DIF (Crane et al. 2004; Jodoin and Gierl
2001; Kim et al. 2007; Zumbo 1999). Zumbo (1999) suggested several pseudo R2 statistics as
magnitude measures and guidelines for classifying DIF as negligible (< 0.13), moderate
(between 0.13 and 0.26), and large (> 0.26). Subsequent studies (Jodoin and Gierl 2001; Kim
et al. 2007), however, found the proposed thresholds to be too large, resulting in under-
identification of DIF. Kim et al. (2007) also found that the pseudo R2 measures are closely
related (with almost perfect rank order correlations) to some standardized impact indices
(Wainer 1993).

Jodoin and Gierl (2001) noted that the regression coefficients β2 and β3 can be used as
magnitude measures of uniform and non-uniform DIF, respectively. The difference in the β1
coefficient from Models 1 and 2 has also been used to identify items with uniform DIF (Crane
et al. 2004). Based on simulation studies in a different context (Maldonado and Greenland
1993), 10% differences in this coefficient from Models 1 and 2 was initially proposed as a
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practically meaningful effect (Crane et al. 2004). Subsequent studies used lower thresholds
such as 5% and even 1% (Crane et al. 2007c).

2.4. Monte Carlo simulation approach to determining detection thresholds
Within the logistic regression DIF detection framework, there is considerable variability in
specific criteria recommended for determining whether items exhibit DIF. Several experts have
recommended magnitude measures with a plea towards “clinical relevance,” though specific
thresholds based on this plea are not clearly discernible. Some authors have recommended a
flexible, almost analog procedure in which the threshold used for a given parameter to identify
items with and without DIF is manipulated up and down, and the effect on DIF impact for
individuals or groups is evaluated (Crane et al. 2007c,a, 2010, 2008b,a; Gibbons et al. 2009).

Given the variety of DIF magnitude measures and detection criteria, a Monte Carlo simulation
approach may be useful. Two general approaches are feasible, one driven by Type I error and
another by Type II error. The Type I error approach involves generating multiple datasets (of
the same dimension as the real data) under the null hypothesis (i.e., no DIF), preserving
observed group differences in ability (trait level). Various magnitude measures are computed
repeatedly over the simulated datasets, from which the empirical distributions are obtained.
The researcher can then be guided by these empirical distributions when making a
determination with any particular magnitude measure whether items have DIF. The target
threshold to use in the real data is one where the empirical probability of identifying an item
as displaying DIF (i.e., false positives) is not greater than the preset nominal α level. The Type
II error approach, which is not implemented in lordif for the reasons provided below, involves
generating multiple datasets as before, preserving group differences. However, the Type II
error approach also involves introducing known DIF of varying magnitude, deemed as
minimally detectable (e.g., power ≥ 0.80), to a varying number of items. Again, the magnitude
measures are computed over the simulated datasets and their empirical distributions are
obtained. Reviewing the empirical distributions the researcher can determine a target threshold
to use in the real data. Unlike in the Type I error approach, the target threshold corresponds to
a typical value in the empirical distribution (e.g., the median) rather than an extreme one that
cuts off the tail end of the distribution. The choice of the magnitude of DIF introduced and the
specific items having DIF can affect the simulation outcome (Donoghue et al. 1993) and hence
makes it difficult to implement the Type II error approach in a general simulation framework.

2.5. Iterative purification of the matching criterion
DIF refers to a difference in item performance between groups of respondents matched on the
trait being measured. The matching criterion, the variable by which the respondents are
matched, is important in order to distinguish between differences in item functioning from
differences between groups (Dorans and Holland 1993). One of the potential limitations of
logistic regression DIF detection was the reliance on the observed sum score as the matching
criterion. As Millsap and Everson (1993) point out, the sum score is not a very good matching
criterion unless statistical properties of the Rasch model hold (e.g., equal discrimination power
for all items). Even if the Rasch model holds, using the sum score in a regression framework
may not be ideal because the relationship between the sum score and the Rasch trait score is
not linear, as evident in a test characteristic curve. In such situations, an IRT trait score is a
more reasonable choice for regression modeling (such as DIF detection in the ordinal logistic
regression framework) than an observed sum score (Crane et al. 2008a).

Another consideration for obtaining the matching criterion is related to purification. Zumbo
(1999) advocated purifying the matching criterion by recalculating it using only the items that
are identified as not having DIF. French and Maller (2007) reported that purification was
beneficial under certain conditions, although overall power and Type I error rates did not

Choi et al. Page 4

J Stat Softw. Author manuscript; available in PMC 2011 May 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



substantially improve. Holland and Thayer (1988) suggested that the item under examination
should be included in the matching criterion even if it was identified as having DIF but excluded
from the criterion for all other items to reduce the Type I error rate. Zwick (1990) also proved
theoretically that excluding the studied item from the matching variable leads to a bias (over
detection) under the null condition.

Eliminating items found to have DIF is only one option for reducing the effect of DIF on the
trait estimates used for the matching criterion. Reise et al. (1993) pointed out that although
items with DIF measure differently in different groups, they are still measuring the same
underlying construct. This point is especially relevant in psychological measures where some
items can be considered crucial in measuring a certain construct (e.g., crying in measuring
depression), even if they are known to function differently between some demographic groups
(e.g., gender).

To address these issues, Crane et al. (2006) developed an iterative process to update trait
estimates using group-specific IRT item parameter estimates for items found to have DIF.
Specifically, each item with DIF is replaced by as many sparse items (response vectors) as
there are groups. For example, if there are two groups, A and B, two new sparse item response
vectors are formed to replace the original. In the first sparse item response vector, the responses
are the same as the original item for group A, and missing for group B. In the second sparse
item response vector, the pattern is reversed.

The non-DIF items have parameters estimated using data from the entire sample and are often
referred to as anchor items because they ensure that scores for individuals in all of the groups
are on the same metric. The group-specific items and the anchor items are used to obtain trait
estimates that account for DIF which in turn are then used in subsequent logistic regression
DIF analyses. This process is continued until the same set of items is found to have DIF over
successive iterations.

This algorithm has much to recommend it compared with more traditional purification
approaches. First, it is possible for items to have false positive identification with DIF at an
early stage. Most traditional purification approaches would result in such an item being
excluded from consideration for the matching criterion, even though in the subsequent
iterations it may be found to not have DIF. Second, by including all of the items in the trait
estimate, the measurement precision using this approach will be better than that for trait
estimates that includes only a subset of the items. Finally, the iterative nature of this procedure
avoids the forward stepwise nature of some algorithms, such as that used in the multiple
indicators multiple causes framework (Jones 2006).

2.6. Fitting the graded response model
Unlike other IRT-based DIF detection methods focusing on tests of the equality of item
parameters across groups (Lord 1980; Raju et al. 2009; Thissen 2001), the main objective of
fitting an IRT model under lordif is to obtain IRT trait estimates to serve as the matching
criterion. Therefore, the choice of a specific IRT model is of little consequence in the current
application, because trait estimates for the same data based on different IRT models (e.g.,
graded response model vs. Generalized Partial Credit Model) are virtually interchangeable (r
> 0.99) (Cook 1999). However, the graded response model might be preferred in the current
context on the basis of its inherent connection to ordinal logistic regression. The model assumes
any response to item i, ui, can be scored into mi ordered categories, e.g., ui ∈ {0, 1, 2, …, (mi
− 1)}. The model then defines (mi − 1) cumulative category response functions as follows:
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where the item discrimination parameter ai is finite and positive, and the location parameters,
bi1, bi2, …, bi(mi−1), satisfy

Further, bi0 ≡ −∞ and bimi ≡ ∞ such that  and . Finally, for any response category,
ui ∈ {0, 1, …, mi − 1}, the category response function can be expressed as

2.7. Scale transformation
The impact of DIF on scores can be determined by comparing the initial trait score to the final
trait score that accounts for DIF. To compare scores, however, the IRT item parameter estimates
from the initial and final calibrations should be placed on the same metric. The method
developed by Stocking and Lord (1983) can be used to determine the appropriate
transformation. Using the non-DIF items as anchor items, the procedure can equate the group-
specific item parameter estimates from the final “matrix” calibration (M) to the metric of the
initial “single-group” calibration (S). The Stocking-Lord equating procedure finds the linear
transformation constants, A and B, that minimize the sum of squared differences between the
test characteristic curves (TCCs) based on J non-DIF items over a θ grid (e.g., −4 ≤ θ ≤ 4). The
loss function (L) to be minimized can be expressed as follows:

where Q is the number of equi-spaced quadrature points over the θ grid, J is the number of
non-DIF items, aiS, bi1S, bi2S, …, bi(mi−1)S are the single-group item parameter estimates for
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the ith non-DIF item, and  are the matrix calibration item parameter
estimates for the same item.

3. The lordif package
3.1. Overview

The lordif package is based on the difwithpar framework (Crane et al. 2006). We developed
the lordif package (available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=lordif) to perform DIF detection with a flexible iterative
hybrid OLR/IRT framework. The lordif package is also able to perform OLR with sum scores
rather than IRT scores. lordif also incorporates a Monte Carlo simulation approach to derive
empirical threshold values for various DIF statistics and magnitude measures. The lordif
package generates DIF-free datasets of the same dimension as the empirical dataset using the
purified trait estimates and initial single-group item parameter estimates obtained from the real
data, preserving observed group differences and distributions. The user specifies the number
of replications ( nr) and the Type I error rate (e.g., alpha = 0.01). The program then applies
the OLR/IRT procedure over the simulated DIF-free datasets and computes the statistics and
magnitude measures. Finally, the program identifies a threshold value that cuts off the most
extreme (α × 100)% of each of the statistics and magnitude measures.

The lordif package is built on two main packages: The ltm package (Rizopoulos 2006) to
obtain IRT item parameter estimates according to the graded response model (Samejima
1969) and the Design package (Harrell Jr. 2009) for fitting (ordinal) logistic regression models.
Both the ltm and Design packages can handle binary outcome variables as a special case and
hence allow the lordif package to handle both dichotomous and polytomous items. The
Design package also handles a grouping variable with more than two levels (e.g., Black,
Hispanic and White) by automatically entering it into a model as a set of dummy variables.

The lordif package allows the user to choose specific criteria and their associated thresholds
for declaring items to have uniform and non-uniform DIF. Items found displaying DIF are
recalibrated in appropriate subgroups to generate trait estimates that account for DIF. These
steps are repeated until the same items are identified with DIF on consecutive runs. The
program uses the Stocking and Lord (1983) equating procedure to place the group-specific
item parameter estimates onto the scale defined by the initial naive (i.e., no-DIF) run and to
facilitate evaluations of the impact on individual trait estimates on the same scale. Items
displaying no DIF serve as anchor items.

3.2. Algorithm
In what follows, we will describe the algorithm used in the lordif package in more detail.

1. Data preparation: Check for sparse cells (rarely observed response categories;
determined by a minimum cell count specified by the user (e.g., minCell = 5);
collapse/recode response categories as needed based on the minimum cell size
requirement specified.

2. IRT calibration: Fit the graded response model (using the grm function in ltm) to
obtain a single set of item parameters for all groups combined.

3. Trait estimation: Obtain trait (ability) estimates using the expected a posteriori (EAP)
estimator with omitted responses treated as not presented.

4. Logistic regression: Fit three (ordinal) logistic models (Models 1, 2 and 3) on each
item using the lrm function in Design (observe these are item-wise regressions);
generate three likelihood-ratio χ2 statistics for comparing three nested logistic

Choi et al. Page 7

J Stat Softw. Author manuscript; available in PMC 2011 May 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://CRAN.R-project.org/package=lordif


regression models (Models 1 vs. 3, Models 1 vs. 2, and Models 2 vs. 3); compute
three pseudo R2 measures – Cox & Snell (Cox and Snell 1989), Nagelkerke
(Nagelkerke 1991), and McFadden (Menard 2000) – for three nested models and
compute differences between them; compute the absolute proportional change in point
estimates for β1 from Model 1 to Model 2 as follows: , where  is the
regression coefficient for the matching criterion (ability) from Model 1 and β1 is the
same term from Model 2.

5. Detecting DIF: Flag DIF items based on the detection criterion ( “Chisqr”, “R2”,
or “Beta”) and a corresponding flagging criterion specified by the user (e.g., alpha
= 0.01 for criterion = “Chisqr”); for criterion = “Chisqr”  an item
is flagged if any one of the three likelihood ratio χ2 statistics is significant (the 2-df
test for non-uniform DIF, , as a sole criterion may lack power if DIF is attributable
primarily to uniform DIF, although inflated Type I error might be of concern).

6. Sparse matrix: Treat DIF items as unique to each group and prepare a sparse response
matrix by splitting the response vector for each flagged item into a set of sparse vectors
containing responses for members of each group (e.g., males and females if DIF was
found related to gender). In other words, each DIF item is split into multiple sparse
variables such that each variable corresponds to the data of just one group and missing
for all other groups. Note that sparse matrices are to account for DIF in the trait
estimate; (ordinal) logistic regression DIF detection is performed on the original data
matrix.

7. IRT recalibration: Refit the graded response model on the sparse matrix data and
obtain a single set of item parameter estimates for non-DIF items and group-specific
item parameter estimates for DIF items.

8. Scale transformation: Equate Stocking and Lord (1983) item parameter estimates
from the matrix calibration to the original (single-group) calibration by using non-
DIF items as anchor items (this step is necessary only when looking at DIF impact
and can be deferred until the iterative cycles have concluded).

9. Trait re-estimation: Obtain EAP trait (ability) estimates based on item parameter
estimates from the entire sample for items that did not have DIF and group-specific
item parameter estimates for items that had DIF.

10. Iterative cycle: Repeat Steps 4 through 9 until the same items are flagged for DIF or
a preset maximum number of iterations has been reached. Using the trait estimates
from the previous round that account for DIF detected to that point, (ordinal) logistic
regression DIF detection is repeated on all items including previously flagged items.

11. Monte Carlo simulation: Generate DIF-free datasets nr number of times (e.g., nr =
1000), using the final trait estimates accounting for DIF (Step 10) and the initial
single-group item parameter estimates (Step 2). Each simulated dataset contains the
same number of cases by group as the empirical dataset and reflects observed group
differences in trait estimates. For each simulated dataset, obtain trait (ability)
estimates based on the single-group item parameter estimates and run the OLR/IRT
procedure. Compute the DIF statistics and magnitude measures for each simulated
dataset and store the results for all replications. Identify a threshold value for each
statistic/magnitude measure that cuts off the most extreme (defined by α) end of its
cumulative distribution.
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3.3. lordif vs. difwithpar
The lordif package differs in several ways from the previously developed difwithpar program.
Improvements include the use of the ltm package (Rizopoulos 2006) rather than the proprietary
software PARSCALE (Muraki and Bock 2005) for IRT item parameter estimation. The
lordif package also includes the following important changes. First, lordif permits comparison
of Model 1 with Model 3, facilitating a single omnibus test of both uniform and non-uniform
DIF. Second, lordif automates the steps of DIF detection and subsequent IRT parameter
estimation in a single invocation of the iterative algorithm; whereas difwithpar performs a
single iteration and the user must continue the steps until the same items are identified on
subsequent runs. Third, lordif performs the Stocking-Lord equating (Stocking and Lord
1983) that facilitates investigations of DIF impact on the same metric. Finally, and perhaps
most important, lordif implements the Monte Carlo procedures described previously to identify
empirically-based thresholds for DIF detection.

4. Illustration
To illustrate, the procedure was applied to a real dataset and the results were compared to the
standard sum-score based approach. We analyzed a dataset (N = 766) on a 29-item anxiety
bank (Pilkonis et al. 2011, see appendix) for DIF related to age using data from the Patient-
Reported Outcomes Measurement Information System (PROMIS). PROMIS is an NIH
Roadmap initiative designed to improve patient-reported outcomes using state-of-the-art
psychometric methods (for detailed information, see http://www.nihpromis.org/). The
reference and focal groups were defined as younger (< 65; n = 555) and older (; n = 211),
respectively. All items shared the same rating scale with five response categories (Never,
Rarely, Sometimes, Often, and Always). The scale was constructed such that higher scores
mean higher levels of anxiety. The S − X2 model fit statistics (Kang and Chen 2008; Orlando
and Thissen 2003) were examined for the graded response model (Samejima 1969) using the
IRTFIT (Bjorner et al. 2006) macro program. All 29 items had adequate or better model fit
statistics (p > 0.05).

Running lordif requires a minimum level of competence in R, including reading external
datasets using R syntax submitted via a command line interface or a syntax file. In what follows
we present sample R code to demonstrate specifics of the interface with lordif and to generate
output for discussion in the subsequent section:

R> library(“lordif”)
R> data(“Anxiety”)
R> Age <- Anxiety$age
R> Resp <- Anxiety[paste(“R”, 1:29, sep = “”)]
R> ageDIF <- lordif(Resp, Age, criterion = “Chisqr”, alpha = 0.01, + minCell 
= 5)
R> print(ageDIF)
R> summary(ageDIF)
R> plot(ageDIF, labels = c(“Younger (<65)”, “Older (65+)”))

The library ( “lordif” ) command loads the lordif package (and other dependent
packages) into the R computing environment. The data (  “Anxiety”) command loads the
Anxiety dataset containing 29 item response variables (named R1, R2, …, R29) and three binary
demographic indicators including the age group (0 = Younger and 1 = Older). The next two
lines of commands extract those variables from the dataset and create a vector for the age
indicator ( Age) and a matrix for the item response variables ( Resp). The lordif ( Resp,
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Age, …) command performs the OLR/IRT DIF procedure on the data with specified options
(details provided below) and saves the output as ageDIF. The print ( ageDIF) and
summary ( ageDIF) commands generate basic and extended output, respectively. The plot
( ageDIF) command then takes the output ( ageDIF) and generates diagnostic plots. An
optional Monte Carlo simulation procedure (and the corresponding print and summary
methods) can be invoked on the output ( ageDIF) to obtain empirical threshold values by

R> ageMC <- montecarlo(ageDIF, alpha = 0.01, nr = 1000)
R> print(ageMC)
R> summary(ageMC)

Monte Carlo simulations generally require a large number of iterations and are computationally
intensive – the above simulation run took approximately 30 minutes on an Intel Core2 Duo
CPU at 2.53GHz running Windows Vista. Finally, the empirical threshold values can be
displayed visually by

R> plot(ageMC)

We used the likelihood ratio (LR) χ2 test ( criterion = “Chisqr” ) as the detection
criterion at the α level of 0.01, and McFadden’s pseudo R2 (default) as the magnitude measure.
With a minimum cell count of 5, all items ended up with one or more response categories
collapsed. After recoding (done by lordif), four items ended up with four response categories,
one item had two categories, and the rest had three. Using these settings, lordif terminated in
two iterations agging five items as displaying age-related DIF – #1 (“I felt fearful”), #9 (“I was
anxious if my normal routine was disturbed”), #11 (“I was easily startled”), #18 (“I worried
about other people’s reactions to me”), and #24 (“Many situations made me worry”). The
standard sum score-based method agged the same items and one additional item – #7 (“I felt
upset”). The plot function in lordif shows (see Figure 1) the theta distributions for the younger
and older groups. Older people on average had lower mean scores than their younger
counterparts (−0.57 vs. 0.04). The plot function then displays four diagnostic plots for each
of the flagged items (see Figures 2–6). The top left plot in Figure 2 shows item true-score
functions based on group-specific item parameter estimates. The slope of the function for the
older group was substantially higher than that for the younger group, indicating non-uniform
DIF. The LR χ2 test for uniform DIF, comparing Model 1 and Model 2, was not significant
(p = 0.42), whereas the 1-df test for comparing Model 2 and Model 3 was significant (p =
0.0004). It is interesting to note that had the 2-df test (comparing Models 1 and 3) been used
as the criterion for flagging, this item would not have been flagged at α = 0.01 (p = 0.011).

The bottom left plot in Figure 2 juxtaposes the item response functions for younger and older
adults. The non-uniform component of DIF revealed by the LR χ2 test can also be observed in
the difference of the slope parameter estimates (3.04 vs. 1.95). Although there was no
significant uniform DIF, on close inspection the difference in the second category threshold
values (shown as hash marks immediately above the x-axis) for the two groups were noticeable
(1.21 vs. 1.77). For polytomous items, a single item-level index of DIF may not provide
adequate information concerning which response categories (or score levels) contribute to the
DIF effect. The combination of visual and model-based approaches in lordif provide useful
diagnostic information at the response category level, which can be systematically investigated
under the differential step functioning framework (Penfield 2007; Penfield et al. 2009).
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The top right plot in Figure 2 presents the expected impact of DIF on scores as the absolute
difference between the item true–score functions (Kim et al. 2007). There is a difference in
the item true–score functions peaking at approximately θ = 1.5, but the density–weighted
impact (shown in the bottom right plot) is negligible because few subjects have that trait level
in this population. When weighted by the focal group trait distribution the expected impact
became negligible, which is also apparent in the small McFadden’s pseudo R2 measures
(printed on the top left plot), i.e.,  and . Figure 3 displays the plots for item
#9 (“I was anxious if my normal routine was disturbed”), which shows statistically significant
uniform DIF, . The LR  was also significant; however, as the LR  was
non–significant this result suggests the DIF was primarily uniform. The item response
functions suggest that uniform DIF was due to the first category threshold value for the focal
group being smaller than that for the reference group (−0.31 vs. +0.23). Figure 4 displays
slightly stronger uniform DIF for item #11 (“I was easily startled”). Again, both  and

 were significant (p < 0.001) with non–significant . McFadden’s R2 change for uniform
DIF was 0.009, which is considered a negligible effect size (Cohen 1988). The item response
functions show that the category threshold parameters for the focal group were uniformly
smaller than those for the reference group. Figure 5 displays another item with uniform DIF,
item #18 (“I worried about other people’s reactions to me”), but in the opposite direction. The
item true–score functions reveal that older people are prone to endorse the item with higher
categories compared to younger people with the same overall anxiety level. The item response
functions also show that the category threshold parameters for the focal group were uniformly
higher than they were for the reference group. Finally, Figure 6 displays uniform DIF for item
#24 (“Many situations made me worry”)–both  and  tests were statistically significant
(p < 0.001) with a non–significant . However, the item response functions (and the item
parameter estimates) revealed a somewhat different diagnosis–the difference in slope
parameters (2.80 vs. 1.88) suggests non–uniform DIF.

The diagnostic plots for individual DIF items (see Figures 2 through 6) are followed in
lordif by two test–level plots. Figure 7 shows the impact of all of the DIF items on test
characteristic curves (TCCs). The left plot is based on item parameter estimates for all 29 items
including the group–specific parameter estimates for the five items identified with DIF. The
plot on the right is based only on the group–specific parameter estimates. Although the impact
shown in the plot on the right is very small, the difference in the TCCs implies that older adults
would score slightly lower (less anxious) if age group–specific item parameter estimates were
used for scoring. When aggregated over all the items in the test (left plot) or over the subset of
items found to have DIF (right plot), differences in item characteristic curves (Figure 7) may
become negligibly small due to canceling of differences in opposite directions, which is what
appears to have happened here. However, it is possible for the impact on trait estimates to
remain.

For the impact at the individual score level, lordif compares the initial naive theta estimate and
the “purified” theta estimates from the final run accounting for DIF as shown in Figure 8.
Notice that the item parameter estimates from the final run were equated (using non–DIF items
as anchor items) to the initial, single–group calibration and not re–centered to 0.0 (see Step 8),
and hence the mean difference (“initial minus purified”) is not necessarily 0.0. This is a
modification from the original difwithpar framework (Crane et al. 2006). The Box–and–
Whisker plot on the left shows the median difference (over all examinees) is about 0.1 and the
differences ranged from −0.176 to +0.263 with a mean of 0.073. The scatter plot on the right
shows that the final theta estimates had a slightly larger standard deviation (1.122 vs. 1.056).
The dotted horizontal reference line is drawn at the mean difference between the initial and
purified estimates (i.e., 0.073). With the inclusion of five items with group–specific item
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parameters, scores at both extremes became slightly more extreme. Accounting for DIF by
using group–specific item parameters had negligible effects on individual scores. In the
absence of a clinical effect size, we labeled individual changes as “salient” if they exceeded
the median standard error (0.198) of the initial score. About 1.96% (15 of 766) of the subjects
had salient changes. About 0.52% (4 out of 766) had score changes larger than their initial
standard error estimates. Cohen’s effect size d for the difference between the two group means
(Younger minus Older) was nearly unchanged after identifying and accounting for DIF (from
0.544 to 0.561).

Table 1 shows the Monte Carlo threshold values for the statistics and magnitude measures by
item, based on nr = 1000 and alpha = 0.01. On average, the empirical threshold values
for the probability associated with the χ2 statistic were close to the nominal α level–the mean
probability threshold values across items were 0.010, 0.011, and 0.011 for , and ,
respectively. Figure 9 displays the probability thresholds for the three χ2 statistics by item. The
horizontal reference line is drawn at the nominal α level (i.e., 0.01). There is no indication that
the empirical threshold values are systematically deviated from the nominal level, which is
congruent with previous research showing that the Type I error rate is well controlled under
the likelihood ratio test (Kim and Cohen 1998).

Figure 10 presents the threshold values on pseudoR2 measures. As expected, data generated
under no DIF conditions produced negligibly small pseudo R2 measures, i.e., considerably
smaller than Cohen’s guideline for a small effect size (0.02). Although some fluctuations are
visible across items, the pseudo R2 thresholds were unmistakably smaller than any guidelines
for non–trivial effects. Unlike the ordinary least squares R2, pseudo R2 measures may lack a
reasonable interpretation. For instance, the Cox & Snell (Cox and Snell 1989) pseudo R2

measure cannot attain the value of 1 even if the model fits perfectly and residuals are zero
(Mittlböck and Schemper 1996). Although the Nagelkerke formula for pseudo R2 corrects the
scale issue, it may still lack an immediate interpretation (Mittlböck and Schemper 1999). Mc-
Fadden’s pseudo R2 measure, on the other hand, offers intuitively meaningful interpretations,
e.g., proportional reduction in the −2 log–likelihood statistic. However, since the primary
interest in the current context is the change in the pseudo R2 measures between two nested
models, the scale issue may not be a serious concern. Although further study is needed, it is
interesting to note that the empirical thresholds based on Cox & Snell displayed the least
amount of variation across items (see Figure 10 and standard deviations at the bottom of Table
1).

The threshold on proportionate β1 change was fairly consistent over items (mean= 0.0323, SD=
0.0063). The maximum change across items was 0.0538 (i.e., about 5% change) and was from
item #17, which was also the item with the largest pseudo R2 measures (see Figure 11). A 10%
change in β1 (i.e., 0.1) has been used previously as the criterion for the presence of uniform
DIF (Crane et al. 2004). The proportionate β1 change effect size is closely related to the pseudo

 measures (comparing Model 1 vs. Model 2). The correlation coefficients between the three
 measures and the proportionate β1 change thresholds across items were 0.855, 0.928, and

0.784 for Cox & Snell, Nagelkerke, and McFadden, respectively. The correlation between
Nagelkerke’s  and the proportionate β1 change effect size was especially high. It is
interesting to note that when the proportionate β1 change thresholds were linearly interpolated
(based on the threshold values in Table 1), a 10% change in β1 is roughly equivalent to 0.02
in Nagelkerke’s . Although the two effect size measures and associated agging criteria
originated in different disciplines, they appear to be consistent in this context.
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5. Conclusion
The lordif package is a powerful and exible freeware platform for DIF detection. Ordinal
logistic regression (OLR) provides a exible and robust framework for DIF detection, especially
in conjunction with trait level scores from IRT as the matching criterion (Crane et al. 2006).
This OLR/IRT hybrid approach implemented in lordif provides statistical criteria and various
magnitude measures for detecting and measuring uniform and non–uniform DIF. Furthermore,
the use of an IRT trait score in lieu of the traditional sum score makes this approach more
robust and applicable even when responses are missing by design, e.g., block–testing, because
unlike raw scores comparable IRT trait scores can be estimated based on different sets of items.
The lordif package also introduces Monte Carlo procedures to facilitate the identification of
reasonable detection thresholds to determine whether items have DIF based on Type I error
rates empirically found in the simulated data. This functionality was not available in
difwithpar (Crane et al. 2006).

A multitude of DIF detection techniques have been developed. However, very few are available
as an integrated, non–proprietary application, and none offers the range of features of lordif.
Of the non–proprietary programs, DIFAS (Penfield 2005) and EZDIF (Waller 1998) are based
on the sum score. DIFAS implements a variety of DIF detection techniques based on raw scores
for both dichotomous and polytomous items. EZDIF only allows dichotomous items, although
it employs a two–stage purification process of the trait estimate. IRTLRDIF (Thissen 2001)
uses the IRT parameter invariance framework and directly tests the equality of item parameters,
but does not allow for empirical determination of DIF detection criteria. It should be noted that
it is on the basis of its features that we recommended lordif; we have not conducted any
simulations to compare its findings with these programs.

In our illustration, five of 29 items were found to have modest levels of DIF related to age.
Findings were very similar between the standard sum score–based method and the iterative
hybrid OLR/IRT algorithm. The IRT model–based OLR approach provides a mechanism to
diagnose DIF in terms of the impact on IRT parameters. The impact of DIF on the TCC was
minimal, though some item characteristic curves (ICCs) clearly demonstrated differences.
When accounting for DIF, a very small percentage of the subjects had “salient” score changes.
This definition of salience is based on the median standard error of measurement (SEM) for
the scale. In this instance, the “scale” is an entire item bank with a relatively small median
SEM. When a minimal clinically important difference (MCID) is available for a scale, Crane
and colleagues recommend a similar approach, but use the MCID and refer to differences
beyond the MCID as “relevant” DIF impact (Crane et al. 2007b). While the MCID for the
PROMIS anxiety scale has yet to be determined, it will likely be larger than the value used to
indicate salience here (0.198). In that case, the proportion of subjects who will have relevant
DIF will be even smaller than that found to have salient DIF, further buttressing our view that
DIF related to age is negligible in this dataset.

The Monte Carlo simulation results confirmed that the likelihood ratio χ2 test maintains the
Type I error adequately in this dataset. Some pseudo R2 values varied across items, but overall
they were very small under simulations that assume no DIF. Some pseudo R2 values may vary
from item to item depending on the number of response categories and the distribution within
each response category (Menard 2000), so using a single pseudo R2 threshold may result in
varying power across items to detect DIF (Crane et al. 2007b). Monte Carlo simulations can
help inform the choice of reasonable thresholds. If a single threshold is to be used across all
items, it should be set above the highest value identified in Monte Carlo simulations. For
instance, the maximum pseudo R2 in Table 1 was 0.015, and thus a reasonable lower bound
that would avoid Type I errors might be 0.02, which interestingly corresponds to a small, non–
negligible effect size (Cohen 1988).
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Subsequent development will be facilitated by the algorithm’s ability to account for DIF using
group specific item parameters. Future studies may focus on examining the potential greater
impact of DIF in a computer adaptive testing (CAT) framework, and developing a CAT
platform that can account for DIF in real time. It will also be interesting to compare the OLR/
IRT framework implemented in lordif to other DIF detection techniques based on the IRT
parameter invariance assumption, such as IRTLRDIF (Thissen 2001) and DFIT (Raju et al.
2009). For instance, it will be interesting to see how those procedures would diagnose item
#24 (see Figure 6). As noted previously, this item displayed no non–uniform DIF (p = 0.85);
however, the slope parameter estimates appeared quite different (1.88 vs. 2.80).

In conclusion, in this paper we introduce lordif, a new freeware package for DIF detection that
combines IRT and ordinal logistic regression. The Monte Carlo simulation feature facilitates
empirical identification of detection thresholds, which may be helpful in a variety of settings.
Standard output graphical displays facilitate sophisticated understanding of the nature of and
impact of DIF. We demonstrated the use of the package on a real dataset, and found several
anxiety items to have DIF related to age, though they were associated with minimal DIF impact.

Acknowledgments
This study was supported in part by the Patient-Reported Outcomes Measurement Information System (PROMIS).
PROMIS is an NIH Roadmap initiative to develop a computerized system measuring PROs in respondents with a wide
range of chronic diseases and demographic characteristics. PROMIS II was funded by cooperative agreements with
a Statistical Center (Northwestern University, PI: David F. Cella, PhD, 1U54AR057951), a Technology Center
(Northwestern University, PI: Richard C. Gershon, PhD, 1U54AR057943), a Network Center (American Institutes
for Research, PI: Susan (San) D. Keller, PhD, 1U54AR057926) and thirteen Primary Research Sites (State University
of New York, Stony Brook, PIs: Joan E. Broderick, PhD and Arthur A. Stone, PhD, 1U01AR057948; University of
Washington, Seattle, PIs: Heidi M. Crane, MD, MPH, Paul K. Crane, MD, MPH, and Donald L. Patrick, PhD,
1U01AR057954; University of Washington, Seattle, PIs: Dagmar Amtmann, PhD and Karon Cook,
PhD1U01AR052171; University of North Carolina, Chapel Hill, PI: Darren A. DeWalt, MD, MPH, 2U01AR052181;
Children’s Hospital of Philadelphia, PI: Christopher B. Forrest, MD, PhD, 1U01AR057956; Stanford University, PI:
James F. Fries, MD, 2U01AR052158; Boston University, PIs: Stephen M. Haley, PhD and David Scott Tulsky,
PhD1U01AR057929; University of California, Los Angeles, PIs: Dinesh Khanna, MD and Brennan Spiegel, MD,
MSHS, 1U01AR057936; University of Pittsburgh, PI: Paul A. Pilkonis, PhD, 2U01AR052155; Georgetown
University, Washington DC, PIs: Carol. M. Moinpour, PhD and Arnold L. Potosky, PhD, U01AR057971; Children’s
Hospital Medical Center, Cincinnati, PI: Esi M. Morgan Dewitt, MD, 1U01AR057940; University of Maryland,
Baltimore, PI: Lisa M. Shulman, MD, 1U01AR057967; and Duke University, PI: Kevin P. Weinfurt, PhD,
2U01AR052186). NIH Science Officers on this project have included Deborah Ader, PhD, Vanessa Ameen, MD,
Susan Czajkowski, PhD, Basil Eldadah, MD, PhD, Lawrence Fine, MD, DrPH, Lawrence Fox, MD, PhD, Lynne
Haverkos, MD, MPH, Thomas Hilton, PhD, Laura Lee Johnson, PhD, Michael Kozak, PhD, Peter Lyster, PhD, Donald
Mattison, MD, Claudia Moy, PhD, Louis Quatrano, PhD, Bryce Reeve, PhD, William Riley, PhD, Ashley Wilder
Smith, PhD, MPH, Susana Serrate-Sztein, MD, Ellen Werner, PhD and James Witter, MD, PhD. This manuscript was
reviewed by PROMIS reviewers before submission for external peer review. See the Web site at
http://www.nihpromis.org/ for additional information on the PROMIS initiative.

Additional support for the second and third authors were provided by P50 AG05136 (Raskind) and R01 AG 029672
(Crane). The authors appreciate the careful efforts of Shubhabrata Mukherjee, PhD, to format the manuscript in
LATEX.

References
Agresti, A. Categorical Data Analysis. John Wiley & Sons; New York: 1990.
Andersen RB. On the Comparability of Meaningful Stimuli in Cross-Cultural Research. Sociometry.

1967; 30:124–136. [PubMed: 6044173]
Bjorner, JB.; Smith, KJ.; Orlando, M.; Stone, C.; Thissen, D.; Sun, X. IRTFIT: A Macro for Item Fit and

Local Dependence Tests under IRT Models. Quality Metric Inc; Lincoln, RI: 2006.
Camilli, G.; Shepard, LA. Methods for Identifying Biased Test Items. Sage; Thousand Oaks: 1994.
Cohen, J. Statistical Power Analysis for the Behavioral Sciences. 2. Lawrence Earlbaum Associates;

Hillsdale, NJ: 1988.

Choi et al. Page 14

J Stat Softw. Author manuscript; available in PMC 2011 May 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.nihpromis.org/


Cook K. A Comparison of Three Polytomous Item Response Theory Models in the Context of Testlet
Scoring. Journal of Outcome Measurement. 1999; 3:1–20. [PubMed: 10063769]

Cox, DR.; Snell, EJ. The Analysis of Binary Data. 2. Chapman and Hall; London: 1989.
Crane PK, Cetin K, Cook K, Johnson K, Deyo R, Amtmann D. Differential Item Functioning Impact in

a Modified Version of the Roland-Morris Disability Questionnaire. Quality of Life Research. 2007a;
16(6):981–990. [PubMed: 17443419]

Crane PK, Gibbons LE, Jolley L, van Belle G. Differential Item Functioning Analysis with Ordinal
Logistic Regression Techniques: DIF Detect and difwithpar. Medical Care. 2006; 44 (11 Supp
3):S115–S123. [PubMed: 17060818]

Crane PK, Gibbons LE, Narasimhalu K, Lai JS, Cella D. Rapid Detection of Differential Item Functioning
in Assessments of Health-Related Quality of Life: The Functional Assessment of Cancer Therapy.
Quality of Life Research. 2007b; 16(1):101–114. [PubMed: 17111233]

Crane PK, Gibbons LE, Ocepek-Welikson K, Cook K, Cella D. A Comparison of Three Sets of Criteria
for Determining the Presence of Differential Item Functioning Using Ordinal Logistic Regression.
Quality of Life Research. 2007c; 16(Supp 1):69–84. [PubMed: 17554640]

Crane PK, Gibbons LE, Willig JH, Mugavero MJ, Lawrence ST, Schumacher JE, Saag MS, Kitahata
MM, Crane HM. Measuring Depression and Depressive Symptoms in HIV-Infected Patients as Part
of Routine Clinical Care Using the 9-Item Patient Health Questionnaire (PHQ-9). AIDS Care. 2010;
22(7):874–885. [PubMed: 20635252]

Crane PK, Narasimhalu K, Gibbons LE, Mungas DM, Haneuse S, Larson EB, Kuller L, Hall K, van Belle
G. Item Response Theory Facilitated Cocalibrating Cognitive Tests and Reduced Bias in Estimated
Rates of Decline. Journal of Clinical Epidemiology. 2008a; 61(10):1018–1027. [PubMed: 18455909]

Crane PK, Narasimhalu K, Gibbons LE, Pedraza O, Mehta KM, Tang Y, Manly JJ, Reed BR, Mungas
DM. Composite Scores for Executive Function Items: Demographic Heterogeneity and Relationships
with Quantitative Magnetic Resonance Imaging. Journal of International Neuropsycholigal Society.
2008b; 14(5):746–759.

Crane PK, van Belle G, Larson EB. Test Bias in a Cognitive Test: Differential Item Functioning in the
CASI. Statistics in Medicine. 2004; 23:241–256. [PubMed: 14716726]

De Boeck, P.; Wilson, M. Explanatory Item Response Models: A Generalized Linear and Nonlinear
Approach. Springer-Verlag; New York: 2004.

Donoghue, JR.; Holland, PW.; Thayer, DT. A Monte Carlo Study of Factors That Affect the Mantel-
Haenszel and Standardization Measures of Differential Item Functioning. In: Holland, P.; Wainer,
H., editors. Differential Item Functioning. Erlbaum; Hillsdale, NJ: 1993. p. 137-166.

Dorans, NJ.; Holland, PW. DIF Detection and Description: Mantel-Haenszel and Standardization. In:
Holland, P.; Wainer, H., editors. Differential Item Functioning. Erlbaum; Hillsdale, NJ: 1993. p.
35-66.

French AW, Miller TR. Logistic Regression and Its Use in Detecting Differential Item Functioning in
Polytomous Items. Journal of Educational Measurement. 1996; 33:315–332.

French BF, Maller SJ. Iterative Purification and Effect Size Use with Logistic Regression for Differential
Item Functioning Detection. Educational and Psychological Measurement. 2007; 67(3):373–393.

Gibbons LE, McCurry S, Rhoads K, Masaki K, White L, Borenstein AR, Larson EB, Crane PK. Japanese-
English Language Equivalence of the Cognitive Abilities Screening Instrument among Japanese-
Americans. International Psychogeriatrics. 2009; 21(1):129–137. [PubMed: 18947456]

Gregorich SE. Do Self-Report Instruments Allow Meaningful Comparisons across Diverse Population
Groups? Testing Measurement Invariance Using the Confirmatory Factor Analysis Framework.
Medical Care. 2006; 44(11 Supp 3):S78–S94. [PubMed: 17060839]

Harrell, FE, Jr. Design: Design Package. R package version 2.3-0. 2009. URL
http://CRAN.R-project.org/package=Design

Holland, PW.; Thayer, DT. Differential Item Prformance and the Mantel-Haenszel Procedure. In: Wainer,
H.; Braun, HI., editors. Test Validity. Erlbaum; Hillsdale, NJ: 1988. p. 129-145.

Jodoin MG, Gierl MJ. Evaluating Type I Error and Power Rates Using an Effect Size Measure with the
Logistic Regression Procedure for DIF Detection. Applied Measurement in Education. 2001; 14:329–
349.

Choi et al. Page 15

J Stat Softw. Author manuscript; available in PMC 2011 May 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://CRAN.R-project.org/package=Design


Jones R. Identification of Measurement Differences between English and Spanish Language Versions of
the Mini-Mental State Examination: Detecting Differential Item Functioning Using MIMIC
Modeling. Medical Care. 2006; 44:S124–S133. [PubMed: 17060819]

Kang T, Chen T. Performance of the Generalized S − X2 Item Fit Index for Polytomous IRT Models.
Journal of Educational Measurement. 2008; 45(4):391–406.

Kim SH, Cohen AS. Detection of Differential Item Functioning under the Graded Response Model with
the Likelihood Ratio Test. Applied Psychological Measurement. 1998; 22:345–355.

Kim SH, Cohen AS, Alagoz C, Kim S. DIF Detection Effect Size Measures for Polytomously Scored
Items. Journal of Educational Measurement. 2007; 44(2):93–116.

Li H, Stout W. A New Procedure for Detection of Crossing DIF. Psychometrika. 1996; 61:647–677.
Lord, FM. Applications of Item Response Theory to Practical Testing Problems. Lawrence Erlbaum

Associates; Hillsdale, NJ: 1980.
Mair, P.; Hatzinger, R. Extended Rasch Modeling: The eRm Package for the Application of IRT Models

in R; Journal of Statistical Software. 2007. p. 1-20.URL http://www.jstatsoft.org/v20/i09/
Maldonado G, Greenland S. Simulation Study of Confounder-Selection Strategies. American Journal of

Epidemiology. 1993; 138(11):923–936. [PubMed: 8256780]
Menard S. Coefficients of Determination for Multiple Logistic Regression Analysis. The American

Statistician. 2000; 54:17–24.
Miller TR, Spray JA. Logistic Discriminant Function Analysis for DIF Identi3cation of Polytomously

Scored Items. Journal of Educational Measurement. 1993; 30:107–122.
Millsap RE, Everson HT. Methodology Review: Statistical Approaches for Assessing Measurement Bias.

Applied Psychological Measurement. 1993; 17(4):297–334.
Mittlböck M, Schemper M. Explained Variation for Logistic Regression. Statistics in Medicine. 1996;

15:1987–1997. [PubMed: 8896134]
Mittlböck M, Schemper M. Computing Measures of Explained Variation for Logistic Regression Models.

Computer Methods and Programs in Biomedicine. 1999; 58:17–24. [PubMed: 10195643]
Muraki, E.; Bock, D. PARSCALE. Vol. 4. Scientific Software International, Inc; Lincolnwood, IL: 2005.

URL http://www.ssicentral.com/
Nagelkerke NJD. A Note on a General Definition of the Coefficient of Determination. Biometrika. 1991;

78:691–692.
Orlando M, Thissen D. Further Investigation of the Performance of S − X2: An Item Fit Index for Use

with Dichotomous Item Response Theory Models. Applied Psychological Measurement. 2003; 27
(4):289–298.

Penfield RD. DIFAS: Differential Item Functioning Analysis System. Applied Psychological
Measurement. 2005; 29(2):150–151.

Penfield RD. Assessing Differential Step Functioning in Polytomous Items Using a Common Odds Ratio
Estimator. Journal of Educational Measurement. 2007; 44:187–210.

Penfield RD, Gattamorta K, Childs RA. An NCME Instructional Module on Using Differential Step
Functioning to Refine the Analysis of DIF in Polytomous Items. Educational Measurement: Issues
and Practice. 2009; 28(1):38–49.

Perkins AJ, Stump TE, Monahan PO, McHorney CA. Assessment of Differential Item Functioning for
Demographic Comparisons in the MOS SF-36 Health Survey. Quality of Life Research. 2006; 15
(3):331–348. [PubMed: 16547771]

Pilkonis, PA.; Choi, SW.; Reise, SP.; Stover, AM.; Riley, WT.; Cella, D. Item Banks for Measuring
Emotional Distress from the Patient-Reported Outcomes Measurement Information System
(PROMIS): Depression, Anxiety, and Anger. 2011. Under review

Raju NS, Fortmann-Johnson KA, Kim W, Morris SB, Nering ML, Oshima TC. The Item Parameter
Replication Method for Detecting Differential Functioning in the DFIT Framework. Applied
Measurement in Education. 2009; 33(2):133–147.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing; Vienna, Austria: 2010. URL http://www.R-project.org/

Choi et al. Page 16

J Stat Softw. Author manuscript; available in PMC 2011 May 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.jstatsoft.org/v20/i09/
http://www.ssicentral.com/
http://www.R-project.org/


Reise SP, Widaman KF, Pugh RH. Confirmatory Factor Analysis and Item Response Theory: Two
Approaches for Exploring Measurement Invariance. Psychological Bulletin. 1993; 114(3):552–566.
[PubMed: 8272470]

Rizopoulos, D. ltm: An R Package for Latent Variable Modeling and Item Response Theory Analyses;
Journal of Statistical Software. 2006. p. 1-25.URL http://www.jstatsoft.org/v17/i05/

Rogers HJ, Swaminathan H. A Comparison of Logistic Regression and Mantel-Hanenszel Procedures
for Detecting Differential Item Functioning. Applied Psychological Measurement. 1993; 17:105–
116.

Samejima F. Estimation of Latent Ability Using a Response Pattern of Graded Scores. Psychometrika
Monograph. 1969:17.

Shealy, RT.; Stout, WF. An Item Response Theory Model for Test Bias and Differential Test Functioning.
In: Holland, PW.; Wainer, H., editors. Differential Item Functioning. Erlbaum; Hillsdale, NJ: 1993.
p. 197-239.

StataCorp. Stata Statistical Software: Release 10. StataCorp LP; College Station, TX: 2007. URL
http://www.stata.com/

Stocking ML, Lord FM. Developing a Common Metric in Item Response Theory. Applied Psychological
Measurement. 1983; 7(2):201–210.

Swaminathan H, Rogers HJ. Detecting Differential Item Functioning Using Logistic Regression
Procedures. Journal of Educational Measurement. 1990; 27:361–370.

Thissen, D. IRTLRDIF: Version v.2.0b. L.L. Thurstone Psychometric Laboratory, University of North
Carolina; Chapel Hill: 2001. URL http://www.unc.edu/~dthissen/dl.html

Wainer, H. Model-Based Standardized Measurement of an Item’s Differential Impact. In: Holland, P.;
Wainer, H., editors. Differential Item Functioning. Erlbaum; Hillsdale, NJ: 1993.

Waller NG. EZDIF: Detection of Uniform and Nonuniform Differential Item Functioning With the
Mantel-Haenszel and Logistic Regression Procedures. Applied Psychological Measurement. 1998;
22(4):391.

Zumbo, BD. A Handbook on the Theory and Methods of Differential Item Functioning (DIF): Logistic
Regression Modeling as a Unitary Framework for Binary and Likert-Type (Ordinal) Item Scores.
Directorate of Human Resources Research and Evaluation, Department of National Defense; Ottawa,
ON: 1999.

Zwick R. When Do Item Response Function and Mantel-Haenszel Definition of Differential Item
Functioning Coincide? Journal of Educational Statistics. 1990; 15(3):185–197.

A. PROMIS Anxiety Bank
See Pilkonis et al. (2011). In the past 7 days …

1. I felt fearful

2. I felt frightened

3. It scared me when I felt nervous

4. I felt anxious

5. I felt like I needed help for my anxiety

6. I was concerned about my mental health

7. I felt upset

8. I had a racing or pounding heart

9. I was anxious if my normal routine was disturbed

10. I had sudden feelings of panic

11. I was easily startled
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12. I had trouble paying attention

13. I avoided public places or activities

14. I felt fidgety

15. I felt something awful would happen

16. I felt worried

17. I felt terrified

18. I worried about other people’s reactions to me

19. I found it hard to focus on anything other than my anxiety

20. My worries overwhelmed me

21. I had twitching or trembling muscles

22. I felt nervous

23. I felt indecisive

24. Many situations made me worry

25. I had difficulty sleeping

26. I had trouble relaxing

27. I felt uneasy

28. I felt tense

29. I had difficulty calming down
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Figure 1.
Trait distributions – younger (< 65) vs. older (65 and up). Note: This graph shows smoothed
histograms of the anxiety levels of older (dashed line) and younger (solid line) study
participants as measured by the PROMIS Anxiety scale (theta). There is broad overlap in the
distributions, though older individuals in general demonstrated lower levels of anxiety than
younger individuals.
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Figure 2.
Graphical display of the item “I felt fearful” which shows non–uniform DIF with respect to
age. Note: This item retained three response categories (0, 1, and 2) from the original five–
point rating scale after collapsing the top three response categories due to sparseness. The
program by default uses a minimum of five cases per cell (the user can specify a different
minimum) in order to retain each response category. The upper–left graph shows the item
characteristic curves (ICCs) for the item for older (dashed curve) vs. younger (solid curve).
The upper–right graph shows the absolute difference between the ICCs for the two groups,
indicating that the difference is mainly at high levels of anxiety (theta). The lower–left graph
shows the item response functions for the two groups based on the demographic–specific item
parameter estimates (slope and category threshold values by group), which are also printed on
the graph. The lower–right graph shows the absolute difference between the ICCs (the upper–
right graph) weighted by the score distribution for the focal group, i.e., older individuals
(dashed curve in Figure 1), indicating minimal impact. See text for more details.
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Figure 3.
Graphical display of the item “I was anxious if my normal routine was disturbed” which shows
uniform DIF with respect to age. Note: See detailed comments accompanying Figure 2. Here
the differences between younger and older individuals appear to be at lower anxiety levels.
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Figure 4.
Graphical display of the item “I was easily startled” which shows uniform DIF with respect to
age. Note: See detailed comments accompanying Figure 2. Here the differences between
younger and older individuals are across almost the entire spectrum of anxiety measured by
the test.
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Figure 5.
Graphical display of the item “I worried about other people’s reactions to me”which shows
uniform DIF with respect to age. Note: See detailed comments accompanying Figure 2.
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Figure 6.
Graphical display of the item “Many situations made me worry” displaying uniform DIF with
respect to age. Note: See detailed comments accompanying Figure 2.
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Figure 7.
Impact of DIF items on test characteristic curves. Note: These graphs show test characteristic
curves (TCCs) for younger and older individuals using demographic–specific item parameter
estimates. TCCs show the expected total scores for groups of items at each anxiety level (theta).
The graph on the left shows these curves for all of the items (both items with and without DIF),
while the graph on the right shows these curves for the subset of these items found to have
DIF. These curves suggest that at the overall test level there is minimal difference in the total
expected score at any anxiety level for older or younger individuals.
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Figure 8.
Individual–level DIF impact. Note: These graphs show the difference in score between using
scores that ignore DIF and those that account for DIF. The graph on the left shows a box plot
of these differences. The interquartile range, representing the middle 50% of the differences
(bound between the bottom and top of the shaded box), range roughly from +0.03 to +0.12
with a median of approximately +0.10. In the graph on the right the same difference scores are
plotted against the initial scores ignoring DIF (“initial theta”), separately for younger and older
individuals. Guidelines are placed at 0.0 (solid line), i.e., no difference, and the mean of the
differences (dotted line). The positive values to the left of this graph indicate that in almost all
cases, accounting for DIF led to slightly lower scores (i.e., naive score ignoring DIF minus
score accounting for DIF > 0, so accounting for DIF score is less than the naive score) for those
with lower levels of anxiety, but this appears to be consistent across older and younger
individuals. The negative values to the right of this graph indicate that for those with higher
levels of anxiety, accounting for DIF led to slightly higher scores, but this again was consistent
across older and younger individuals.
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Figure 9.
Monte Carlo thresholds for χ2 probabilities (1,000 replications). Note: The graphs show the
probability values for each of the items (shown along the x–axis) associated with the 99th
quantile (cutting the largest 1% over 1,000 iterations) of the χ2 statistics generated from Monte
Carlo simulations under the no DIF condition (data shown in Table 1). The lines connecting
the data points are placed to show the uctuation across items and not to imply a series. The
horizontal reference line is placed at the nominal alpha level (0.01).
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Figure 10.
Monte Carlo thresholds for pseudo R2 (1,000 replications). Note: The graphs show the pseudo
R2 measures for each of the items (shown along the x–axis) corresponding to the 99th quantile
(cutting the largest 1% over 1,000 iterations) generated from Monte Carlo simulations under
the no DIF condition. The lines connecting the data points are placed to show the uctuation
across items and not to imply a series.

Choi et al. Page 28

J Stat Softw. Author manuscript; available in PMC 2011 May 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
Monte Carlo thresholds for proportional beta change (1,000 replications). Note: The graphs
show the proportionate β1 change measures for each of the items (shown along the x–axis)
corresponding to the 99th quantile (cutting the largest 1% over 1,000 iterations) generated from
Monte Carlo simulations under the no DIF condition. The lines connecting the data points are
placed to show the uctuation across items and not to imply a series.
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