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Abstract
Recent research shows that our actions can influence how we think. A separate body of research
shows that the gestures we produce when we speak can also influence how we think. Here we
bring these two literatures together to explore whether gesture has an impact on thinking by virtue
of its ability to reflect real-world actions. We first argue that gestures contain detailed perceptual-
motor information about the actions they represent, information often not found in the speech that
accompanies the gestures. We then show that the action features in gesture do not just reflect the
gesturer’s thinking—they can feed back and alter that thinking. Gesture actively brings action into
a speaker’s mental representations, and those mental representations then affect behavior—at
times more powerfully than the actions on which the gestures are based. Gesture thus has the
potential to serve as a unique bridge between action and abstract thought.

In recent years, cognitive scientists have reworked the traditional view of the mind as an
abstract information processor to include connections with the body. Theories of embodied
cognition suggest that our internal representations of objects and events are not grounded
solely in amodal propositional code, but are also linked to the sensorimotor systems that
govern acting on these objects and actions (e.g., Barsalou, 1999; Glenberg; 1997; Garbarini
& Adenzato, 2004; Wilson, 2002; Zwaan, 1999). This analysis has roots in ecological
psychology, which argues against a distinct division between perception and action (Gibson,
1979).

The embodied viewpoint leads to a number of specific ideas about links between cognition
and action (cf., Wilson, 2002). One such idea is that our action experiences change how we
think about the objects we encounter by interconnecting our representations of these objects
with the sensorimotor experiences associated with acting on the objects. These
interconnections then play a role in thinking even when there is no intent to act (Beilock &
Holt, 2007). In this article, we move beyond activities commonly studied in exploring this
prediction—activities ranging from dancing (Calvo-Merino, Glaser, Grezes, Passingham, &
Haggard, 2005) to playing ice hockey (Beilock, Lyons, Mattarella-Micke, Nusbaum, &
Small, 2008)—to focus on gesture. Gestures are an interesting test case for the embodied
view. Because they involve movements of the hand, gestures are clearly actions. However,
gestures do not have a direct effect on the world the way most actions do—instead, gestures
are representational. The embodied viewpoint suggests that previous action experiences can
influence how we think. We examine here the hypothesis that the representational gestures
we produce also influence thinking. We begin by noting that the gestures that accompany
speech are not mindless hand waving—gestures convey substantive information. Moreover,
the information conveyed in gesture is often not conveyed anywhere in the speech that
accompanies it. In this way, gesture reflects thoughts that speakers may not explicitly know
they have. Moreover, gesture does more than reflect thought—gesture plays a role in
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changing thought. The mechanism underlying gesture’s effect on thinking is, however,
unclear. The hypothesis we explore here is that gesture influences thought, at least in part,
by grounding thought in action.

Gestures vary in how closely they mirror the actions they represent. Some gestures simulate
a person’s actions; for example, moving the hands as though pouring water from one
container into another. In these gestures, often called character viewpoint gestures
(McNeill, 1992), the gesturer takes the perspective of the character being described and, in
effect, becomes that character in terms of the movements she makes. In the previous
example, the gesturer assumes the role of pourer and moves her hand accordingly. Other
gestures, called observer viewpoint gestures (McNeill, 1992), depict characters or scenes as
though viewing them (as opposed to doing them); for example, tracing the trajectory of the
water as it is poured from one container to another.

In addition to character and observer viewpoint gestures, which depict action movements,
gesturers can use metaphoric gestures. Metaphoric gestures represent abstract ideas rather
than concrete objects or actions, often referring not to the movements used to carry out an
activity, but rather to its goal or outcome. For example, sweeping the left hand under the left
side of a mathematical equation and then sweeping the right hand under the right side of the
equation can be used to indicate that the numbers on the left should add up to the same sum
as the numbers on the right (Perry, Church & Goldin-Meadow, 1988),

Actions, like gestures, are not a random collection of movements, but rather can be
organized into relative hierarchies of motor control (Grafton & Hamilton, 2007). Actions
range from the specific kinematics of movement itself (e.g., in terms of grasping and moving
an object, whether one uses a power or precision grip), to the goal-object (e.g., in our
grasping example, the identity of the object being grasped), to the outcome (e.g., how the
world will be altered as a function of the object that is grasped and moved. The three gesture
types outlined above (character, observer, metaphor) map neatly onto the action hierarchy.
Character gestures can be seen as capturing lower-level action kinematics in that they reflect
the actual movements being performed. Observer gestures capture the goal-object in that
they represent the objects being acted upon and/or the trajectory that those objects follow.
Finally, metaphoric gestures reflect higher-level outcomes. This mapping of gesture types to
action types allows us to, first, disentangle different forms of gesture and, second, ask
questions about whether the way in which a gesture represents an action (in particular,
whether it captures movements that are situated on lower vs. higher levels in a hierarchy of
motor control) influences the impact that the gesture has on thinking.

The structure of our argument elaborates this hypothesis. We begin by reviewing evidence
that our actions can influence our thoughts. We then review evidence that the gestures we
produce when we speak can also influence our thoughts. We then join these two literatures
and ask whether gestures influence thinking by virtue of the actions they represent. We end
by speculating that gesture may be the ideal vehicle by which thought can move from the
concrete to the abstract.

1. The Embodied Viewpoint: Action influences thought
Traditional views of cognition suggest that conscious experience gives rise to abstract codes
that are arbitrarily related to the objects or concepts they represent (Kintsch, 1988; Newell &
Simon, 1972; Pylyshyn, 1986). Broadly speaking, an individual’s knowledge is
conceptualized as a network of connected nodes or concepts in the form of amodal
propositions (e.g., Collins & Quillian, 1969). Recently, however, embodied approaches
propose that amodal propositions are not the only manner in which knowledge is
represented. Theories of embodied cognition such as perceptual symbols systems (PSS;
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Barsalou, 1999) suggest that our representations of objects and events are built on a system
of activations much like amodal views of cognition. However, in contrast to amodal views,
PSS purports that current neural representations of events are based on the brain states that
were active in the past, during the actual perception and interaction with the objects and
events in the real world. That is, our cognitive representations of a particular action, item, or
event reflect the states that produced these experiences. Perceptual symbols are believed to
be multimodal traces of neural activity that contain at least some of the motor information
present during actual sensorimotor experience (Barsalou, 1999; for embodied cognition
reviews, see Garbarini & Adenzato, 2004; Glenberg, 1997; Niedenthal, Barsalou,
Winkielman, Krauth-Gruber, & Ric, 2005; Wilson, 2002; Zwaan, 1999).

To the extent that PSS, and the embodied viewpoint more generally, captures the way
individuals understand and process the information they encounter, we can make some
straightforward predictions about how acting in the world and, specifically, one’s previous
action experiences, should influence cognition. For instance, if neural operations that
embody previous actions and experiences underlie our representations of those actions, then
individuals who have had extensive motor skill experience in a particular domain should
perceive and represent information in that domain differently from individuals without such
experiences. There is evidence to support this prediction.

Experience doing an action influences perception of the action
In one of the first studies to address differences in the neural activity that underlies action
observation in people with more or less motor experience with those actions, Calvo-Merino,
Glaser, Grezes, Passingham, and Haggard (2005) used functional magnetic resonance
imaging (fMRI) to study brain activation patterns when individuals watched an action in
which they were skilled, compared to one in which they were not skilled. Experts in
classical ballet or Capoeira (a Brazilian art form that combines elements of dance and
martial arts) watched videos of the two activities while their brains were being scanned.
Brain activity when individuals watched their own dance style was compared to brain
activity when they watched the other unfamiliar dance style (e.g., ballet dancers watching
ballet versus ballet dancers watching Capoeira). Greater activation was found when experts
viewed the familiar vs. the unfamiliar activity in a network of brain regions thought to
support both the observation and production of action (e.g., bilateral activation in premotor
cortex and intraparietal sulcus, right superior parietal lobe, and left posterior superior
temporal sulcus; Rizzolatti, Fogassi, & Gallese, 2001).

To explore whether doing (as opposed to seeing) the actions was responsible for the effect,
Calvo-Merino, Grezes, Glaser, Passingham, & Haggard (2006) examined brain activation in
male and female ballet dancers. Each gender performs several moves not performed by the
other gender. But because male and female ballet dancers train together, they have extensive
experience seeing (although not doing) the other gender’s moves. Calvo-Merino and
colleagues found greater premotor, parietal, and cerebellar activity when dancers viewed
moves from their own repertoire, compared to moves performed by the opposite gender.
Having produced an action affected the way the dancers perceived the action, suggesting
that the systems involved in action production subserve action perception.

Experience doing an action influences comprehension of descriptions of the action
Expanding on this work, Beilock, Lyons, Mattarella-Micke, Nusbaum, & Small (2008; see
also Holt & Beilock, 2006) showed that action experience not only changes the neural basis
of action observation, but also facilitates the comprehension of action-related language.
Expert ice-hockey players and hockey novices passively listened to sentences depicting ice-
hockey action scenarios (e.g., “The hockey player finished the stride”) or everyday actions
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scenarios (e.g., “The individual pushed the bell”) during fMRI. Both groups then performed
a comprehension task that gauged their understanding of the sentences they had heard.1

As expected, all participants, regardless of hockey experience, were able to comprehend
descriptions of everyday action scenarios like pushing a bell. However, hockey experts
understood hockey-language scenarios better than hockey novices (see Beilock et al., 2008,
for details). More interestingly, the relation between hockey experience and hockey-
language comprehension was mediated by neural activity in left dorsal premotor cortex
[Talairach center-of-gravity = (±45,9,41)]. The more hockey experience participants had, the
more the left dorsal premotor cortex was activated in response to the hockey-language; and,
in turn, the more activation in this region, the better their hockey-language comprehension.
These observations support the hypothesis that auditory comprehension of action-based
language can be accounted for by experience-dependent activation of left dorsal premotor
cortex, a region thought to support the selection of well-learned action plans and procedures
(Grafton, Fagg, and Arbib, 1998; O’Shea, Sebastian, Boorman, Johansen-Berg, &
Rushworth, 2007; Rushworth, Johansen-Berg, Gobel, & Devlin, 2003; Schluter, Krams,
Rushworth, & Passingham, 2001; Toni, Shah, Frink, Thoenissen, Passingham, & Zilles,
2002; Wise & Murray, 2000).

In sum, people with previous experience performing activities that they are currently either
seeing or hearing about call upon different neural regions when processing this visual or
auditory information than people without such action experience. This is precisely the
pattern an embodied viewpoint would predict—namely, that our previous experiences acting
in the world change how we process the information we encounter by allowing us to call
upon a greater network of sensorimotor regions, even when we are merely observing or
listening without intending to act (for further examples, see Beilock & Holt, 2007; Yang,
Gallo, & Beilock, 2009).

Experience doing an action influences perceptual discrimination of the action
Finally, motor experience-driven effects do more than facilitate perception of an action, or
comprehension of action-related language (for a review, see Wilson & Knoblich, 2004).
Recent work by Calise and Giese (2006) demonstrates that motor experience can have an
impact on individuals’ ability to make perceptual discriminations among different actions
that they observe.

Typical human gait patterns are characterized by a phase difference of approximately 180°
between the two opposite arms and the two opposite legs. Calise and Giese trained
individuals to perform an unusual gait pattern—arm movements that matched a phase
difference of 270° (rather than the typical 180°). Participants were trained blindfolded with
only minimal verbal and haptic feedback from the experimenter.

Before and after training, participants performed a visual discrimination task in which they
were presented with two point-light walkers and had to determine whether the gait patterns
of the point-light walkers were the same or different. In each display, one of the walkers’
gait pattern corresponded to phase differences of 180°, 225°, or 270° (the phase difference
participants were trained to perform). The other point-light walker had a phase difference
either slightly lower or higher than each of these three prototypes.

1In the comprehension test, after the participants heard each sentence, they saw a picture. Their task was to judge whether the actor in
the picture had been mentioned in the sentence. In some pictures, the actor performed the action described in the sentence; in some,
the actor performed an action not mentioned in the sentence; and in some, the actor pictured was not mentioned at all in the sentence
(these were control sentences). If participants are able to comprehend the actions described in the sentences, they should be faster to
correctly say that the actor in the picture had been mentioned in the sentence if that actor was pictured doing the action described in
the sentence than if the actor was pictured doing a different action.
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As one might expect, before motor training, participants performed at a high level of
accuracy on the 180° discriminations, as these are the gait patterns most similar to what
people see and perform on a daily basis. However, participants’ discrimination ability was
poor for the two unusual gait patterns, 225° and 270°. After motor training, participants
again performed well on the 180° discriminations. Moreover, they improved on the 270°
displays—the gait they had learned to perform—but not on the 225° displays. Interestingly,
the better participants learned to perform the 270° gait pattern, the better their performance
on the perceptual discrimination task. This result suggests a direct influence between
learning a motor sequence and recognizing that sequence—an influence that does not
depend on visual learning as individuals were blindfolded during motor skill acquisition.

To summarize thus far, action experience has a strong influence on the cognitive and neural
processes called upon during action observation, language comprehension, and perceptual
discrimination. Action influences thought.

2. Gesture influences thought
2.1. Background on gesture

The gestures that speakers produce when they talk are also actions, but they do not have a
direct effect on the environment. They do, however, have an effect on communication. Our
question, then, is whether actions whose primary function is to represent ideas influence
thinking in the same way as actions whose function is to directly impact the world—by
virtue of the fact that both are movements of the body. Unlike other movements of the body
(often called body language, e.g., whether speakers move their bodies, make eye contact, or
raise their voices), which provide cues to the speaker’s attitude, mood, and stance (Knapp,
1978), the gestures that speakers produce when they talk convey substantive information
about a speaker’s thoughts (McNeill, 1992). Gestures, in fact, often display thoughts not
found anywhere in the speaker’s words (Goldin-Meadow, 2003).

Although there is no right or wrong way to gesture, particular contexts tend to elicit
consistent types of gestures in speakers. For example, children asked to explain whether they
think that water poured from one container into another is still the same amount all produce
gestures that can be classified into a relatively small set of spoken and gestural rationales
(Church & Goldin-Meadow, 1986, e.g., children say the amount is different because “this
one is taller than that one,” while indicating with a flat palm the height of the water first in
the tall container and then in the short container). As a result, it is possible to establish
“lexicons” for gestures produced in particular contexts that can be used to code and classify
the gestures speakers produce (Goldin-Meadow, 2003, chapter 3).

Not only is it possible for researchers to reliably assign meanings to gestures, but ordinary
listeners who have not been trained to code gesture can also get meaning from the gestures
they see (Cassell, McNeill, & McCullough, 1999; Kelly & Church, 1997; 1998; Graham &
Argyle, 1975; Holle & Gunter, 2007; Kelly, Kravitz, & Hopkins, 2004; Özyürek, Willems,
Kita & Hagoort, 2007; Wu & Coulson, 2005). Listeners are more likely to deduce a
speaker’s intended message when speakers gesture than when they do not gesture—whether
the listener is observing combinations of character and observer viewpoint gestures (Goldin-
Meadow, Wein & Chang, 1992) or metaphoric gestures (Alibali, Flevares, & Goldin-
Meadow, 1997). Listeners can even glean specific information from gesture that is not
conveyed in the accompanying speech (Beattie & Shovelton, 1999; Goldin-Meadow, Kim &
Singer, 1999; Goldin-Meadow & Sandhofer, 1999; Goldin-Meadow & Singer, 2003).
Gesture thus plays a role in communication.
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However, speakers continue to gesture even when their listeners cannot see those gestures
(Bavelas, Chovil, Lawrie & Wade, 1992; Iverson & Goldin-Meadow, 1998, 2001),
suggesting that speakers may gesture for themselves as well as for their listeners. Indeed,
previous work has shown that gesturing while speaking frees up working memory resources,
relative to speaking without gesturing—whether the speaker produces combinations of
character and observer viewpoint gestures (Ping & Goldin-Meadow, 2010) or metaphoric
gestures (Goldin-Meadow, Nusbaum, Kelly & Wagner, 2001; Wagner, Nusbaum & Goldin-
Meadow, 2004). Gesture thus plays a role in cognition.

In the next three sections, we first establish that gesture predicts changes in thinking. We
then show that, like action, gesture can play a role in changing thinking, both through its
effect on communication (the gestures learners see others produce) and through its effect on
cognition (the gestures learners themselves produce). Finally, we turn to the question of
whether gesture influences thought by linking it to action.

2.2. Gesture predicts changes in thought
The gestures a speaker produces on a task can predict whether the speaker is likely to learn
the task. We see this phenomenon in tasks that typically elicit either character or observer
viewpoint gestures. Take, for example, school-aged children learning to conserve quantity
across perceptual transformations like pouring water. Children who refer in gesture to one
aspect of the conservation problem (e.g., the width of the container), while referring in
speech to another aspect (e.g. “this one is taller”), are significantly more likely to benefit
from instruction on conservation tasks than children who refer to the same aspects in both
speech and gesture (Church & Goldin-Meadow, 1986; see also Pine, Lufkin, & Messer,
2004; Perry & Elder, 1997).

We see the same phenomenon in tasks that elicit metaphoric gestures, as in the following
example. Children asked to solve and explain math problems such as 6+4+2=__+2 routinely
produce gestures along with their explanations and those gestures often convey information
that is not found in the children’s words. For example, a child puts 12 in the blank and
justifies his answer by saying, “I added the 6, the 4, and the 2” (i.e., he gives an add-to-
equal-sign problem-solving strategy in speech). At the same time, the child points at the 6,
the 4, the 2 on the left side of the equation, and the 2 on the right side of the equation (i.e.,
he gives an add-all-numbers strategy in gesture).2 Here again, children who convey different
information in their gestures and speech are more likely to profit from instruction than
children who convey the same information in the two modalities (Perry, Church & Goldin-
Meadow, 1988; Alibali & Goldin-Meadow, 1993).3

Gesture thus predicts changes in thought. But gesture can do more—it can bring about
changes in thought in (at least) two ways: The gestures that learners see and the gestures that
learners produce can influence what they learn.

2.3. Gesture changes thought
Seeing gesture changes thought—Children who are given instruction that includes
both speech and gesture learn more from that instruction than children who are given

2Note that the strategy the child produces in gesture leads to an answer that is different from 12 (i.e., 14). Although children are
implicitly aware of the answers generated by the strategies they produce in gesture (Garber, Alibali & Goldin-Meadow, 1998), they
very rarely explicitly produce those answers.
3In this example, the strategies produced in both speech and gesture lead to incorrect (albeit different, see preceding footnote)
answers. Children also sometimes produce a correct strategy in gesture paired with an incorrect strategy in speech (however, they
rarely do the reverse, i.e., a correct strategy in speech paired with an incorrect strategy in gesture). Responses of this sort also predict
future success on the problem (Perry et al., 1988).
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instruction that includes only speech. This effect has been demonstrated for character and
observer gestures in conservation tasks (Ping & Goldin-Meadow, 2008), and for metaphoric
gestures in tasks involving mathematical equivalence (Church, Ayman-Nolley, &
Mahootian, 2004; Perry, Berch, & Singleton, 1995) or symmetry (Valenzeno, Alibali, &
Klatzky, 2003).

There is, moreover, evidence that the particular gestures used in the lesson can affect
whether learning takes place. Singer and Goldin-Meadow (2005) varied the types of
metaphoric gestures that children saw in a mathematical equivalence lesson. They found that
children profited most from the lesson when the instructor produced two different problem-
solving strategies at the same time, one in speech and the other in gesture; for example, for
the problem 6+4+3=__+3, the teacher said, “we can add 6 plus 4 plus 3 which equals 13; we
want to make the other side of the equal sign the same amount and 10 plus 3 also equals 13,
so 10 is the answer” (an equivalence strategy), while pointing at the 6, the 4, and the left 3,
and producing a take-away gesture near the right 3 (an add-subtract strategy). This type of
lesson was more effective than one in which the instructor produced one strategy in speech
along with the same strategy in gesture, or with no gesture at all. Most strikingly, learning
was worst when the instructor produced two different strategies (equivalence and add-
subtract) both in speech. Thus, instruction containing two strategies was effective as long as
one of the strategies was conveyed in speech and the other in gesture. Seeing gesture can
change the watcher’s thinking.

Producing gesture changes thought—Can doing gesture change the doer’s thinking?
Yes. Telling children to gesture either before or during instruction makes them more likely
to profit from that instruction. Again, we see the effect in character and observer viewpoint
gestures, as well as metaphoric gestures.

For example, children were asked on a pretest to solve a series of mental rotation problems
by picking the shape that two pieces would make if they were moved together. The children
were then given a lesson in mental rotation. During the lesson, one group was told to “show
me with your hands how you would move the pieces to make one of these shapes.” In
response to this instruction, children produced character (they rotated their hands in the air
as though holding and moving the pieces) and observer (they traced the trajectory of the
rotation in the air that would allow the goal object to be formed) viewpoint gestures—akin
to the kinematic and goal-object components of the motor hierarchy mentioned earlier
(Grafton & Hamilton, 2007). The other group of children was told to use their hands to point
to the pieces. Both groups were then given a posttest. Children told to produce gestures that
exemplified the kinematics and the trajectories needed to form the goal-object during the
lesson were more likely to improve after the lesson than children told only to point (Ehrlich,
Tran, Levine & Goldin-Meadow, 2009; see also Ehrlich, Levine & Goldin-Meadow, 2006).
Not only does gesturing affect learning, but the type of gesture matters—producing gestures
that exemplify the actions needed to produce a desired outcome, as well as gestures that
reflect the goal-object itself, both led to learning; pointing gestures did not.

As an example of metaphoric gestures, Broaders, Cook, Mitchell and Goldin-Meadow
(2008) encouraged children to gesture when explaining their answers to a series of math
problem right before they were given a math lesson. One group of children was told to move
their hands as they explained their solutions; the other group was told not to. Both groups
were then given the lesson and a posttest. Children told to gesture prior to the lesson were
more likely to improve after the lesson than children told not to gesture. Interestingly, the
gestures that the children produced conveyed strategies that they had never expressed
before, in either speech or gesture, and often those strategies, if implemented, would have
led to correct problem solutions (e.g., the child swept her left hand under the left side of the
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equation and her right side under the right side of the equation, the gestural equivalent of the
equivalence strategy). Being told to gesture seems to activate ideas that were likely to have
been present, albeit unexpressed, in the learner’s pre-lesson repertoire. Expressing these
ideas in gesture then leads to learning.

Gesturing can also create new knowledge. Goldin-Meadow, Cook and Mitchell (2009)
taught children hand movements instantiating a strategy for solving the mathematical
equivalence problems that the children had never expressed in either gesture or speech—the
grouping strategy. Before the lesson began, all of the children were taught say, “to solve this
problem, I need to make one side equal to the other side,” the equivalence strategy. Some
children were also taught hand movements instantiating the grouping strategy. The
experimenter placed a V-hand under the 6+3 in the problem 6+3+5=__+5, followed by a
point at the blank (grouping 6 and 3 and putting the sum in the blank leads to the correct
answer). The children were told to imitate the movements.

All of the children were then given a math lesson. The instructor taught the children using
the equivalence strategy in speech and produced no gestures. During the lesson, children
were asked to produce the words or words+hand movements they had been taught earlier.
They were then given a posttest. Children who produced the grouping hand movements
during the lesson improved on the posttest more than children who did not. Moreover, they
produced the grouping strategy in speech for the very first time when asked to justify their
posttest responses. Producing hand movements reflecting the grouping strategy led to
acquisition of the strategy. Gesture can thus introduce new ideas into a learner’s repertoire
(see also Cook, Mitchell & Goldin-Meadow, 2008; Cook & Goldin-Meadow, 2010).

3. Gesture affects thinking by grounding it in action
We have seen that gesture can influence thought, but the mechanism that underlies this
effect is, as yet, unclear. We suggest that gesture affects thinking by grounding it in action.
To bolster this argument, we first provide evidence that how speakers gesture is influenced
by the actions they do and see in the world. We then show that gestures that incorporate
components of actions into their form (what we are calling action gestures) can change the
way listeners think and, even more striking, the way gesturers themselves think.

3.1. Gestures reflect actions
Hotstetter and Alibali (2008; see also Kita, 2000; McNeill, 1992; Streeck, 1996) have
proposed that gestures are an outgrowth of simulated action and perception. According to
this view, a gesture is born when simulated action, which involves activating the premotor
action states associated with selecting and planning a particular action, spreads to the motor
areas involved in the specific step-by-step instantiation of that action.

Character viewpoint gestures, which resemble real-world actions, provide face value support
for this hypothesis. For example, when explaining his solution to a mental rotation problem,
one child produced the following character viewpoint gesture: his hands were shaped as
though he were holding the two pieces; he held his hands apart and then rotated them
together. This gesture looks like the movements that would be produced had the pieces been
moved (in fact, the pieces were drawings and thus could not be moved). Similarly, when
explaining why the water in one container changed in amount when it was poured into
another contained, a child produced a pouring motion with her hand shaped as though she
were holding the container (here again, the child had not done the actual pouring but had
observed the experimenter making precisely those movements).
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Although examples of this sort suggest that gestures reflect real-world actions, more
convincing evidence comes from a recent study by Cook and Tanenhaus (2009). Adults in
the study were asked to solve the Tower of Hanoi problem in which four disks of different
sizes must be moved from the leftmost of three pegs to the rightmost peg; only one disk can
be moved at a time and a bigger disk can never be placed on a smaller disk (Newell &
Simon, 1972). There were two groups in the study, one solved the Tower of Hanoi problem
with real objects and had to physically move the disks from one peg to another; the other
group solved the same task on a computer and used a mouse to move the disks. Importantly,
the computer disks could be dragged horizontally from one peg to another without being
lifted over the top of the peg; the real disks, of course, had to be lifted over the pegs.

After solving the problem, the adults were asked to explain how they solved it to a listener.
Cook and Tanenhaus (2009) examined the speech and gestures produced in those
explanations, and found no differences between the two groups in the types of words used in
the explanations, nor in the number of gestures produced per word. There were, however,
differences in the gestures themselves. The group who had solved the problem with the real
objects produced more gestures with grasping hand shapes than the group who had solved
the problem on the computer. Their gestures also had more curved trajectories (representing
the path of the disk as it was lifted from peg to peg) than the gestures produced by the
computer group, which tended to mimic the horizontal path of the computer mouse. The
gestures incorporated the actions that each group had experienced when solving the
problem, reflecting kinematic, object, and outcome details from the motor plan they had
used to move the disks.

3.2. The actions reflected in gesture influence thought
Seeing action gestures changes thinking—We have seen that speakers incorporate
components of their actions into the gestures they produce while talking. Importantly, those
action components affect the way their listeners think. After the listeners in the Cook and
Tanenhaus (2009) study heard the explanation of the Tower of Hanoi problem, they were
asked to solve a Tower of Hanoi problem themselves on the computer. The listeners’
performance was influenced by the gestures they had seen. Listeners who saw explanations
produced by adults in the real objects condition were more likely to make the computer
disks follow real-world trajectories (i.e., they ‘lifted’ the computer disks up and over the peg
on the screen even though there was no need to). Listeners who saw explanations produced
by adults in the computer condition were more likely to move the computer disks laterally
from peg to peg, tracking the moves of the computer mouse. Moreover, within the real
objects condition, there was a significant positive relation between the curvature of the
gestures particular speakers produced during the explanation phase of the study and the
curvature of the mouse movements produced by the listeners who saw those gestures when
they themselves solved the problem during the second phase of the study. The more curved
the trajectory in the speaker’s gestures, the more curved was the trajectory in the listener’s
mouse movements.

Thus, the listeners were sensitive to quantitative differences in the gestures they saw.
Moreover, their own behavior when asked to subsequently solve the problem was shaped by
those differences, suggesting that seeing gestures reflecting action information changes how
observers go about solving the problem themselves.

Doing action gestures changes thinking—As described earlier, gestures can affect
not only the observer, but also the gesturer him or herself. We next show that this effect may
grow out of gesture’s ability to solidify action information in the speaker’s own mental
representations. Beilock and Goldin-Meadow (2009) asked adults to solve the Tower of
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Hanoi problem twice, the first time with real objects (TOH1)—four disks, the smallest disk
of which weighed the least (0.8kg), the largest disk the most (2.9kg). The smallest disk
could be moved using either one hand or two, but the largest disk required two hands to
move successfully because it was so heavy.

After solving the problem, the adults explained their solution to a confederate (Explanation).
All of the adults spontaneously produced action gestures during their explanations. Gestures
in which the adults used only hand when describing how the smallest disk was moved were
classified as ‘one-handed’; gestures in which the adults used two hands when describing
how the smallest disk was moved were classified as ‘two-handed’.

In the final phase of the study, adults solved the Tower of Hanoi problem a second time
(TOH2). Half of the adults solved TOH2 using the original set of disks (No-Switch
condition); half used disks whose weights had been switched so that the smallest disk now
weighed the most and the largest the least (Switch condition). Importantly, when the smallest
disk weighed the most it was too heavy to be picked up with one-hand; the adults had to use
two-hands to pick it up successfully.

Not surprisingly, adults in the No-Switch condition, who solved the problem using the same
tower that they had previously used, improved on the task (they took less time on TOH2
than TOH1 and also used fewer moves). But adults in the Switch condition did not improve
and, in fact, took more time (and used more moves) to solve TOH2 than TOH1. The
interesting result is that, in the Switch condition, performance on TOH2 could be predicted
by the particular gestures adults produced during the Explanation—the more one-handed
gestures they produced when describing how they moved the smallest disk, the worse they
did on TOH2. Remember, when the disks were switched, the smallest disk could no longer
be lifted with one hand.

Adults who had used one-handed gestures when talking about the smallest disk may have
begun to represent the disk as light, which, after the switch, was the wrong way to represent
this disk; hence, their poor performance. Importantly, in the No-Switch condition, there was
no relation between the percentage of one-handed gestures used to describe the smallest disk
during the Explanation and change in performance from TOH1 to TOH2—the disk was still
small so representing it as light was consistent with the actions needed to move it. In other
words, adults the No-Switch condition could use either one- or two-handed gestures to
represent the smallest disk without jeopardizing their performance on TOH2, as either one
or two hands could be used to move a light disk.

Disk weight is not a relevant factor in solving the Tower of Hanoi problem. Thus, when
adults explained how they solved TOH1 to the confederate, they never talked about the
weight of the disks or the number of hands they used to move the disks. However, it is
difficult not to represent disk weight when gesturing—using a one-handed vs. a two-handed
gesture implicitly captures the weight of the disk, and this gesture choice had a clear effect
on TOH2 performance. Moreover, the number of hands that adults in the Switch group
actually used when acting on the smallest disk in TOH1 did not predict performance on
TOH2; only the number of one-handed gestures predicted performance. This finding
suggests that gesture added action information to the adults’ mental representation of the
task, and did not merely reflect what they had previously done.

If gesturing really is changing the speaker’s mental representations, rather than just
reflecting those representations, then it should be crucial to the effect—adults who do not
gesture between TOH1 and TOH2 should not show a decrement in performance when the
disk weights are switched. Beilock and Goldin-Meadow (2009) asked a second group of
adults to solve TOH1 and TOH2, but this time the adults were not given an Explanation task
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in between and, as a result, did not gesture. These adults improved on TOH2 in both the
Switch and No-Switch conditions. Switching the weights of the disks interfered with
performance only when the adults had previously produced action gestures that were no
longer compatible with the movements needed to act on the smallest disk.

Gesturing about an action thus appears to solidify in mental representation the particular
components of the action reflected in the gesture. When those components are incompatible
with subsequent actions, performance suffers. When the components are compatible with
future actions, gesturing will presumably facilitate the actions.

4. Gesture may be a more powerful influence on thought than action itself
Although gesturing is based in action, it is not a literal replay of the movements involved in
action. Thus, it is conceivable that gesture could have a different impact on thought than
action itself. Arguably, gesture should have less impact than action, precisely because
gesture is ‘less’ than action; that is, it is only a representation, not a literal recreation, of
action. Alternatively, this ‘once-removed-from-action’ aspect of gesture could have a more,
not less, powerful impact on thought. Specifically, when we perform a particular action on
an object (e.g., picking up a small, light disk in the TOH problem), we do not need to hold in
mind a detailed internal representation of the action (e.g., the plans specifying a series of
goals or specific movements needed to achieve the desired outcome; Newell & Simon,
1972) simply because some of the information is present in our perception of the object
itself (via the object’s affordances). An affordance is a quality of an object or the
environment that allows an individual to perform a particular action on it (Gibson, 1979); for
example, a light disk affords grasping with one or two hands; a heavy disk affords grasping
with only two hands.

In contrast to action, when we gesture, our movements are not tied to perceiving or
manipulating real objects. As a result, we cannot rely on the affordances of the object to
direct our gestures, but must instead create a rich internal representation of the object and
the sensorimotor properties required to act on it. In this way, gesturing (versus acting) may
lead to a more direct link between action and thinking because, in gesturing, one has to
generate an internal representation of the object in question (with all the sensorimotor details
needed to understand and act on it), whereas, in acting, some of this information is
embedded in, or ‘off-loaded’ to, the environment.

To explore whether gesture is, in fact, more powerful in linking thought and action then
acting itself, we conducted a new study in which we again asked adults to solve TOH twice.
However, in this study, after solving TOH1, only one group of adults was asked to explain
how they solved the task; this group gestured about moving the disks (N=20, the Gesture
group). A second group was asked to solve the task (rather than talk about solving the task)
after solving TOH1; this group actually moved the disks (N=20, the Action group). This
protocol directly contrasts gesture with action. Both groups then solved TOH2, and, as in the
original study, half of the adults in each of group solved TOH2 using the tower they used in
TOH1 (the smallest disk was the lightest, the No-Switch condition), and half solved TOH2
using the switched tower (the smallest disk was the heaviest and thus required two hands to
lift, the Switch condition).

To make sure that we had created a fair contest between gesture and action, we began by
demonstrating that there were no differences between the mean number of one-handed
gestures adults in the Gesture group produced when describing how they moved the smallest
disk (M=7.4, SD=4.66), and the mean number of one-handed moves adults in the Action
group produced when actually moving the smallest disk (M=5.9, SD=4.67), F=1, p=.30.
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Moreover, both the Gesture and Action groups used one hand in relation to the smallest disk
a majority of time.

If using one hand when either gesturing about the small disk or moving the small disk serves
to create a representation of the small disk as light (and thus liftable with one hand), then
switching disk weights should hurt performance equally in both conditions. In other words,
if action works in the same way as gesture to solidify information in mental representation,
then performance in the Action and Gesture groups ought to be identical—when the disk
weights are switched, both groups should perform less well on TOH2 than TOH1 (our
dependent variable, as in Beilock & Goldin-Meadow, 2009 was the difference in time, or
number of moves, taken to solve the problem, between TOH1 and TOH2). However, if
action solidifies representations less effectively than gesture, then the impact of switching
weights for the Action group should be smaller than the impact of switching weights for the
Gesture group—and that is precisely what we found. There was a significant 2(group:
Gesture, Action) × 2(switch: No-Switch, Switch) interaction for time, F(1,36)=5.49, p<.03,
and number of moves, F(1,36)=4.12, p<.05.

This result is displayed in Figure 1. For the Action group, switching the weight of the disks
across TOH attempts had no impact on performance. Specifically, there was no difference
between the Switch and No-Switch conditions in the Action group (TOH2-TOH1) in either
time, F<1, or number of moves, F=1, p>.3; both groups improved somewhat across the
problem-solving attempts.

In contrast, for the Gesture group, there were significant differences between the Switch and
No-Switch conditions (TOH2-TOH1) in both time, F(1,18)=7.73, p<.02, and number of
moves, F(1,18)=3.25, p=.088. Figure 1 shows clearly that whereas the No-Switch group
improved across time, the Switch group performed worse (thus replicating Beilock &
Goldin-Meadow, 2009).

To our knowledge, this study is the first to directly test the hypothesis that gesture about
action is more powerful than action itself in its effect on thought. Producing one-handed
gestures before the second problem-solving attempt slowed performance on the task (in
terms of both time and number of moves), but producing one-handed action movements did
not. Gesturing about the actions involved in solving a problem thus appears to exert more
influence on how the action components of the problem will be mentally represented than
actually performing the actions.

5. Gesture as a bridge between action and abstract thought
Hotstetter and Alibali (2008) propose that gestures are simulated action—they emerge from
perceptual and motor simulations that underlie embodied language and mental imagery.
Character viewpoint gestures are the most straightforward case—they are produced as the
result of a motor simulation in which speakers simulate an action in terms of the specific
effectors and movement patterns needed to reach a desired outcome, as though they
themselves were performing the action (thus corresponding to the lower-level action
kinematics in a hierarchy of motor control, Grafton & Hamilton, 2007). Although observer
viewpoint gestures do not simulate the character’s actions, they result from simulated object
properties such as the trajectory of an object or the identity of the object (and, in this sense,
correspond to the goal-object in a hierarchy of motor control, Grafton & Hamilton, 2007).
For example, speakers can use their hands to simulate the motion path that an object takes as
it moves or is moved from one place to another or the end result of the object itself. Finally,
metaphoric gestures arise from perceptual and motor simulations of the schemas on which
the metaphor is based (and thus correspond to higher-level outcomes in a hierarchy of motor
control, Grafton & Hamilton, 2007). For example, speakers who talk about fairness while
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alternating moving their hands (with palms facing up) up and down are simulating two
opposing views as though balancing objects on a scale. Gestures are thus closely tied to
action and display many of the characteristics of action.

Our findings take the Hotstetter and Alibali (2008) proposal one important step further. We
suggest that the action features that find their way into gesture do not just reflect the
gesturer’s thinking—they can feed back and alter that thinking. Speakers who produce
gestures simulating actions that could be performed on a light object (i.e., a one-handed
movement that could lift a light but not a heavy object) come to mentally represent that
object as light. If the object, without warning, becomes heavy, the speakers who produced
the gestures are caught off-guard and perform less well on a task involving this object. In
other words, gesture does not just passively reflect action, it actively brings action into a
speaker’s mental representations, and those mental representations then affect behavior—
sometimes for the better and sometimes for the worse. Importantly, our new evidence
suggests that gesture may do even more than action to change thought. Problem-solvers who
use one-handed movements to lift the smallest disk, thus treating it as a light rather than
heavy disk, do not seem to mentally represent the disk as light. When the disk, without
warning, becomes heavy, their performance on a task involving the now-heavy disk is
unaffected. Gesture may be more effective in linking thought and action then acting itself.

Are observer viewpoint and metaphoric gestures as effective as character viewpoint gestures
in grounding thought in action? Previous work tells us that all three gesture types can play
an active role in learning, changing the way the learner thinks. Our current findings suggest
that the mechanism underlying this effect for character viewpoint gestures may be the
gesture’s ability to ground thought in action. That is, producing character viewpoint gestures
brings action into the speaker’s mental representations, and does so more effectively than
producing the actions on which the gestures are based. Future work is needed to determine
whether observer viewpoint and metaphoric gestures serve the same grounding function
equally well. As an example, we can ask, whether producing concrete character viewpoint
gesture during instruction on a mental rotation task facilitates learning better than producing
the more abstract observer viewpoint (or metaphoric) gesture.

Character viewpoint gestures appear to be an excellent vehicle for bringing action
information into a learner’s mental representations. But, as Beilock and Goldin-Meadow
(2010) show, action information can, at times, hinder rather than facilitate performance.
Indeed, the more abstract observer viewpoint gestures, because they strip away some of the
action details that are particular to an individual problem, may be even better at promoting
generalization across problems than character viewpoint gestures (compare findings in the
analogy literature showing that abstract representations are particularly good at facilitating
transfer to new problems, e.g., Gick & Holyoak, 1980).

We might further suggest that character and observer viewpoint gestures, if used in
sequence, could provide a bridge between concrete actions and more abstract representation.
For example, a child learning to solve mental rotation problems might first be encouraged to
use a character viewpoint gesture, using her hands to represent the actual movements that
would be used to move the two pieces together (e.g., two C-shaped hands mimicking the
way the pieces are held and rotated toward one another). In the next stage, she might be
encouraged to use the more abstract observer viewpoint gesture and use her hands to
represent the movement of the pieces without including information about how the pieces
would be held (e.g., two pointing hands rotated toward one another). In this way, producing
the concrete character viewpoint gesture could serve as an entry point into the action details
of a particular problem. These details may then need to be stripped away if the learner is to
generalize beyond one particular problem, a process that could be facilitated by producing
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the more abstract observer viewpoint. If so, learners taught to first produce the character
viewpoint gesture and next produce the observer viewpoint gesture may do better than
learners taught to produce the two gestures in the opposite order, or than learners taught to
produce either gesture on its own, or no gesture at all.

To summarize, many lines of previous research have shown that the way we act influences
the way we think. A separate literature has shown that the way we gesture also influences
the way we think. In this manuscript, we have attempted to bring these two research themes
together, and explore whether gesture plays its role in thinking by virtue of the fact that it
uses action to represent action. Gesture is a unique case because, although it is an action, it
does not have a direct effect on the world the way other actions usually do. Gesture has its
effect by representing ideas. We have argued here that actions whose primary function is to
represent ideas—that is, gestures—can influence thinking, perhaps even more powerfully
than actions whose function is to impact the world more directly.
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Figure 1.
Difference in time (top graph) and moves (bottom graph) taken to solve the TOH problem
(TOH2 – TOH1) for adults who, after completing TOH1, explained how they solved the
task and gestured about moving the disks (Gesture group, left bars); and adults who solved
the task rather than explain it and thus actually moved the disks (Action group, right bars).
In the Gesture group, adults in the Switch condition showed less improvement (i.e., a more
positive change score) from TOH1 to TOH2 than adults in the No-Switch condition. In
contrast, in the Action group, adults showed no difference between conditions.
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