Skip to main content
. 2011 May 12;6(5):e19785. doi: 10.1371/journal.pone.0019785

Figure 2. Lowering oxygen exposure reduces oxidative stress, DNA damage and genomic instability in thymus.

Figure 2

A. Changes in reduced (GSH) and oxidized (GSSG) glutathione levels show increased antioxidant capacity in blood of mice after chronic adaptation to the 10% oxygen condition. Data shown as mean ± SEM, with n = 4. B. Decreased ROS levels measured by DCF FACS in cells isolated from the thymus of mice in 10% oxygen. Data shown as mean ± SEM, with n = 5. C. Representative images of decreased oxidative DNA damage detected by avidin-FITC (Av-FITC) staining for 8-oxoG in thymus tissue from p53−/− mouse exposed to 10% versus 21% oxygen for 2 to 4 wk. Nuclei counterstaining with DAPI show similar densities in the tissue. Scale bar, 100 µm (originally 63× magnification). D. Decreased oxidative DNA damage quantified by 8-oxoG enzyme-linked immunosorbent assay (ELISA) in thymus tissue from p53−/− mice exposed to 10% compared to 21% oxygen. Absolute value of 8-oxoG (pg/µg genomic DNA) shown as mean ± SEM, with n = 3. E. Increased relative telomere length measured by RT-PCR of genomic DNA from thymus tissue of p53−/− mice exposed to 10% versus 21% oxygen. Data shown as mean ± SEM, with n = 3. F. Decreased RAG1 protein level measured by western blotting in 10% versus 21% oxygen. Samples shown are from two separate animals in each oxygen condition and β-actin serves as protein loading control.