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Abstract
The gastrointestinal epithelium is anatomically positioned to provide a selective barrier between
the anaerobic lumen and lamina propria, which has a high rate of metabolism. Supported by a
complex vasculature, this important barrier is affected by reduced blood flow and resultant tissue
hypoxia, particularly during the severe metabolic shifts associated with active inflammation in
individuals with inflammatory bowel disease (IBD). Activation of hypoxia-inducible factor (HIF)
under these conditions promotes resolution of inflammation in mouse models of disease.
Protective influences of HIF are attributed, in part, to the complex regulation of a barrier
protection with the intestinal mucosa. Reagents that activate HIF, via inhibition of the prolyl
hydroxylase enzymes, might be developed to induce hypoxia-mediated resolution in patients with
intestinal mucosal inflammatory disease.
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Introduction
The gastrointestinal (GI) tract constitutes the largest mucosal surface found in multicellular
organisms. Intestinal epithelia line the entire GI tract, covering an area of some 300m2 in
adult humans. This monolayer of cells comprise a highly dynamic barrier that must be
intricately regulated to accommodate fluid and nutrient transport and to exclude antigenic
material at the luminal interface 1, 2. As such, the intestinal mucosa has a unique, adaptive
metabolic profile that is regulated by many sources (e.g. enteric microbiota, intestinal
perfusion, and tissue oxygenation) and is subject to profound fluctuations even under
physiologic, steady-state conditions 3. For instance, marked increases in intestinal blood
flow following food ingestion significantly shift local oxygen partial pressure. This
metabolic profile is altered under conditions of active inflammation, such as those
characterized in inflammatory bowel disease (IBD). Recent studies have associated hypoxia-
regulated pathways with barrier function in patients with IBD; these pathways might help
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resolve mucosal inflammation. We review hypoxia-regulated pathways and discuss the
therapeutic potential of modifying hypoxic signaling in patients with IBD.

Energy metabolism and the mucosal immune response
Oxygenation of the mucosa

Intestinal mucosae are characterized by a uniquely dynamic oxygenation profile; they
undergo multiple, large fluctuations in blood perfusion and metabolism per day. Even in the
basal state, the component epithelial cells that line the mucosa exist in a relatively low
oxygen-tension environment, described as ‘physiologic hypoxia’. In the small intestine, this
has been attributed to a countercurrent oxygen exchange mechanism, whereby oxygen from
arterial blood that supplies the villi diffuses to adjacent venules, travelling from villous tip to
base, resulting in graded hypoxia 4. However, a steep oxygen gradient has also been
documented in more distal, colonic regions of the GI tract, spanning from the anaerobic
lumen, across the epithelium, to the richly vascularized subepithelial mucosa. Because of the
high energy requirements of the GI tract and the integral role of the epithelium in
maintaining intestinal homeostasis, these cells have evolved many molecular mechanisms to
regulate the challenging metabolic conditions. The intestinal epithelium is remarkably
resistant to hypoxia; even low levels of oxygenation within this cell layer can be altered to
regulate barrier function and integrity 5.

A role for epithelial barrier dysregulation in IBD is supported by observations of increased
intestinal permeability in a subset of first-degree relatives of patients with Crohn’s disease
(CD) 6. Barrier function of the epithelial monolayer is mediated by a number of specialized
anatomical features that confer selective permeability to luminal contents 1. Epithelia are
polarized, with apical surface functions optimized for luminal interaction and enteric
bacterial exclusion (e.g. intercellular junctions, vectorial membrane transport systems and
mucus secretion) and basolateral surfaces adapted for interface with the underlying mucosa
and immune cell repertoire. Absorptive and barrier epithelial functions are regulated by
oxygen 7. Intestinal epithelia also actively participate as innate immune sensors of microbial
pathogens and commensal organisms 8, 9. In fact, a state of low-grade inflammation at the
GI mucosal surface is sustained by omnipresent luminal antigens and is important for
development of oral tolerance priming of the mucosal immune system, should antigenic
material penetrate the epithelial barrier. Studies with gnotobiotic mice have shown that the
enteric microbiota influence epithelial cell metabolism, barrier function, and survival 10.
Increased epithelial permeability and resultant mucosal inflammation and injury underly the
pathology of IBD; improving our understanding of microenvironmental metabolic factors
that influence initiation, perpetuation, and resolution of overt disease could lead to new
therapeutic approaches.

Inflammation and oxygen metabolism
Large metabolic shifts occur at sites of active mucosal inflammation; nutrients and local
oxygen become rapidly depleted, resulting in hypoxia, hypoglycemia, lactate accumulation,
and acidosis 7. Over the past decade, much work has focused on establishing the
microenvironmental metabolic cues and signaling mechanisms for leukocyte recruitment to
these sites, and the metabolic consequences that ensue. Adaptive immune responses to GI
tract inflammation are characterized by high rates of local T- and B-cell proliferation and
requirements for large amounts of glucose, amino acids, and lipids to fuel oxidative
phosphorylation 11, 12. Unlike resident lymphocytes however, innate immune myeloid cells
such as neutrophils (polymorphonuclear cells [PMN]), macrophages, and dendritic cells
must be actively recruited to inflammatory lesions 13. Cell migration to these lesions is
induced by complex cytokine, chemokine, and adhesion molecule expression. PMNs, for
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example, are mobilized by chemical signals generated at sites of active inflammation, such
as interleukin-8, N-formylated peptides, leukotriene B4, and platelet-activating factor. Cell
migration requires large amounts of energy, partly because high levels of ATP are required
to sustain turnover of actin filaments 14. Upon arrival at the inflammatory site, energy and
oxygen demands of recruited cells increase to facilitate phagocytosis and microbial killing.
The predominantly glycolytic form of metabolism shared by PMNs is thought to ensure their
survival and function in the hypoxic, often anoxic environment of deep inflammatory
foci 15. PMNs have unique mitochondria that maintain transmembrane potential via the
glycerol-3-phosphate shuttle, which regulates aerobic glycolysis and promotes energy
production 16.

Phagocytic functions are controlled by antimicrobial peptides, proteases, and reactive
oxygen species (ROS) generated in response to bacterial engulfment 17. ROS are short-lived
reactive molecules derived from the incomplete reduction of oxygen, such as superoxide
anion, hydrogen peroxide, and hydroxyl radical. Rapid generation of ROS by phagocytes is
mediated by a powerful respiratory or oxidative burst, commensurate with large increases in
oxygen and glucose consumption that in turn activate further ROS production 18. Upon
activation, it is estimated that PMN oxygen demands increase by as much as 50-fold,
eliciting consumption of up to 10 times more oxygen than any other cell in the body. The
PMN oxidative burst is not inhibited by oxygen concentrations as low as 4.5% 18, so ROS
are still generated in the hypoxic environment of intestinal inflammatory lesions. There is
evidence for ROS induction in other cell types, including intestinal epithelial cells, in
response to microbial signals 19. Though ROS is usually considered to be a microbicide
because of its role in the phagocytic immune response, it is also an important second
messenger that is involved in mucosal injury in IBD 20.

The metabolic changes that occur during mucosal inflammation in IBD provide might also
be studied during development of hypoxia in inflammatory lesions. The presence of hypoxia
at sites of mucosal inflammation was first identified in mouse models of IBD using 2-
nitroimidazole dyes 21, a class of compounds that undergo intracellular metabolism in an
oxygen-dependent manner 22. Tissue staining with these dyes revealed intriguing features of
the mucosal oxygenation profile. First, basal hypoxia is detectable in normal, non-inflamed
intestinal epithelial cells, particularly in the colon epithelium. So, low oxygen tension might
regulate basal gene expression in these cells (i.e. physiologic hypoxia). Second,
inflammatory mucosal lesions observed in colitic mice were highly hypoxic or even anoxic,
similar to those observed in large tumors. Several clinical studies have further defined the
occurrence of hypoxia in IBD 23–25. Although mechanisms for local energy and oxygen
depletion in the microenvironment of active inflammatory lesions have been partially
elucidated, there is a growing body of data to indicate that microvascular deficits in IBD
might contribute to mucosal hypoxia, through reduced intestinal blood supply and oxygen
delivery; these are further discussed below. Notably, analyses of inflamed colon samples
from IBD patients revealed prominent immunohistochemical staining for the hypoxia-
inducible factors (HIFs) HIF-1 and HIF-2 23—transcription regulators of genes that control
cell survival and functionality under hypoxic conditions. Some staining differences were
noted between HIF-1 and HIF-2 in samples from patients with CD or ulcerative colitis (UC).
For example, although HIF-1 was expressed focally within various stromal cells, HIF-2
appeared to be expressed more diffusely in CD samples. These studies also found that
vascular density was significantly higher in samples from patients with CD or UC,
compared with normal tissues, and that increased vascular density correlated with the
expression of VEGF, a gene that is regulated by HIF 26, 27.
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HIF–transcriptional regulators in response to hypoxia
HIFs

HIF is a member of the Per-ARNT-Sim family of basic helix-loop-helix transcription factors
that binds hypoxia response elements (HREs) at target gene loci under hypoxic
conditions 28. Functional HIF is a heterodimer that comprises a constitutive subunit
(HIF-1β) and a hypoxia-inducible ‘α’ component; stabilization of this α-subunit is regulated,
in part, by a family of oxygen- and iron-dependent prolyl hydroxylase (PHD) enzymes 29.
Three subunits have been identified (HIF-1α, HIF-2α, and HIF-3α), with the highest level of
sequence homology conserved between HIF-1α and HIF-2α 30. Analyses of genetic mouse
models indicate that HIF-1 and HIF-2 have non-redundant functions, 28 despite their
concurrent expression in many cell types, including intestinal epithelial cells 31. Several
studies have indicated that these proteins modulate the transcription of an overlapping but
distinct set of genes (Table 1) and that transcriptional responses might be integrated in ways
that support specific adaptations to hypoxia. For instance, transcriptional regulation of genes
that encode glycolytic enzymes appears to be more specifically mediated by HIF-1 than
HIF-2 32, whereas HIF-2 selectively regulates gene expression of factors involved in
duodenal iron homeostasis 31 and in early erythropoiesis. The N-terminal transactivation
domain of HIF proteins has been proposed to mediate specificity for target genes, via
interactions with auxiliary transcription factors 28, but compelling evidence for this aspect
remains elusive.

During mucosal inflammation, HIF has a protective role 5, 33–35; microarray analyses of
differentially expressed mRNAs in cultured epithelial cells subjected to hypoxia and animal
models of inflammation showed that the HIF-regulated transcriptional profile promotes
intestinal epithelial barrier function. Further investigation of mechanisms related to hypoxia-
elicted barrier protection revealed interesting features. First, expression of the functional
proteins encoded by these transcripts was localized to the most luminal apical aspect of
polarized epithelia 5, 33, 35. Second, molecular dissection of the hypoxia-elicited pathway(s)
for this apical gene cluster revealed a high propensity for regulation by HIF. Third, HIF-
dependent, epithelial barrier protective pathways induced by hypoxia tend to be more non-
conventional regulators of barrier function than prototypical junction proteins such as
occludin or claudin(s). Rather, HIF-regulated signaling promotes overall tissue integrity,
influencing functions that range from increased mucin production 36 by molecules that
modify mucins, such as intestinal trefoil factor 5, to xenobiotic clearance by P-
glycoprotein, 33 to nucleotide metabolism by 5′-ectonucleotidase (CD73) 34, 35, 37, 38 and
nucleotide signaling through the adenosine A2B receptor 34, 39, 40. More recent work has
indicated that HIF-1 induces the integrin β1 subunit, which regulates fibroblast contraction,
epithelial migration, and might mediate restitution of the mucosal barrier after wounding 41.
Interestingly, HIF-2α might specifically regulate duodenal iron uptake through the apical
iron uptake pathway, via discrete regulation of Dcytb and DMT1, rather than via basolateral
iron transport 42. These findings indicate that HIF-2 is an important component of
mechanisms of local changes in enterocyte iron or oxygen, altered duodenal transporter
expression, and dietary iron absorption. Anemia is the most prevalent extraintestinal
complication of IBD 43, so it is important to further investigate these mechanisms.

To investigate the physiologic functions of intestinal epithelial HIF, Karhausen et. al.
generated transgenic mouse lines with intestinal epithelial-targeted expression of either
mutant Hif1α, leading to repression of HIF-1, or mutant von Hippel-Lindau gene (Vhlh),
resulting in constitutive overexpression of HIF (HIF-1 and HIF-2) 21. Studies of
trinitrobenzene sulfuric acid (TNBS)-induced colitis in these mice revealed that the loss of
epithelial HIF-1 caused more severe symptoms, including increased weight loss, intestinal
epithelial permeability, and mortality. By contrast, constitutively active epithelial HIF was
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protected against these parameters. However, results vary among models—epithelial HIF-1-
based signaling promoted inflammation in another study 44. Nonetheless, these findings
confirm that intestinal epithelial cells can adapt to hypoxia and that HIF mediates the
adaptation.

Cross-talk between hypoxia and inflammation
Given the integration of intestinal epithelia and mucosal immune cells and our enhanced
understanding of the inflammatory tissue microenvironment, there is much interest in the
influence of hypoxia and HIF signaling on immune-cell metabolism and effector function in
inflammatory diseases such as IBD. HIF supports the innate immune functions of dendritic
and mast cells and promotes the activities of phagocytes by mechanisms that range from
increased killing of bacteria to antigen presentation 45. Pro-inflammatory signals (e.g.
cytokines, lipopolysaccharide) promote stabilization of HIF proteins, even under normoxic
conditions, indicating the interaction between hypoxic and immune responses to infection
and tissue damage 46. Survival of CD3+ T cells under hypoxic conditions is thought to
partially depend on HIF-1α-mediated expression of the vasoactive peptide
adrenomedullin 47. T-cell expression of functional HIF-1α protein is, in turn, likely
influenced by hypoxia and by T-cell receptor (TCR)-mediated signaling through PI3K, via
the mammalian target of rapamycin 48. Experiments in which HIF-1α was constitutively
stabilized in thymocytes demonstrated the role for HIF in modulating signaling events
downstream of TCR activation 49. Studies of chimeric mice with HIF1α-deficient T and B
cells revealed lineage-specific defects that induce autoimmunity, including auto-antibody
production, increased rheumatoid factor, and kidney damage 50.

HIF function has also been studied in some detail in myeloid cells. Cre-LoxP based deletion
of Hif-1α in cells of the myeloid lineage revealed multiple features that implicate HIF
signaling in metabolic control of myeloid function (see 45 for review). These findings are
attributable, at least in part, to the inability of HIF1α-deficient myeloid cells to mount an
appropriate metabolic response to decreased oxygen concentrations that are characteristic of
infection sites. These studies have shown that the capacity of PMNs and macrophages to kill
bacteria is severely limited in the absence of HIF-1α, because HIF-1 is required for
production of antimicrobial peptides and granule proteases 45 and generation of pro-
inflammatory cytokines that facilitate this process 51. HIF-1α mediates transcription of the
gene that encodes the integrin β2 subunit, which is required for myeloid cell adhesion and
transmigration; β2 upregulation is accompanied by increased adhesion of leukocytes to
activated vascular endothelial cells 52, 53. These findings have increased our appreciation for
the role of innate immune cells, such as PMNs, in innate host defense and IBD. PMN
depletion techniques have been used to demonstrate the role of PMNs in the resolution of
inflammation in several mouse models of IBD; 54 this process is likely to include release of
soluble mediators of resolution and antimicrobial activity.

Intestinal microvascular metabolism in IBD
There is controversy over the roles of intestinal microvascular deficits in the etiology of IBD
—in part because vascular changes in the submucosa in active disease could be secondary to
transmural inflammation that originates in the mucosa 55. However, evidence indicates that
the microvasculature contributes to chronic mucosal inflammation through several diverse
mechanisms 56 (Figure 1), and that a major consequence of these alterations is impaired
intestinal perfusion and attenuated oxygen delivery. Reduced generation of nitric oxide
(NO) by chronically inflamed IBD intestinal endothelia is thought to mediate inappropriate
and sustained leukocyte adherence 57, whereas increased production of the eicosanoid
thromboxane A2, detected in cultured IBD biopsy samples, could potentiate
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proinflammatory effects, in vivo, such as neutrophil adhesion to endothelia, apoptosis,
platelet aggregation, and vasoconstriction 56, 58.

Some studies have indicated that angiogenesis is involved in development of microvascular
dysfunction in IBD 59, 60. Neovascularization is an established feature of chronic intestinal
inflammation 61 and might arise as a compensatory response to the extensive hypoxia and
increased metabolism of inflammatory lesions. Studies of tissue samples from patients with
IBD and mouse models of colitis have shown that VEGF signaling mediates angiogenic and
inflammatory processes during disease progression 60. Increased expression of VEGF-A in
colitic tissue correlates with increased angiogenesis, leukocyte recruitment, and vascular
leaks. Moreover, dynamic amplification of pathophysiologic processes (e.g. altered
leukocyte adherence, attenuated NO generation, and impaired vasodilation) in the expanded
microvascular bed might perpetuate the inflammatory process, to a point that angiogenesis
and inflammation become chronically co-dependent processes 62, 63. Overall, these features
could collectively contribute to the impaired perfusion dynamics observed in IBD.

Therapeutic approaches to alter mucosal metabolism
Researchers are investigating therapeutic approaches to manipulate hypoxia pathways, to
promote resolution of inflammation in patients with IBD. Most preclinical studies have been
performed using mice with acute colitis as a model of IBD.

Stabilization of HIF
Reagents that affect activities of HIF-selective prolyl hydroxylase enzymes might be
developed as of therapeutics to alter function of HIF 64, 65. These enzymes were first
identified using a candidate molecular approach, based on conserved structural features
shared by well-characterized mammalian hydroxylases that target extracellular collagen 66.
A family of 3 prolyl hydroxylases has been characterized—PHD1, 2, and 3 (known also as
egl nine homolog [EGLN] 1, 2, and 3) facilitate hypoxic regulation of the HIF pathway 66.
In the presence of 2-oxoglutarate, iron, and oxygen, PHDs hydroxylate the α-subunit of HIF,
leading to ubiquitylation and degradation of HIF 67. Specifically, PHDs target prolines 402
and 564 within the oxygen-dependent degradation domain of the HIF-1α subunit (Figure 2).
Reactions conducted in vitro, in an environment of limited oxygen, revealed that the
activities of purified PHDs are sensitive to reduced levels of oxygen 68, 69. The enzymes
have different tissue distributions and, when overexpressed, have distinct patterns of
subcellular localization. Expression of PHD family members was not observed to differ
among tissues or cells of the GI tract; all 3 PHDs are found in the intestinal epithelium, with
a distribution differential of PHD1<PHD2=PHD3 in mouse intestinal mucosa 70, 71.

HIF prolyl hydroxylases– potential therapeutic agents?
Although HIF1 inhibitors might be developed as cancer therapies, reagents that selectively
stabilize HIF, such as PHD inhibitors, might support mucosal barrier function and promote
inflammatory resolution in patients with IBD 71. Several PHD inhibitors, including direct
inhibitors, have been described 72. In addition, analogues of naturally occurring cyclic
hydroxamates 73 and antagonists of α-ketoglutarate 65 are competitive inhibitors of PHDs
(Figure 2). Within the GI tract, the PHD inhibitors DMOG and FG-4497 reduce features of
colitis in mice 70, 71. These studies showed that PHD inhibition affected parameters of
disease, including weight loss, colon length, and disease activity index. These effects are
most likely due to their barrier-protective function and enhancement of wound healing at the
site of inflammation.

It is important to note that HIF is not the only hypoxia-responsive transcription factor that
regulates mucosal homeostasis and disease, and not the only oxygen-dependent regulator of
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hydroxylase activity45. Nuclear factor (NF) κB is regulated in a similar manner to HIF;
hypoxia activates NF-κB, partially through altered hydroxylation of factors in this signaling
pathway 74, 75. Like conditional HIF-1α-null mice, disruption of NF-κB signaling in
intestinal epithelial cells of mice increases their susceptibility to mucosal inflammation,
indicating that epithelial NF-κB protects against colitis 76. This effect is likely mediated by
increased expression of anti-apoptotic genes in the intestinal epithelium, which increases
epithelial barrier function. Hydroxylase inhibition might protect against colitis in mice by
increasing the activity of NF-κB in the intestinal epithelium70. Conditional knockout mice
are being used to study whether the ability of hydroxylase inhibitors to protect against colitis
require HIF and/or NF-κB pathways.

Therapeutic reagents designed to stabilize HIF could have adverse effects. PHD inhibitors
can substantially increase hematocrit values, by increasing HIF-mediated erythropoietin
production—for this reason they are used to treat patients with anemia 77 In mice with
colitis, high doses of FG-4497 (>60 mg/kg), administered daily for 5 days, occasionally
caused vascular occlusions in the intestine (S.P. Colgan, unpublished ). These adverse
effects likely resulted from erythrocyte aggregation, determined by high hematocrit values.
This problem was rectified by reducing the dose and interval of dosing of the PHD inhibitor.
Furthermore, long-term stabilization of HIF-1 and HIF-2 could promote tumor growth 78. It
is not clear whether pharmacological stabilization of HIF could initiate or promote tumor
development, these affects should be investigated. Until proven otherwise, the safest use of
PHD inhibitors might be for short-term treatment of IBD or as an adjunct therapy with other
drugs over a short period of time.

Conclusions
The GI mucosa is a unique setting for studying changes in tissue oxygenation and
metabolism during disease progression. Because this mucosal surface has relatively low
baseline oxygen tension and high energy demands, along with sustained physiologic
inflammatory activity, it could be affected by HIF-based therapies. Studies in animal models
of IBD have demonstrated the protective and anti-inflammatory effects of hydroxylase
inhibition. It will be important to determine the role of HIF-2α, and the genes it regulates, in
this protective response, as well as the interaction between the HIF and NF-κB pathways.
Because hypoxia regulates myeloid and lymphocyte functions, a significant but important
challenge is to elucidate innate and adaptive immune responses that are mediated by HIF
signaling; these responses might affect barrier function in inflammation. In sum, the
endogenous adaptive metabolic pathways activated in response to hypoxia represent
potentially important new windows of opportunity for treatment of IBD.
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Figure 1. Contributions of inflammation and hypoxia to angiogenesis
Inflammation and hypoxia each contribute to angiogenesis during pathogenesis of IBD,
partly by induction of VEGF-A expression in multiple cell types that include submucosal
fibroblasts, macrophages, neutrophils (PMNs), and endothelial cells. VEGF-A-induced
angiogenesis is likely to be pathogenic and result in abnormal vessel formation and poorly
functioning vasculature.
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Figure 2. Functional features of hypoxia-inducible factor (HIF) and mechanism of HIF
stabilization
HIF is hydroxylated by the combination of α–ketoglutarate (αKG), molecular oxygen (O2),
and the PHD enzymes in normoxic conditions. When O2 becomes limiting (hypoxia), the
HIF-1 α subunit is stabilized and binds to the HIF-1 β subunit in the nucleus; the complex
binds to the hypoxia-response element (HRE) in target genes to regulate their transcription.

Glover and Colgan Page 14

Gastroenterology. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Glover and Colgan Page 15

TABLE I

Influence of HIF signaling on intestinal mucosal functions implicated in IBD pathogenesis

Compartment Function Isoform Specificity Reference

Epithelial Barrier HIF-1 Furuta et al., 2001
Louis et al., 2006
Karhausen et al., 2004

Nucleotide metabolism HIF-1 Synnestvedt et al., 2002

Iron transport HIF-2 Mastrogiannaki et al., 2009

Cytokines/Chemokines HIF-1 Shah et al., 2008

Migration/Wound healing HIF-1 Keely et al., 2009
Robinson et al., 2008

Apoptosis/Barrier HIF-1 Cummins et al., 2008

Endothelial Barrier HIF-1 Kong et al., 2006

Nucleotide metabolism HIF-1 Kong et al., 2006
Eltzschig et al., 2003

Angiogenesis HIF-1/HIF-2 Pugh et al., 2003

Myeloid Bacterial killing HIF-1 Peyssonnaux et al., 2005

ATP generation HIF-1 Cramer et al., 2003

Cytokine production HIF-1/HIF-2 Acosta-Iborra et al.,

Colitis-associated tumor infiltration HIF-2 Imtiyaz et al., 201079

T-cell TCR signaling HIF-1 Neumann et al., 2005

Hepatic Erythropoietin production HIF-2 Rankin et al., 2007

General Glucose metabolism HIF-1 Hu et al., 2003

Glycolysis HIF-1 Vermeulen et al., 201080
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