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ABSTRACT The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic
in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited
in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we
generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform
particle sizes. The numerical tractability of the model is demonstrated as well. Themain contributions of this study are as follows.
1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/
interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP
effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to
the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme
reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the
PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method
and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of
SMPNP equations.
INTRODUCTION
Ionic solutions do not resemble an ideal solution or perfect
gas of noninteracting uncharged particles. Indeed, ions such
as Naþ and Kþ have specific properties, and can be selected
by biological systems, because they are nonideal and have
highly correlated behavior. Screening and finite size effects
produce the correlations more than anything else (1). The
nonideality of ionic solutions is a central subject in many
electrochemistry textbooks (2–5). Poisson-Boltzmann (PB)
theory for screening has been an established, mathemati-
cally well analyzed, and numerically tractable model for
describing the equilibrium state of ionic solution systems.
Typical applications of PB theory include solvated
macromolecule-solvent-mobile ion systems in molecular
biophysics, electrolyte and electrode systems in electro-
chemistry, or the interactions between an interface and the
colloid solution.

Despite the wide applicability of the traditional PB
theory, limitations due to the underlying mean-field approx-
imation are recognized, and discrepancies in the predicted
ionic concentration profile from experiments (6,7) and
simulations (8) are observed. These situations usually
involve large potentials (>>kT/e) that can be found in
many real applications. The large potential/voltage can be
induced either by large surface charge (as of electrode) or
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highly charged biomolecules such as nucleic acids. Because
solvated ions are treated as point charges in the standard
mean-field assumption and ion-ion correlations are ne-
glected (except for screening by ionic atmosphere), the
ion concentrations predicted by the Boltzmann distribution
e–bqf can approach infinity with the increasing electric
potential. Such a scenario is nonphysical, as an ionic satura-
tion will be established because of the steric exclusion
among ions.

There are many standard review articles and monographs
on the finite size effects, among which Pitzer, for example,
summarizes the life’s work of a generation of electrochem-
ists interested in these effects (5,9–16). To incorporate the
effects of finite particle sizes in the study of ionic solutions,
most efforts are made through including exclusion terms
from liquid-state theory or density functional theory
(DFT) (17–29). The work by Evans (30), Roth et al. (31),
Hansen-Goos and Roth (32), Rosenfeld (33), and Roth
(34) are built on the DFT of uncharged solutions. These
theories are particularly important in understanding the
main experimental properties of ionic solutions (see Kunz
and Neueder (35) for a summary). However, the improve-
ments of these new models over the traditional PB theory
are somehow limited due to the intrinsic complexity of the
models, the difficulties in mathematical analysis, numerical
computation, and practical implementations.

For instance, coupling PNP and DFT usually invokes
integral-differential equations, the numerical implementa-
tion of which on real biomolecular simulations can be
doi: 10.1016/j.bpj.2011.03.059
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highly involved. Among these theories, the Borukhov model
that follows the early work of Eigen and Wicke (36), and
Kraljiglic and Iglic (19) appears attractive because it
captures basic size effects by using a simplified formulation.
The Borukhov model modifies the free energy functional of
the ionic system (mean-field approximation) by adding an
ideal-gas-like solvent entropy term. This term represents
the unfavorable energy that models the over-packing or
crowding of the ions and solvent molecules, and thus the
steric effects are taken into account in the model.

The Borukhov free energy form treats all ion species and
solvent molecules with an identical size, and a modified
PBE (MPB) can be derived through the minimization of
the free energy. Although this model, hereby referred to
the free energy functional model, can be in principle
extended to account for different sizes of ions and solvent
molecules, general explicit expressions for ionic concentra-
tions as functions of the potential and particle sizes have not
been derived. Such a general expression of charge density is
needed to supply the Poisson equation to obtain the final
MPB equation. A recent extension of the Borukhov model
is able to treat particle species of two sizes, and the resulting
MPB does not add much difficulty to a normal PB solver in
the numerical solution (24). For systems with three or more
different particle sizes, however, the method becomes
prohibitively tedious if one wants to get the ionic concentra-
tions as functions of potential and particle sizes, although
implicit relations can be derived.

To avoid the above difficulty, we will try not to find the
explicit form of the size-modified PB equation and its
solution. Considering the fact that the PB/MPB solution
(corresponding to the equilibrium description of electrolyte)
is merely a stationary point of the free energy functional of
the system, we will instead solve an energy minimization
problem through evolution of the energy system. This
naturally corresponds to the physical evolution process of
a nonequilibrium system in which nonzero ionic flux exists
(i.e., detailed balance is broken). When coupled with
electrostatics, such processes are usually described as
electro-diffusion. The Poisson-Nernst-Planck equations
(PNP) or the variants are established models in this
field. Solutions of the PNP equations provide not only the
description of the equilibrium state but also the dynamic
information.

In biophysics, the PNP model is usually applied to ion
channel studies; however, for one of our interests in this
work it will be used to calculate the reaction rates of diffu-
sion-reaction processes for enzyme-substrate systems. A
developed theory called PNP/DFT combines finite size
effects and the PNP theory (27–29). The biological implica-
tions of these effects are profound, as Nonner, Eisenberg,
and their collaborators have shown how finite size effects
produce selectivity in several types of channels (1,37–40)
(B. Eisenberg, unpublished). In this work, we will start
with the Borukhov model to derive a system of partial differ-
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ential equations without incurring integral equations. These
partial differential equations can be numerically solved at
a practically tolerable efficiency for three-dimensional real
molecular systems. We note that a modified PNP based on
the Borukhov model was recently adopted to numerically
investigate the size effects and dynamic properties of
a one-dimensional diffusion system (25).

This article is dedicated to the generalization of the
Borukhov model to treat ionic solution systems that:

1. have particle species of arbitrarily different sizes (ions,
solvent molecule, and substrate molecule) and

2. exist in both equilibrium and nonequilibrium states.

We will revisit and compare some other size-modified
Poisson-Boltzmann and Poisson-Nernst-Planck models.
Particular attention will be paid to the size effects on the
diffusion-reaction rate coefficients. The generalization
of the Borukhov model results in a new size-modified
PNP (SMPNP) model (42).

A finite element method is described for solving the
three-dimensional SMPNP system, and the numerical trac-
tability of the SMPNP model is demonstrated. We arrive
at two major conclusions:

1. A size-modified PB model is essentially reproduced
in the numerical solution of the SMPNP model. This
general PB model can be regarded as a special case of
the SMPNP by equipping the PNP equations with proper
boundary and interface conditions (i.e., vanishing flux at
the interface/boundary; see Methods).

2. Under proper boundary conditions, the SMPNP equations
enable us to study more-general diffusion processes
(e.g., to study diffusion-reactionwith a reactive boundary/
interface). The size effects will be shown by the variation
of the diffusion-controlled reaction rate, and by the modi-
fication of the substrate and ionic concentrations as well
as the electric field.
METHODS

PNP continuum model

For an ionic solution, we use pi to denote the density of the i
th species ions,

and use f to denote the electrostatic potential. Given a free energy form

F(p, f) of the ionic solution, where p denotes the collection of pi,

a continuum model (equations) can be derived to describe the coupling

between the charged particle diffusion and the electrostatics by using the

constitutive relations about the flux and the electrochemical potential mi
of the ith species

Ji ¼ �mipi V mi: (1)

Heremi is the ion mobility that relates to its diffusivityDi through Einstein’s

relation Di ¼ mikBT, where kB is the Boltzmann constant and T is temper-

ature. Define mi to be the variation of F with respect to pi:

mi ¼
d F

d pi
; (2)



FIGURE 1 Two-dimensional schematic illustration of the computational

domain modeling a solvated biomolecular system. The biomolecule(s) is

located in domainUm and the aqueous solution is in domainUs. The molec-

ular surface is G. The active reaction center Ga 3 G is highlighted in red.

The circles of different colors with plus or minus sign inside represent the

diffusive charged particles of different species that have finite sizes and
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then the transport equations are obtained from the mass and current conser-

vation law

vpi
vt

¼ �VJi: (3)

These, together with a Poisson equation describing the electrostatic field,

form a full PNP equation system.

The traditional mean-field free energy form F(p, f) with the ionic size-

exclusion and correlation effects neglected leads to the PNP equations

(see the following subsections). The interests of this article focus on the

applications to solvated biomolecular systems with two distinguished

domains—one occupied by the biomolecule(s), and the other by the ionic

solution. Here we consider only the steady state (can be either in equilib-

rium or in nonequilibrium with steady flow), i.e., vpi=vt ¼ 0. The PNP

equations for such a system with K ion species are (43)

V ½DiðrÞ Vpiðr; tÞ þ b DiðrÞpiðr; tÞqi VfðrÞ� ¼ 0;

r ˛ Us; i ¼ 1.K;
(4)

�V , 3ðrÞVfðr; tÞ � rf ðrÞ � l
X
i

qipiðr; tÞ ¼ 0; r ˛ U;

(5)

where b ¼ 1/kBT, qi is the charge of each particle of species i. The value

r f(r) is the fixed charges of the biomolecule, l equal to 1 in Us and 0 in

the molecule region Um because the diffusive particle does not penetrate

into the solvent domain Um. A two-dimensional schematic illustration is

shown in Fig. 1. We want to solve Eqs. 4 and 5 to get the density p and

potential f.
move only in Us. The singular charges inside molecules are signified

with plus or minus sign in Um. The minimum distance between the molec-

ular surface G and the exterior boundary vU is much larger than the diam-

eter of the molecule so that approximate boundary condition for the

electrostatics can be applied.
Review of the Borukhov model

The standard PNP equations ignore the important effects of the finite size of

ions, thought to be the predominant factor in determining the nonideal prop-

erties of ionic solutions (1–3,5,9). This work intends to develop a simple

finite size model that can be numerically solved for real systems, by

possibly employing the finite element framework built in our former

work (44). A simple model in this article means one that can be described

with differential equation(s) alone, rather than one that must be described

by using differential-integral equation(s) or other complex forms. Our study

shows that even the standard PNP model, although free of any size effect,

is not trivial in the matter of obtaining a numerical solution for actual

large biomolecular systems (43,44). To model the effects of the ion size

on the electrostatics and ion distributions in electro-physiological systems,

Borukhov et al. (22) considered a free energy functional for 1:z asymmetric

electrolyte of two ion species. Both ion species and the solvent molecules

are assumed to have the same effective size a3. The grand canonical free

energy functional in terms of electrostatic potential f(r) and ion concentra-

tions pþ(r) and p–(r) are given by

F ¼ U � TS� V; (6)

where U is internal energy, S is entropy, T is absolute temperature, and V is

the chemical potential:

U ¼
Z h

� 3

2
jVfj2 þ epþf� zep�f

i
dr; (7)

� TS ¼ kBT

a3

Z �
pþa

3 ln
�
pþa

3
�þ p�a

3 ln
�
p�a

3
�

þ �1� pþa
3 � p�a

3
�
ln
�
1� pþa

3 � p�a
3
��

dr;

(8)
Z

V ¼ ðmþpþ þ m�p�Þ dr: (9)

The third entropy term introduces the solvent density

1

a3
�
1� pþa

3 � p�a
3
�

to account for the solvent entropy, provided that the ions and solvent mole-

cules are compactly packed. The steric exclusion effect is implied because

the ionic density is prevented from going beyond 1/a3 (the solvent density

should be no less than zero). If this term is dropped, the functional in Eq. 6

will degenerate into the traditional free energy form that eventually leads to

the standard PB or PNP (see the following subsections).

The chemical potential mi can be regarded as a Lagrange multiplier that

represents the constraint on the total number of ion particles. Following the

method in Lu et al. (44), one more Lagrange multiplier can be introduced

and an associated term, the electrostatic potential f (r), can also be regarded

as an independent field. The extremization of F with respect to f gives the

Poisson equation. An alternative treatment is to simply add the Poisson

equation

V2f ¼ �1

3
½epþ � zep�� (10)

as an additional constraint to the system. After applying the extrema

conditions
Biophysical Journal 100(10) 2475–2485
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dF

dpþ
¼ 0 and

dF

dp�
¼ 0;

the following equalities hold true:

ef�mþþ
kBT

a3
�
a3 ln

�
pþa

3
��a3 ln

�
1� pþa

3� p�a
3
��¼ 0;

(11)

� zef� m� þ kBT

a3
�
a3 ln

�
p�a3

�
� a3 ln

�
1� pþa

3 � p�a
3
�� ¼ 0:

(12)

Subtracting Eq. 12 from 11, we get

pþ ¼ p�e
bðmþ�m�Þ�bð1þzÞef: (13)

The potential f is weak in the region far away from the molecules, and thus

the positive and negative ion densities approach their respective bulk densi-

ties pþb and p–b. This suggests that the electroneutrality will be a reasonable

assumption, i.e., pþb ¼ zp–b ¼ zpb (assuming p–b ¼ pb). As a result,

ebðmþ�m�Þ ¼ z; (14)

and thus

pþ ¼ zp�e
�bð1þzÞef: (15)

Plug Eq. 15 into Eqs. 11 and 12, and we get

pþa3

1� pþa3 � p�a3
¼ ebðmþ�efÞ; (16)

p�a3

1� zp�a3e�bð1þzÞef � p�a3
¼ ebðm�þzefÞ ¼ 1

e�bm�e�zbef
:

(17)

Hence,

p� ¼ 1

a3
1

1þ e�bm�e�zbef þ ze�bð1þzÞef: (18)

A comparison of Eq. 18 with Eq. 12 when p� / pb as f / 0 gives

pba
3

1� ð1þ zÞpba3 ¼ ebm� : (19)

Note that when the size effect is considered, the usual identity,

pb ¼ 1=a3 ebm, no longer holds.

Substitute Eq. 19 into 18, and we get

p� ¼ cbe
bzef

1� v0 þ v0ðezbef þ ze�befÞ=ð1þ zÞ; (20)

where v0 ¼ (1 þ z)a3pb is the total bulk volume fraction of the positive and

negative ions, and

pþ ¼ zcbe
�bef

1� v0 þ v0ðezbef þ ze�befÞ=ð1þ zÞ: (21)

Finally, the MPB equation is given as

V2f ¼ zepb
3

ebzef � e�bef

1� v0 þ v0ðebzef þ ze�befÞ=ð1þ zÞ: (22)
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It can be seen that in zero size limit (a / 0) or dilute limit (pb / 0,

hence v0 / 0), the Eqs. 20–22 are reduced to the PBE. As aforementioned,

the closed-form expressions (explicit functions) of ionic densities are

essential for deriving the final MPB equation. This can be achieved by

assuming a uniform size for all the positive and negative ions and solvent

molecules. Recently, Chu et al. (24) extended the Borukhov model to the

case with two different sizes, and they showed that the resulting MPB

did not create significant extra difficulties to a normal PB solver in the

numerical solution. Chu’s approach is based on the lattice model for two

large ionic species with a same diameter a and one small species with

a diameter a/k for some integer number k. If the system has three or

more different particle sizes, it becomes prohibitively tedious to follow

that approach to derive the ionic densities as functions of potential and

particle sizes.

On the other hand, although an MPB equation cannot be explicitly

derived when particle sizes in the functional Eq. 8 are nonuniform, the

ion densities are still determined by the particle size and the electric

potential albeit implicitly. This fact is also recognized in the literature

(45–47).

In the following, we plan to directly work on the size-modified PNP

equation systems that are derived from the free energy functional with arbi-

trarily different particle sizes. From there, we will show that a SMPBmodel

is implied in the SMPNP model, and this implication can be numerically

tracked from solutions of the SMPNP equations under specific boundary/

interface conditions. Our approach avoids the difficulties and complexities

in the derivation of an explicit MPB mode with different sizes. An addi-

tional asset of PNP/SMPNP model is its wider applications to nonequilib-

rium studies.
Phenomenological model of electro-diffusion
with finite particle sizes

According to the classical fluid density functional theory, the free energy of

an ionic solution system can be written as (e.g., see (45))

F ¼ kBT

Z "X
i

pi

�
ln

�
pi
zi

�
� 1

�#
dx þ FexðpÞ þ Fext;

(23)

where the summation is taken over the total K ion species. The first term is

the ideal gas component, Fex is the excess free energy functional, Fext is the

term representing the contribution of the external interaction, and zi is the

fugacity of the ith particle species (ion or solvent molecule). For ideal gas,

the fugacity is equal to the density,

zi ¼ pib ¼ 1

a3i
;

where ai is the effective size. For free energies of a more general nature,

different relations may exist between the fugacity and respective bulk

density of each particle species. As we will show later, these constants

{zi} will not alter the SMPB or SMPNP models finally derived. To connect

our SMPNP mode to the previous SMPB model, we assign zi the approxi-

mate values of ideal gas. Similarly, for a solvent molecule with effective

size a0 and pure solvent density p0, its fugacity takes a value of

zi ¼ p0 ¼ 1

a30
:

Such a value is equivalent to assuming a zero chemical potential, m0 ¼ kBT

ln(p0a
3
0) ¼ 0, for the pure solvent (reference state). If we ignore Fext in our

biomolecular system and consider only the electrostatic interaction in Fex in

addition to the solvent entropy term as in Borukhov model, a generalized

free energy
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F ¼
Z

1

2

h
rfþ l

X
i

ziepi

i
fdx þ kBT

Z hX
i

pi
�
ln
�
pia

3
i

��1
�

þ p0

�
1�

X
i

pia
3
i

	
ln
�
p0

�
1�

X
i

pia
3
i

	
a30 � 1

	i
dx;

(24)

is obtained, where zi values are the valence of i
th ion species.

Let mi be the variation of F with respect to pi, i.e.,

mi ¼
dF

dpi
¼ ziefþ kBT

h
ln
�
pia

3
i

�
� p0a

3
i ln

�
p0

�
1�

X
i

pia
3
i

	
a30

	i

¼ ziefþ kBT
h
ln
�
pia

3
i

�� ki ln
�
1�

X
i

pia
3
i

	i
;

(25)

where ki ¼ ai
3/a0

3.

Using the electroneutrality condition we will get the relation between mi
and pib at f ¼ 0:

mi ¼
dF

dpi
jf¼ 0 ¼ kBT

h
ln
�
piba

3
i

�� ki ln
�
1�

X
l

plba
3
l

	i

¼ kBT ln
piba

3
i�

1�P
l

plba
3
l

	ki :
(26)

In the case of two ion species, when k1 ¼ k2 ¼ 1, Eqs. 25 and 26 provide the

density expressions in the Borukhov model for a general asymmetric

electrolyte.

Comparison with the two-size SMPB model

We now look at the relationship between our new formulation and Chu’s

SMPB method that can treat two different sizes (24). In that article, they

consider three ion species in which two species have a larger identical

size a and one has a smaller size a/k. The k can be any real value, and is

chosen to be an integer so that the lattice-gas theory can be readily applied.

In the comparison, we consider two ion species with sizes a1 s a2 without

loss of the essential of their approach.

For two ion species, at f ¼ 0, Eq. 26 gives

m1 ¼ kBT ln
p1ba

3
1�

1�P
i

piba
3
i

	k1 ; (27)

m2 ¼ kBT ln
p2ba

3
2�

1�P
i

piba
3
i

	k2 ; (28)

where k1 ¼ a31=a
3
0; k2 ¼ a32=a

3
0, and a0 is the solvent molecule size. The

sizes a1 and a2 can be arbitrary, and are not necessarily larger than the

solvent molecule size a0.

Using the lattice-gas method as in the work of Chu et al. (24), supposing

the bigger size is a2 ¼ a, the smaller size a1 ¼ a/k, the grand partition func-

tion for each lattice site (enumerating all possible occupancies of the lattice

site of total N) is given by

z ¼ �
1þ ebðm1�z1efÞ�kþebðm2�z2efÞ: (29)
The relationship between the bulk density pib and the chemical potential mi
is obtained by considering the grand partition function with respect to the

chemical potential for f ¼ 0,

pib ¼ kBT

Na3
v ln zN

vmi

j
f¼ 0

: (30)

They thus give

p1b ¼ kBT

a3
1

ð1þ ebm1Þkþebm2
k
�
1þ ebm1

�k�1
bebm1 ;

p2b ¼ kBT

a3
1

ð1þ ebm1Þkþebm2
bebm2 :

But then

m1 ¼ kBT ln
p1ba

3
1

1� p2ba3 � p1ba3=k
;

¼ kBT ln
p1ba

3
1

1�P
i

piba
3
i

; (31)

m2 ¼ kBT ln
p2ba

3
2

1�P
i

piba
3
i

: (32)

Comparing Eqs. 27 and 28 with Eqs. 31 and 32, it is found that the chemical

potentials in the work of Chu et al. (24) are similar to our PNP model except

for a factor ki (the power of volume faction) in the logarithm as shown in

Eqs. 27 and 28. In the case of identical sizes, i.e., k1 ¼ k2 ¼ 1, the two

models give the same result.

The final SMPNP model

Plug Eq. 25 into Eqs. 1–3, and we now get

vpi
vt

¼ �V , Ji ¼ V , ðmipiVmiÞ

¼ V ,Di

0
B@Vpi þ

kipi
P
l

a3lVpl

1�P
l

al3pl
þ bpizieVf

1
CA:

(33)

Together with the Poisson equation, we get our final SMPNP model (steady

state),

� V ,DiðrÞ
"
VpiðrÞ þ kipiðrÞ

1�P
l

a3l plðrÞ
X
l

a3lVplðrÞ

þ bpiðrÞqiVfðrÞ
#

¼ 0; r ˛ Us;

(34)

�V , 3ðrÞVfðr; tÞ � rf ðrÞ � l
X
i

qi piðr; tÞ ¼ 0; r ˛ U;

(35)

where qi ¼ zie is the charge of i
th species with 1% i% K. We want to solve

Eqs. 34 and 35 to get the density pi and electrostatic potential f.

It can be shown that when all the sizes ai are equal, the above SMPNP

model is simply the Borukhov free energy expression and the modified

PBE (22), and is also the modified PNP in Kilic et al. (25). For the case
Biophysical Journal 100(10) 2475–2485
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of two ion sizes, it gives a very close but different form of the size-modified

Poisson-Boltzmann equation in Chu et al. (24).

A symmetrically transformed form of the SMPNPEs

As studied in previous works (43,44), the standard Nernst-Planck equations

(NPEs) from Eq. 4 can be transformed into a symmetric form

vðpie�bqifÞ
vt

¼ V , ðDiVpiÞ (36)

by introducing the transformed variables

Di ¼ Die
�bqif;

pi ¼ pie
bqif:

(37)

Similarly, a pro forma form of the SMNPEs Eq. 34 can also be written as

vðpie�bViÞ
vt

¼ V , ðDiVpiÞ; (38)

with

Vi ¼ qif� ki
b
ln

 
1�

XK
l

a3l pl

!
;

Di ¼ Die
�bVi ;

pi ¼ pie
bVi :

(39)

Physically, Vi can be seen as a modification of the potential f due to consid-

eration of the size effects in the SMPNP model.

However, it is worth noting that, in the traditional PNP, D is only depen-

dent on f, but not on p. Therefore, for a given f, the stiffness matrices of

Eq. 36 are symmetric, whereas, in Eq. 39 for the SMPNP, the coefficient

Di depends on both f and the unknown pi. This coupling will lead to

different properties of the transformed SM NPEs (Eq. 38) from that of

the transformed NP Eq. 36. In the numerical solution by iterations as

described in the Methods, one can use the solution of pn–1 at n-1th step solu-

tion to calculate the coefficient D, and then solve the transformed SM NP

Eq. 38 to obtain the solution of pn at the current nth step. This strategy could

make the stiffness matrices symmetric in numerical implementations. The

numerical properties of such a strategy has not been studied yet, and we

will not adopt that strategy in this article for the reasons mentioned below.

The transformation equations, Eqs. 36 and 37, are also frequently used in

solving the PNP equations for semiconductor device simulations (48,49). It

is anticipated that the discretization in solving the transformed Eq. 36 could

produce a stiffness matrix with a smaller condition number compared to the

original Eq. 4 with a nonsymmetric elliptic operator, and thus iterative

methods applied to the linear system might converge faster. However, in the

biomolecular case, as shownbyour study, the transformed formulation is actu-

ally always related to a large condition number of the stiffness matrix, due to

the presence of a strong electrostatic field near the molecular surface (44).

For this reason, wewill not explore the numerical properties in solution of

the transformed SMPNPEs in this work. However, in some cases, the trans-

formed SMPNPEs might be useful. For instance, the Slotboom variables are

associated with the weighted inner product in many finite element approxi-

mations of semiconductor NP equations (50), for which exponential fitting

techniques are usually used to obtain numerical solutions free of nonphysical

spurious oscillations. Although the solutions in our numerical experiments

and biophysical applications presented below do not show significant

nonphysical oscillations, these methods can be adopted if needed.
Numerical implementation

The numerical properties and implementation of the SMPNPEs can be seen

in the Supporting Material.
Biophysical Journal 100(10) 2475–2485
How to get SMPB results from the solution of the SMPNPEs

To obtain SMPB results, we can solve the SMPNPEs with asymmetric ion

sizes as expected for the SMPBE calculation. We would use similar

boundary conditions as in the usual solution of the PBE for f, such as

f ¼ 0 or the Debye-Hückel approximation at the outer boundary vU, and

using the ionic bulk densities as boundary conditions for pi. In addition,

we use a reflective condition for each ion species in the molecular interface

G (no Ga for PB calculation) to enforce zero-flux across the interface

JðrÞi ¼ 0; r ˛ G:

Then, the solution leads to the SMPB results. The reason is as follows: From

Subsection S1.1 in the Supporting Material, we know that the SMPNPEs

system has only one solution, and we also know that the solution of zero-

flux-everywhere Ji ¼ 0 (equilibrium) is a solution of the SMPNP system,

which corresponds to the special case of the SMPB model. The equilibrium

distribution can be explicitly seen from the PNP situation (see Eqs. 1 and 4)

in which the zero-flux condition at boundary G

Ji ¼ DiðrÞðVpiðr; tÞ þ bpiðr; tÞqiVfðrÞÞ ¼ 0

can be seen equivalent to the Boltzmann distribution condition

pi ¼ pbie
�bzief:

In SMPNP, the equilibrium distribution is also implicitly determined by

Ji ¼ 0, although a closed-form Boltzmann-like distribution is not available

in general. Therefore, the SMPNP solution obtained from the above proce-

dure with zero-flux conditions at G must satisfy the zero-flux condition

everywhere. This indicates that the solution of SMPNP is exactly the solu-

tion of the SMPBE. This equivalence is numerically proven true for the

standard PBE and PNPE system in our previous work on PNP (43), where

it was shown that PBE and PNPE have essentially the same results despite

a small numerical error.
RESULTS AND DISCUSSIONS

The following numerical tests are performed on a sphere
model. These tests capture the fundamental difference
between SMPB/SMPNP models and the classical PB/PNP
models. In the sphere model, a unit sphere with a positive
unit charge in the center simulates the solute molecule.
When solving the PNP or SMPNP with a reactive substrate
species, the entire surface of the sphere serves as the reactive
boundary Ga. The exterior boundary of the computational
domain is the concentric sphere of radius 40 Å.
Size effects on ionic concentrations in SMPB
model

As analyzed in the above sections, an SMPB model is inher-
ently contained in the SMPNP model. We will first investi-
gate the size effects, in regard to the electrostatic potential
and the ionic density distributions in the equilibrium state.
Fig. 2 shows the ionic density profile in the SMPB model
through solving the SMPNP equations with the boundary
conditions described in Numerical Implication, below. The
counterion densities that are at the similar order of the
bulk water density are effectively reduced in the highly
concentrated regions compared with the traditional PB



FIGURE 2 Counterion and coion densities in 1:1 salt around a unit

sphere predicted by the PBE and the SMPBE (through SMPNPEs).

a– and aþ are counterion size and coion size, respectively. The solvent

molecular size is 2.5 Å. The ionic bulk densities are 50 mM.
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predictions, which phenomena has also been demonstrated
in the previous size-modified PB model. Although the coion
density is not very sensitive to the size effects due to its
small density (~e–bef, f ~4 kcal/mol/e), which does allow
more spacial area for its movement, the volume exclusion
under such a circumstance is not very high.
Diffusion-reaction study with SMPNP model

The diffusion-controlled reactions in biomolecular systems
can be investigated by using continuum approaches such
as the PNP model (43), and the present SMPNP model.
Three ion species are usually considered: the ion and coun-
terion species accounting for the ionic strength of the solu-
tion; and the reactive particle species, as, for example, the
substrates to be hydrolyzed by the enzyme (the biomolecule
in the model). The densities of the first two species are given
by p1, and p2, and the third given by p3. Electroneutrality
conditions demands that p1b þ p2b þ p3b ¼ 0. When solving
the NPEs or SM NPEs, the homogeneous Neumann
boundary condition is adopted for those species that have
no reactions at the whole molecular surface. An (ideal)
sink boundary condition p3 ¼ 0 is applied on Ga (represent-
ing the reactive site) for p3. The reaction rate coefficient is
defined as

k ¼
R
Ga
J3 , ds

pb3
:

Without considering the size effects, the rate coefficient is
also shown to be dependent on the substrate concentration
(see Section S2 in the Supporting Material).

Size effects on the rate coefficient and the density profiles

Because of the intrinsic interactions among the densities of
different ion species and the electric field, inclusion of the
finite size effects of the mobile ions and substrate into the
SMPNP model will change particle (ion and substrate)
distributions and the electric field around the enzyme mole-
cule, both of which consequently contribute to a modified
reaction rate. As to be shown below, the rate change is
mainly attributed to the direct variation of the gradient of
substrate density, which itself is also influenced by the ionic
size effects through regulating the overall electric field. The
following illustrations indicate that the size effects may lead
to a significant influence on the predicted reaction rates.

It is known that the diffusion coefficient of a particle
depends on its size and shape, although such a dependence
is not the topic of this work. Our concern here is the differ-
ence in the predicted reaction rates by the SMPNP and PNP
models for a given diffusion coefficient that is known or
measured experimentally. To concentrate on the diffusive
particle size effect compared to its diffusion reaction rate,
we first consider a model problem that has no mobile ions
except the neutral, reactive substrates in the solvent. Fig. 3 a
shows the reaction rate coefficients with different substrate
sizes. It is observed that the rate coefficient increases with
the substrate size. This can be explained as follows: the
rate is only determined by the diffusion term a33Vp3 (see
the Supporting Material), due to the zero electric field in
this case. Referring to Eq. S5 in the Supporting Material
and assuming a constant density, an increase of the substrate
size a3 will lead to an increase of a33, hence giving rise to an
increased flux and reaction rate. When the substrate size is
changed, its density p will also be adjusted accordingly,
but this can be expected to balance only part of the above-
described effect to increase the reaction rate.

For the electro-diffusion case in an ionic solution, the
reaction rate prediction is complicated by many factors as
described in the SMPNP model. Fig. 3 b shows the reaction
rate coefficients predicted by the SMPNP model. With the
simulation conditions described in Fig. 3, at a low concen-
tration of substrate the rate coefficient is also found to
increase when the substrate size increases. Because we use
a sink boundary condition (p3¼ 0) for the reactive substrate,
it can be expected that at the molecular boundary the flux is
mostly contributed by the diffusion term rather than the drift
Biophysical Journal 100(10) 2475–2485



a b

FIGURE 3 Reaction rate coefficients for the

sphere model predicted by SMPNP model with

different substrate sizes. p3b is the substrate bulk

density. (a) Substrate alone is diffusive and all

particles are electrically neutral. (b) Counterion

and coion sizes are 3.0 Å, and ionic strength is

150 mM in all SMPNP calculations.

FIGURE 4 Effects of the finite particle sizes on the electrostatic potential

in SMPNP. Ionic strength is 150 mM and substrate bulk density is 100 mM

in both PNP and SMPNP calculations. In SMPNP-1, the sizes are 3.0, 3.0,

and 3.0 Å for coion, counterion, and substrate, respectively. In SMPNP-2,

these values are 3.0, 5.0, and 5.0 Å; and in SMPNP-3, they are 3.0, 3.0,

and 8.0 Å, respectively. The x axis is truncated at r¼ 4 Å in the illustration.
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term (proportional to density). Therefore, a significantly
increased density gradient should occur when substrate
size is considerably enlarged. This can be seen later in
Fig. 5 a, where the substrate atmosphere is found to be
more crowded for large-sized substrates. This seems to
contradict the SMPB predictions in which the density for
larger sizes should be reduced due to volume exclusion.

As shown in the above subsection, in PB or SMPB, the
counterion density near the sphere is high and is three or
more orders-larger than the coion density, therefore, its
density is sensitive to the size effects. Whereas the coion
density is small (~e–bef, f ~4 kcal/mol/e), and similarly
the substrate density in SMPNP is usually also small due
to depletion, it makes them less sensitive to volume exclu-
sion effects. Differently from the coion case, however, the
electric force is attractive to substrate (only the typical
attractive case is studied in this work) such as for a coun-
terion, though its density is small near the sphere. Therefore,
as expected, a small change in the potential may cause
significant variation in the (small) substrate density in the
vicinity of the sphere. This is the usual case for the substrate
density change in SMPNP modelings, as will be explained
below.

The modified potential profile for different size sets is
shown in Fig. 4. Due to the volume exclusion of ions and
substrate, the solvent occupancy is reduced, and another
important factor is that the counterion density is also
remarkably reduced; see Fig. 5 b. (Note that the coion
density is not shown in the figure because it is not sensitive
to size effects for the same reason as discussed in SMPB
results, above.) These factors contribute to a reduced
screening of the electric field, hence to a higher potential.
Because the electric force is attractive to substrate, its
density is increased near the sphere, which in turn reduces
the screening effect again (because of less solvent, and
more substrate particles serving as counterions). The larger
size then results in higher elevation of the potential near the
sphere.

However, in cases that the substrate density in the vicinity
of the sphere is large enough, it can also be expected that the
Biophysical Journal 100(10) 2475–2485
volume exclusion itself will appear to take considerable
effect to negate its density and density gradient. This factor
may balance, or over-balance, the above-described effects.
The green line in Fig. 3 b, which corresponds to the case
of counterion-free and maximum substrate bulk density,
shows a slightly decreased reaction rate when the substrate
size was increased.
CONCLUSIONS AND DISCUSSION

We demonstrate that the general SMPNP model from the
generalized Borukhov free energy functional is a simple
and numerically tractable model. In particular, as a special
case, an SMPB model for an arbitrary number of different-
sized ion species can be achieved through the solution of
the SMPNP model by appropriately controlling the
boundary/interface conditions. The general SMPNP model
can reproduce the main features of the SMPB and SMPNP
models that are limited to identical-sized or two-sized



a b FIGURE 5 Effects of the finite particle sizes on

substrate and counterion densities. (a) The value

as is the size of the substrate. All ion sizes are set

to 3.0 Å in the SMPNP models. The bulk ionic

strength is 150 mM, and bulk substrate density is

100 mM. (b) In SMPNP-1, the sizes for coion,

counterion, and substrate are 3.0, 3.0, and 3.0 Å,

respectively; In SMPNP-2, these sizes are 3.0,

5.0, and 5.0 Å. The bulk densities are the same

as in panel a. For comparison, the ionic strength

is set to 50 mM in the PB calculation because in

such cases the counterion bulk density is the

same as in the SMPNP case (coion bulk density

is 150 mM, substrate bulk density 100 mM, coun-

terion bulk density 50 mM).
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species. Our model is applied to the study of diffusion-reac-
tion processes with complicated combinations of sizes of
involved particles in practical ionic solution.

It is observed from numerical simulations that the size
effects in SMPNP effectively reduce the densities of highly
concentrated counterions, as it did in previous MPB models.
In the diffusion-reaction simulations, it is found that when
the substrate density is very low near the enzyme reactive
surface, the predicted reaction rate coefficient of the attrac-
tive substrate is larger compared to the results from PNP
model, due to volume exclusions of ions and substrate. In
the same situation, the substrate density is also observed
to be increased near the reactive boundary. This increase
is more pronounced when the substrate molecule becomes
larger than the solvent molecule.

Plenty of possibilities can be envisioned to improve the
current SMPNP model, to improve its numerical treatments,
and to promote its applications to biology. The particle sizes
in the SMPNP model should be considered as adjustable
parameters whose values do not necessarily correspond to
the doubling of the particles’ van der Waals radii. For
instance, a rough estimation of water molecule size a in
standard state using the relation between density and size
r ¼ 1/a3 seems to give a ~11 Å, which is not the value
used in the test examples of this work. When applied to
real biological systems, an extensive exploration (such as
comparison with experiments and/or explicit molecular
dynamics simulations) needs to be done for parameteriza-
tion for the size values of different ion species and solvent
molecules, as was performed by Chu et al. (24). Further-
more, our model considers the particle finite size effects
by introducing a penalty term in the free energy functional
to model the steric packing. As indicated in previous
studies, this term may not be sufficient to describe the
more general ion-ion correlations that would involve highly
charged molecules and/or multivalent ions.

Recent studies with explicit ion simulations (8) or explicit
counterion simulations (51) show that there are noticeable
differences between the predicted ion concentrations by
the complete continuum models and those by the discrete
models. These results also show that certain counterion
peak densities can be found significantly reduced in the
explicit ion simulation compared with that of the implicit
PB simulations (see Fig. 10 c in Prabhu et al. (8)), which
could be at least partially attributed to the finite size effects.
However, alternative scenarios do exist; for instance, it is
found that at low ionic strength, the sodium ion concentra-
tion in the major groove of the nucleic acid predicted by
the explicit ion simulation is higher than that predicted by
the PB simulations (8). This indicates that the finite size
effects in our PB model can reasonably prevent overestima-
tion for the highly concentrated, saturated ionic profile, but
may be insufficient to capture the quantitative features of the
ion distribution at low salt concentration when discrete ion
effects become dominant.

In this regard, hybrid implicit solvent and explicit ion/
particle representations, such as that in Prabhu et al. (8), can
be practical treatments for directly capturing the discrete
properties. The PNP-like models combined with more-
sophisticated DFT theories (27–29) are also feasible strate-
gies to use within the extended PNP framework. Recent
work by Eisenberg et al. (1) uses a unified energy variational
method by combining the macroscopic (hydrodynamic)
and microscopic (atomic) energy functionals to deal with
complex ionic solutions; ionic specificity of someone-dimen-
sional ion channels is successfully reproduced (1) (B. Eisen-
berg, unpublished). In these work, the finite size effects of
ions are included either by a Lennard-Jones repulsive term
or by a hard sphere term in DFT. Functional integrals will
be incurredwhen using the ion-ion Lennard-Jones interaction
to account for the volume exclusion effects of ions. If one
considers only the ion-solute Lennard-Jones interactions but
neglects the volume exclusion between ions, a system of
differential equations can again be obtained (52).

Finally, the complicated system of nonlinear partial differ-
ential equations resulting from the SMPNP model poses
a serious challenge in numerical solution. It is found that
with the method described in this work, the convergence
becomes slow for large particle sizes and large biomolecular
systems such as the acetylcholinesterase system that we
Biophysical Journal 100(10) 2475–2485
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studied before. Further study in this direction, as well as
a speeding-up of the solution by parallel computing, is
underway and will be reported upon in future articles.
SUPPORTING MATERIAL

Two additional sections, 18 equations, and one figure are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(11)00417-6.
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