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Validation of Fractal-Like Kinetic Models by Time-Resolved Binding
Kinetics of Dansylamide and Carbonic Anhydrase in Crowded Media
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and �Zeljko Bajzer†§*
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ABSTRACT Kinetic studies of biochemical reactions are typically carried out in a dilute solution that rarely contains anything
more than reactants, products, and buffers. In such studies, mass-action-based kinetic models are used to analyze the progress
curves. However, intracellular compartments are crowded by macromolecules. Therefore, we investigated the adequacy of the
proposed generalizations of the mass-action model, which are meant to describe reactions in crowded media. To validate these
models, we measured time-resolved kinetics for dansylamide binding to carbonic anhydrase in solutions crowded with polyeth-
ylene glycol and Ficoll. The measured progress curves clearly show the effects of crowding. The fractal-like model proposed by
Savageau was used to fit these curves. In this model, the association rate coefficient ka allometrically depends on concentrations
of reactants. We also considered the fractal kinetic model proposed by Schnell and Turner, in which ka depends on time
according to a Zipf-Mandelbrot distribution, and some generalizations of these models. We found that the generalization of
the mass-action model, in which association and dissociation rate coefficients are concentration-dependent, represents the
preferred model. Other models based on time-dependent rate coefficients were inadequate or not preferred by model selection
criteria.
INTRODUCTION
The steady-state and time-dependent kinetics of biochem-
ical reactions are typically studied in buffered solutions
that contain only reactants and products. In contrast,
biochemical reactions in intracellular compartments occur
in a medium crowded with macromolecules that are not
part of a given reaction process. These macromolecules
are barriers to diffusion, restrict reaction space, and repre-
sent excluded volume. The fact is that the vast majority of
studies of both binding interactions and enzyme kinetics
have been conducted under idealized, dilute conditions of
the reactants in simple aqueous solutions, and the kinetic
parameters thus determined have been presumed to be
extrapolatable to the system’s behavior intracellularly. Intu-
itively, this seems to be a questionable presumption.

Previous investigators (1–4) extensively studied reactions
in media crowded by macromolecules in terms of equilibria.
Other experimental and theoretical aspects of macromolec-
ular crowding have also been considered (5–16). In partic-
ular, macroscopic models for time-resolved reaction
kinetics in crowded media have been proposed (17–22).
However, these models were not validated with experi-
mental data, which motivated us to conduct the study pre-
sented here. In a recent review of the field, Elcock (15)
pointed out that there is an urgent need to compare theoret-
ical models with quantitative experimental data. Our work
represents a step in that direction with regard to proposed
theoretical macroscopic kinetic models.
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Kozer et al. (9) and Phillip et al. (14) studied the effects of
crowding on protein-protein binding kinetics and found that
crowding had a small effect on the rate of association of
protein complexes (14). However, these authors obtained
association rate constants based on fitting data by the stan-
dard mass-action model. Here, we consider modified
mass-action models that have been proposed to account
for the effects of macromolecular crowding on binding
kinetics (17–22). Then, by fitting to experimental data, we
propose to validate those models.

In this study, we focus on the binding of dansylamide
(DNSA) to carbonic anhydrase (CA). We chose this system
because the progress curves can be measured by stopped-
flow fluorescence techniques with a very high signal/noise
ratio. The reaction has been assumed to follow a single-
step binding mechanism (23,24), although at least one report
suggested the presence of a fleeting intermediate followed
by a stabilization step (25).

In the mass-action model (first published in 1864), the
kinetics of the elementary binding reaction,

Aþ B#
ka

kd
C (1)

is described by the equation

d½C�=dt ¼ ka½A�½B� � kd½C� (2)

where [A], [B], and [C] are concentrations of the reactants
and the product, respectively. The rate coefficients ka and
kd are assumed to be constants. The modified mass-action
models attempt to describe the effects of crowding by
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assuming that the rate coefficients are functions of time or
concentrations.

In the fractal-like kinetic model, which is based on the
work of Kopelman and collaborators (26–29), Schnell and
Turner (19) replaced the rate constant ka with a term that
decreaseswith time in a fractal-likemanner. It has the formof
the Zipf-Mandelbrot temporal distribution ka ¼ k/(t þ t)h,
where 0 % h < 1 and t and k are positive constants. This
model is based on the asymptotic expression for the number
of sites on a fractal visited by a random walker until time t
(21,22,30,31). The dissociation rate coefficient kd in this
model is assumed to be a constant.

We previously showed by simulations and rigorous math-
ematical analysis that the Schnell-Turner model, for the
reaction A þ B # C, exhibits unexpected behavior: the
product concentration [C] reaches a peak at a finite time
and then decreases to zero in an asymptotic steady state
(21,22). This model may thus be considered inherently
deficient, as it seems unlikely that binding in crowded media
involves the asymptotic disappearance of product. The
experiments presented here do not indicate the latter
behavior. However, the Schnell-Turner model may be
further generalized by assuming that the dissociation rate
coefficient is also time-dependent according to the Zipf-
Mandelbrot distribution (22). The idea of time-dependent
dissociation rate coefficients is supported by previous
theoretical studies of diffusion-influenced reactions
(32,33). In the case of the generalized Schnell-Turner
model, one can obtain an asymptotic steady state with
maximal concentration of the product (22), which is the ex-
pected, intuitive result.

Another approach for studying reaction kinetics in
crowded media is based on a power-law approximation for
biochemical system analysis developed by Savageau and
Voit (34–36). Models based on the power law are advanta-
geous because they have widespread applications to various
biochemical systems (36–39). Savageau suggested that the
power-law approximation could be applied to kinetics in
spatially restricted media (17,18,37). In his fractal-like
model, the rate coefficient ka depends allometrically on [A]
and [B] rather than on time (19,21,22): ka ¼ k[A]a[B]b,
where a and b are not necessarily integers, and k is a certain
proportionality constant. In this model, the progress curve
of the product [C] does not exhibit a peak at finite times;
instead, it recapitulates classical asymptotic behavior as it
approaches steady state.

We have shown by simulations that, in some circum-
stances, the Schnell-Turner and Savageau models for the
reaction A þ B # C predict almost identical progress
curves (21,22), at least within a limited time period (before
the peak in the Schnell-Turner model is reached). This could
present a challenge in terms of experimentally discrimi-
nating between these models. As we show below, the anal-
ysis of measured progress curves indicates that the binding
mechanism of DNSA to CA may not be a single-step
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binding mechanism; rather, it exhibits an additional step
with an intermediate complex. This further complicates
the discrimination among models. Therefore, in an attempt
to objectively determine which model can best describe the
data, we used a number of statistical and information criteria
for model selection.
MATERIALS AND METHODS

Experimental system

Bovine carbonic anhydrase II (derived from erythrocytes) was purchased

from Worthington (Lakewood, NJ) and used without further purification.

Analysis by mass spectroscopy revealed only isoform II, which was acety-

lated and contained zinc (data not shown). DNSA (5-dimethylaminonaptha-

lene-1-sulfonamide), polyethylene glycol (PEG; MW ¼ 6000), Ficoll

(MW ¼ 400,000), sucrose, and HEPES buffer were purchased from

Sigma-Aldrich (St. Louis, MO).

We determined the concentration of DNSA by absorption in a solution of

60% ethanol (v/v) by using the method of Weber (40) and employing an

extinction coefficient of 3330nm ¼ 4000 M–1 cm–1.

The concentration of carbonic anhydrase was determined by absorption

in 20 mM HEPES buffer. The absorption was maximal near 280 nm.

The spectrum was corrected for solvent absorption and turbidity by means

of the built-in algorithm of the Beckman DU-640 spectrophotometer.

The extinction coefficient for bovine carbonic anhydrase II was calculated

using the Edelhoch method (41), but with the extinction coefficients for

Trp and Tyr determined by the method of Pace et al. (42), based on

the protein sequence predicted from the gene CAH2_BOVIN; 3280nm ¼
50, 420 M–1 cm–1. All of the experiments presented here were performed

with protein from the same lot. The viscosity of the solutions was measured

with an AMVn automated viscometer (Anton Paar, Graz, Austria) with

firmware version 1.70 and VisioLab version 1.63.
Stopped-flow experiments

We measured the reaction progress of the CA-DNSA interaction using an

SX18MV stopped-flow apparatus from Applied Photophysics (Surrey,

UK). The temperature for all experiments was kept constant at 25�C. All
solutions were buffered at pH 7 with 20 mM HEPES. The reaction was

started by mixing equal volumes of one syringe containing the CA and

another syringe containing DNSA. The buffer and crowding reagents

(when used) were present at equal concentrations in both syringes to mini-

mize the mixing artifacts.

Bound DNSA was excited by energy transfer from protein Trp residues

(lex ¼ 280 nm). This method gave a much better signal/noise ratio than

when DNSA was excited directly (lex ¼ 330 nm). The emitted light was

conditioned by the usual high-pass filter with a cutoff of 390 nm, and

was quantified with an R6095 photomultiplier tube. Each progress curve

consists of 1000 points over 20 s, but initial points below 60 ms were dis-

carded to avoid possible mixing artifacts. Five progress curves were

routinely measured for each experimental condition and corrected for small

variations in vertical shift. The mean and the standard deviation (SD) were

then determined for each point. The resulting mean progress curves with

SDs were used in weighted least-squares fitting.
Macroscopic kinetic models

Here we consider several models (17,19,21,22) in more detail. Assuming

conservation of mass: [A] þ [C] ¼ A0, [B] þ [C] ¼ B0, where A0, B0,

C0 ¼ 0 are initial concentrations, Eq. 2 becomes

d½C�=dt ¼ kaðA0 � ½C�ÞðB0 � ½C�Þ � kd½C� (3)
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When the rate coefficients ka and kd are constant, this equation corre-

sponds to the classical mass-action model. However, in the proposed

models, which are meant to describe the effects of crowding, these rate

coefficients could be functions of time and/or concentration. We consider

six models with the rate coefficients given in Table 1. A detailed derivation

and mathematical analysis of these models can be found elsewhere (22).

The association time-dependent rate coefficient in models based on work

of Kopelman and collaborators (26–29), and adapted by Schnell and Turner

(19), can be physically interpreted through random walk on fractals (30,31).

The models based on power-law approximation can be derived by simple

arguments related to allometry, or to the Taylor expansion of unknown func-

tions in log-log space (36).

We name the models considered here (Table 1) by taking into account the

type of association and dissociation rate coefficients. Thus, the mass-action

model is referred to as MAMA, signifying that both dissociation and associ-

ation rate coefficients correspond to that model. The original model

proposed by Schnell and Turner (19) for the considered reaction is denoted

by STMA, signifying that the association term is taken from this model

and the dissociation term is taken from the standard mass-action model.

Generalizations of these models and the models based on Savageau’s

proposal are denoted analogously. Note, however, that STEQ refers to the

model in which the time-dependent factors are the same for both the

association and dissociation terms.

The constants ka and kd in Table 1 have the same units (concentration/time

and reciprocal time, respectively) in all models. In the STMA, STEQ, and STST

models, this is accomplished by reformulating the original time-dependent

factor 1/(t þ t)h so that it becomes a nondimensional factor (Table 1). The

exponent 0% h< 1 is related to the possible fractal character of the crowded

environment (22). It is related to the spectral (or fracton) dimension ds of the

fractal (30,31) on which the randomwalk occurs: h¼ 1 – ds /2. For h¼ 0, the

models STMA, STEQ, and STST are reduced to the standard mass-action model.

The parameter t may be interpreted as a certain critical time at which the

effects of macromolecular crowding become significant (19,21,22). One

can argue that at the beginning of the reaction (t � t), the reactivemolecules

that happen to be the most accessible to each other will interact as if there

were no crowding, and the rate coefficient will be almost constant.

Regarding the SVMA and SVSV models, the constants ka and kd have the

same units as in the other models if the concentration-dependent factor

([A]/u)a([B]/u)b ¼ (A0/u – [C]/u)a(B0/u – [C]/u)b is dimensionless. We

accomplish this by choosing u to have the same units of concentration as

the reactants and product (in our case, u ¼ 10�5M). When a ¼ b ¼ 0,

the SVMA model reduces to the MAMA model, and if in addition g ¼ 0, the

SVSV model reduces to MAMA (Table 1). In fact, these models can be consid-

ered as a straightforward generalization of the mass-action model, by

assuming noninteger order of elementary reactions, given by 2 þ a þ
b for association and by 1 þ g for dissociation. Because the association

rate term [A]1þa[B]1þb is expected to be an increasing function with [A]

and [B], it follows that a> – 1, b> – 1. Similarly, the dissociation rate term

[C]1þg being an increasing function with [C] implies g > – 1. Negative
TABLE 1 Modifications of the mass-action model and

abbreviations

Rate coefficients

Model (reference) Association Dissociation Abbreviation

Mass action ka kd MAMA

Schnell-Turner (19) ka/(t/t þ 1)h kd STMA

Generalized

Schnell-Turner (22)

ka/(t/t þ 1)h kd/(t/t þ 1)h STEQ

Generalized

Schnell-Turner (22)

ka/(t/ta þ 1)h kd/(t/td þ 1)h STST

Savageau (17) ka([A]/u)
a([B]/u)b kd SVMA

Generalized

Savageau (22)

ka([A]/u)
a([B]/u)b kd([C]/u)

g
SVSV
values of a, b, and g indicate that the rates decrease with respect to the

mass-action model, which is expected in crowded media. The crowding

molecules can be barriers for A and B to reach interacting distance, and

they can temporarily trap C so that it cannot dissociate as quickly.

If we assume that binding is not a single-step reaction but is accom-

plished through an intermediate (25), the reaction scheme would be:

Aþ B#
ka

kd
C#

k1

k2
D (4)

where D denotes the final stabilized complex. This scheme implies the

following system of differential equations:

d½C�=dt ¼ kaðA0 � ½C� � ½D�ÞðB0 � ½C� � ½D�Þ
�ðkd þ k1Þ½C� þ k2½D�

d½D�=dt ¼ k1½C� � k2½D�
(5)

Here, ka and kd are assumed to have a form as in Table 1, and k1 and k2
are regarded as constants. Therefore, it appears reasonable to assume that

the possible effect of crowding molecules on conformational change is

expressed through the change in these constants.

It is known that Eq. 3 for the MAMA model can be solved analytically, and

this is also true for the STEQ model (22). The other models considered here

do not exhibit analytically solvable equations. We used the LSODA numer-

ical solver to obtain numerical solutions.
Model validation by least-squares fitting

The signal obtained from the stop-flow experiments is linearly related to the

concentrations of the complex [C] h [CA-DNSA] and [DNSA]:

SðtÞ ¼ q0 þ q1½DNSA�ðtÞ þ q2½C�ðtÞ
¼ qþ qc½C�ðtÞ; q ¼ q0 þ q1½DNSA�ð0Þ;

qc ¼ q2 � q1

(6)

where parameters q1 and q2 (q2[q1) are proportional to the quantum

yield, and q0 represents the offset. If an intermediate is assumed, we have

to take into account the possibility that this intermediate may contribute

to the signal, implying the following relation:

SðtÞ ¼ qþ qc½C�ðtÞ þ qd½D�ðtÞ (7)

The models were validated by simultaneous weighted least-squares

fitting to multiple progress curves corresponding to various combinations

of initial concentrations. The weights wij are given by 1=s2ij, where SDs

sij for each progress curve j and each time point i are obtained from

repeated measurements of each progress curve. In simultaneous fitting,

the model parameters were considered global, as were qc and qd; however,

for each progress curve a different parameter, q ¼ q0 þ q1[DNSA](0), was

taken into account. We also allowed a small variation in the initial concen-

trations; each initial concentration is modified by a factor from the interval

[0.7,1.3]. Minimization of the weighted sum of squared errors required the

use of a sophisticated search method, because the number of free parame-

ters for the six curves was 14 or more, depending on the model. We chose

the Simplex Induction Hybrid (SIH) algorithm, which compares favorably

with the other algorithms for challenging optimization problems (43).

To address the issue regarding the goodness-of-fit by the models, we

calculated the probability Pg that data points drawn from the parent c2

distribution with n degrees of freedom would yield a value of c2 equal to

or greater than the one obtained: Pg h Pr[c2(n) R c2
o] ¼ 1 – P(n/2,

c2
o/2), where n ¼ n – m (n is the number of all data points, and m is the

number of free parameters), c2
o is the obtained value, and P(a, x) is the

incomplete g function (44,45). According to Press et al. (45), the fit is

generally considered acceptable if this probability is higher than 0.1, and

is definitely unacceptable if it is lower than 0.001.
Biophysical Journal 100(10) 2495–2503
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FIGURE 1 Reaction progress curves of the complex formation of CA

and DNSA measured for different conditions. Curves 1 and 4 correspond

to dilute solution, curves 2 and 5 represent solutions with PEG (150 g/L),

and curves 3 and 6 represent solutions with Ficoll (150 g/L). The initial

concentration of CA was 10 mM for curves 1–3, and 5 mM for curves

4–6. The concentration of DNSA was 20 mM in all cases. The means of

five repeated measurements are displayed.

2498 Neff et al.
The models that yield acceptable fits may provide a satisfactory descrip-

tion of the data. However, we wanted to determine which of the considered

models is actually preferable. To that end, we applied three different types

of information criteria for model selection, known as the Akaike (AIC),

Bayesian (BIC), and Hannan-Quinn (HQIC) criteria (46–48). These criteria

take into account the number of parameters as well as the obtained c2
o. They

can be expressed in the form c2
o þ mw(n), where w(n) ¼ 2 for AIC, w(n) ¼

ln n for BIC, and w(n)¼ 2 ln(ln n) for HQIC.When these criteria are used to

compare models, the model with the lower value for a given criterion is

preferred.

In addition, we used Zwanzig’s model-selection criterion (47,49). This

criterion provides a quantitative comparison of fits by two models and

determines which of the two models is preferable, or that there is no statis-

tically significant difference in fits by the two models. The criterion is based

on a statistic that can be expressed as:

T12 ¼ �
c2
1 � c2

2

�ð4M12Þ�1=2
;

M12 ¼
Xn

k¼ 1

½ f1ðtkÞ � f2ðtkÞ�2s�2
k ;

(8)

where c1
2 and c2

2 are obtained by fitting the data with models f1(t) and f2(t),

respectively, and sk are SDs for data points. When T12 > u1–s/2, model f2(t)

is preferred; jT12j % u1–s/2 implies no significant difference between

models; and when T12 < –u1–s/2, model f1(t) is preferred. Here uq is the

q-quantile of the normal distribution, and s is the level of significance

(assumed to be 0.05).

When applicable, we also used the standard F-test (44,47) for the nested

models to investigate whether the inclusion of additional parameters is

justified.

We estimated the uncertainties in the best-fit model parameters by

performing Monte-Carlo simulations (45) in such a way that the mean

experimental progress curve was corrupted by Gaussian noise according

to the SD for each point and then refitted. We repeated this procedure

100 times and obtained the distribution of values for each parameter, which

was characterized by its SD. Uncertainties in the parameters were charac-

terized by the coefficient of variation.
RESULTS

Wemeasured progress curves for the binding ofDNSA toCA
for the following [CA]/[DNSA] ratios of the initial mM
concentrations: 5:5, 5:10, 5:20, 10:5, 10:10, and 10:20. The
measurements were performed in the absence and presence
of crowding molecules (100 and 150 g/L PEG-6000 or
Ficoll-400000). Examples of the measured progress curves
are given in Fig. 1. As this figure shows, our measurements
were characterized by a high signal/noise ratio. The effects
of PEG and Ficoll, which amount to lowering of the steady
state and the initial slopes of the curves, can be clearly
observed. These effects were also seen for other combina-
tions of initial concentrations.

One would expect the effects of crowding to be partially
due to an increase in macroscopic viscosity. The bulk
viscosity of the solution with 100 g/L PEG was six times
larger (6 mPa$s) than without PEG and was isoviscous to
the solution with 100 g/L Ficoll. The solution with 150 g/L
of PEG showed 15 times greater viscosity than that without
PEG, and it was isoviscous to the solution with 150 g/L
Ficoll. We also measured reaction progress curves in which
the solution contained sucrose in such a concentration that
Biophysical Journal 100(10) 2495–2503
it was macroscopically isoviscous to the media containing
150 g/L PEG or 150 g/L Ficoll. In this way, we were able
to investigate the extent to which the effects of macromolec-
ular crowding differed from the effects caused simply by
macroscopic viscosity (see below).

We found that the information content in just one progress
curvewas not sufficient to reliably estimatemodel parameters
by fitting. However, with all six curves, we could estimate
parameters quite reliably based on fitting of Monte-Carlo
simulated data, and on repeated experiments with identical
conditions. Examples of the measured and fitted progress
curves for [CA-DNSA] are shown in Fig. 2. None of the prog-
ress curves exhibit any observable maximum, as predicted by
the original Schnell-Turner model.

The fit of data in the absence of crowding (or sucrose) by
the MAMA model without an intermediate (see Eq. 1) turned
out to be unacceptable according to the employed goodness-
of-fit criterion (the probability Pg was much smaller than
0.001; Table 2)). The other data (with crowding or sucrose)
also did not yield acceptable fits with the simple MAMA

model. However, the MAMA model with an intermediate
(denoted by MAMAI; see Eq. 4) produced an acceptable fit
of data in the absence of crowding (Pg > 0.99; Table 2).
In this case, the coefficient of variation for the rate constants
was <2%.

We then sought to determine whether the MAMAI model
provides acceptable fits for data with crowding. This proved
true in some cases (PEG 100 and 150 g/L, Ficoll 150 g/L),
but not all (Ficoll 100 g/L, sucrose; see Table 2). Thus, the
performance of the MAMAI model is not consistent. The STMA

model with an intermediate produced essentially the same
fits as the MAMAI model, whereby the exponent h was prac-
tically zero. Because the STMA model is deficient (see Intro-
duction), such an outcome was expected. The STEQ model
with an intermediate provided improved fits compared
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FIGURE 2 Reaction progress curves of the complex formation of CA

and DNSA measured for six combinations of initial mM concentrations

([CA],[DNSA]): (a) (10,20), (b) (10,10), (c) (10,5), (d) (5,20), (e) (5,10),

and (f) (5,5), in the presence of crowding with PEG and Ficoll. The curves

(solid lines) are the means of five repeated measurements. The SDs are

small, on the order of the line widths. Dashed lines (gray), which mainly

coincide with the solid lines, represent the fit by the SVSV model.
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with the MAMAI model, so only the fit of data with sucrose
present was not acceptable (Pg < 0.001). All of the fits by
the STST, SVMA, and SVSV models with an intermediate to
all data sets were acceptable (Table 2).

The question remains as to which of the acceptable
models is preferable according to the model selection
criteria described in Materials and Methods. We found
that the AIC, BIC, and HQIC criteria indicate that the
SVSV model is to be preferred on the basis of the fits for all
data sets (see Table 3; only BIC is shown, but the other
two criteria provided the same model preference). Zwan-
zig’s criterion also indicated that the SVSV model is consis-
tently preferred over the SVMA and STST models (Table 3).
Similarly, an F-test between the SVMA and SVSV models
favored the SVSV model. It is worth noting that the STST

model was not consistently preferred over the SVMA model,
even though it has one more free parameter (Table 3).

Although the MAMAI model was acceptable for reactions
in dilute solution, we found that the fits by STEQ, SVMA,
STST, and SVSV models with an intermediate were preferable
for the same data. However, for SVMA, the best fit value for
qd was 403, which is much higher than the small values
(<1) obtained for other models and data sets. We also
obtained very small values for a and b (Table 2), indicating
the possibility of only a very small departure from the MAMAI

model. Similarly, for the SVSV model, a, b, and g are
small, and qd ¼ 2.8 is somewhat too large to be acceptable.
For the STST model parameter, h is very close to zero,
indicating a very small departure from the MAMAI model,
which is further suggested by the very similar values for
the rate constants (Table 2). With regard to the STEQ model,
we obtained exponent h ¼ 0.9998. According to the
meaning of h, this would indicate a considerable effect of
crowding; however, that cannot be the case, which renders
this model unacceptable. On the basis of this analysis,
we can conclude that the MAMAI model adequately describes
progress curves for the reaction in dilute solution, and
other models in this case are not warranted. However,
as mentioned above, MAMAI does not consistently describe
progress curves for reactions in which crowding (or sucrose)
is present. This is exemplified by the comparison of
residuals in Fig. 3.

With regard to the estimated values of the association rate
constants ka, we note that in the preferred SVSV model, ka
decreases as the concentration of crowding molecules
increases. This could be expected because the crowding
molecules represent a barrier to diffusion. In that respect,
the STST model fails in the case of PEG (see Table 2), and
this is also true for the STEQ model (data not shown). This
is yet another reason to disregard the STEQ and STST models
as adequate descriptions of data. The estimated uncer-
tainties in relevant parameters for the SVSV model yielded
coefficients of variation that were <10%. The exceptions
were k1 (26%) and k2 (21% for PEG, 150 g/L), with higher
coefficients of variation for exponents a, b, and g. For Ficoll
(150 g/L), a was small, with an estimated coefficient of
variation of 30%.

The question arises as to what extent the decrease in
association rate constant is due merely to an increase in
viscosity. To answer this question, we measured progress
curves when the reaction occurred in a solution with
Biophysical Journal 100(10) 2495–2503



TABLE 2 Model parameters obtained by weighted least-squares fitting of selected models to reaction progress curves for

noncrowded and crowded media

Ficoll-400k PEG-6000

Model Parameters Dilute Sucrose 100 g/L 150 g/L 100 g/L 150 g/L

MAMA ka* 2.67 0.08 0.13 0.10 0.07 0.44

kd
y 0.17 0.17 0.19 0.19 0.19 0.20

Pg
z <10�5 <10�5 <10�5 <10�5 <10�5 <10�5

MAMAI ka 1.12 0.76 0.26 0.48 0.82 0.24

kd 45.9 16.8 0.19 13.0 40.4 7.11

k1 19.5 3.43 2.79 5.54 5.88 1.97

k2 0.21 0.17 0.48 0.23 0.19 0.27

Pg >0.99 <10�5 <10�5 >0.99 >0.99 >0.99

STST ka 1.19 6.78 0.31 1.14 1.46 0.29

kd 49.1 11.3 2.16 34.2 32.2 7.59

k1 19.0 1.91 2.60 5.38 2.74 1.80

k2 0.22 0.19 0.50 0.22 0.22 0.29

ta
x 6.22 0.006 0.80 0.02 0.01 2.48

td 0.86 0.17 0.54 0.03 0.03 2.19

h 0.02 0.51 0.16 0.19 0.24 0.24

Pg >0.99 >0.99 >0.99 >0.99 >0.99 >0.99

SVMA ka 0.34 0.19 0.23 0.16 0.14 0.08

kd 0.18 0.35 0.26 0.24 0.26 0.28

k1 2$10�7 0.55 0.46 0.15 0.34 0.11

k2 0.31 0.98 1.57 0.86 1.36 0.67

a �0.06 �0.25 �0.16 �0.11 �0.17 �0.24

b �0.03 �0.19 �0.14 �0.07 �0.10 �0.06

Pg >0.99 >0.99 >0.99 >0.99 >0.99 >0.99

SVSV ka 0.25 0.33 0.15 0.09 0.15 0.07

kd 0.20 1.30 1.57 1.55 0.27 0.28

k1 0.0001 2.61 111 226 0.30 0.01

k2 0.22 0.71 12.3 26.1 0.93 0.36

a �0.06 �0.35 �0.05 �0.005 �0.18 �0.19

b 0.00 �0.26 0.04 0.07 �0.12 �0.01

g �0.06 �0.71 �0.78 �0.73 0.15 �0.19

Pg >0.99 >0.99 >0.99 >0.99 >0.99 >0.99

*Units in 10�5 M–1s–1.
yUnits for kd, k1, and k2 are s

–1.
zProbability Pg ¼ Pr[c2(n) > c2

0] (see Materials and Methods).
xUnits for ta and td are seconds.
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sucrose, isoviscous to solutions with 150 g/L of PEG and
Ficoll. Thus, columns 2, 4, and 6, displaying parameter
values in Table 2, correspond to isoviscous solutions. The
values for ka given by the SVSV model indicate that there is
a decrease for Ficoll and PEG compared with sucrose,
which accounts for the different effects of crowding
TABLE 3 Preference of models based on model selection criteria

Model Selection criteria Noncrowded Sucrose

SVMA (1) BIC* 3653 6111

STST (2) BIC 3815 5392

ZC(1,2)y 1 2

SVSV (3) BIC 3563 4803

ZC(1,3) 3 3

ZC(2,3) 3 3

*Bayesian information criterion. The model with the lower value is preferred (
yZwanzig’s criterion for comparison of models 1 and 2. The preferred model is

Biophysical Journal 100(10) 2495–2503
compared with macroscopic viscosity. On the other hand,
the ka-value for the reaction with sucrose (in the SVSV model)
is almost four times lower than the ka-value corresponding
to the noncrowded solution as given by the adequate MAMAI

model (Table 2). This finding indicates possible effects of
macroscopic viscosity alone.
Ficoll-400k PEG-6000

100 g/L 150 g/L 100 g/L 150 g/L

4928 4293 1328 2066

5342 3657 1316 3365

1 2 2 1

3934 3477 1159 1100

3 3 3 3

3 3 3 3

see text).
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FIGURE 3 Residuals for simultaneous fits by the mass-action model

with intermediate (MAMAI) and the preferred generalized Savageau model

(SVSV) in the presence of PEG and Ficoll. The residuals correspond to six

reaction progress curves with the initial concentration combinations as in

Fig. 2.
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DISCUSSION

Understanding the kinetics of simple binding reactions is
a fundamental prerequisite for kinetic studies of more-
complex reaction mechanisms. To study the effects of
molecular crowding on time-resolved kinetics, we measured
and analyzed the binding of DNSA to CA as monitored by
energy transfer from Trp residues in CA to DNSA, which is
especially well-suited for this purpose due to its very high
signal/noise ratio. The measured progress curves were
used to validate proposed macroscopic models for kinetics
in crowded media by global weighted least-squares fitting
and application of model selection criteria.

The results obtained for the reaction in dilute solution
indicated that the binding of DNSA to CA cannot be consid-
ered kinetically as a single-step reaction; rather, an interme-
diate has to be assumed. We believe the precision with
which we measured the progress curves and performed the
global analysis allowed us to detect the kinetic trace of an
intermediate that was previously unknown (24) (although
it was indirectly suggested by Taylor et al. (25)). The rela-
tively large dissociation rate constant kd and transition rate
constant k1 (see Table 2, MAMA model) indicate that the
proposed intermediate may have a fleeting existence.

The single-step mass action model, MAMA, did not provide
an adequate fit. Yet, when we compare our results with those
in literature, we note that our result, ka ¼ 2.67 � 105 M–1s–1
(Table 2), is compatible with values reported by Day and
co-workers (24): (3.8 5 0.9) � 105 M–1 s–1, and Taylor
et al. (25): 2.4 � 105 M–1 s–1. Our value for kd agrees
with the 0.16 5 0.03 s–1 reported by Day et al. (24), but
is lower than the 0.39 s–1 reported by Taylor et al. (25).
Altogether, this comparison suggests that our measurements
and data analysis can be considered reliable.

Our analysis based on the goodness of fit, model selection
criteria, and values of the obtained parameters lead us to
suggest that the SVSV model with inclusion of an intermediate
is preferred when macromolecular crowding or sucrose is
present.When there is no crowding (or sucrose), the standard
mass-actionmodelwith an intermediate adequately describes
data with interpretable parameters, whereas the SVSV model
yields inadequate parameters. The fits by other models are
either unacceptable or not preferred, and they sometimes
yield parameter values that are highly improbable.

Although the residuals were considerably smaller for the
SVSV model than for other models, they were not completely
without some systematic deviation from zero, especially in
the beginning of the reaction (see Fig. 3). This may indicate
that the SVSV model is still only a macroscopic approxima-
tion of the stochastic process underlying the reaction
kinetics in crowded media (50). On the other hand, we
cannot completely rule out unknown artifacts from the
measurements.

The effect of macromolecular crowding appears signifi-
cant at 100 g/L and 150 g/L of PEG and Ficoll as crowding
macromolecules in the solution. We tried to increase the
concentration of cosolutes beyond that density, but found
that the related increase of viscosity affected the reliability
of the stop-flow measurements. PEG is a linear polymer
of ethylene glycol subunits, and Ficoll is a globular, highly
branched polysaccharide. The results of fitting the respec-
tive progress curves (Table 2) by the SVSV model show
significant differences in parameters other than ka, which
may be related to the structural differences between PEG
and Ficoll molecules. PEG is a flexible, extended molecule
that intuitively can be expected to alter the structure of water
differently from Ficoll and potentially show different
patterns of the excluded volume.

Because the SVSV model is the generalization of the mass-
action model, in which the order of reactions is noninteger,
we can conclude that, in addition to changing the rate
constants, the macromolecular crowding can also change
the order of the elementary reactions to become fractional.
This could be considered as an emergent property of chem-
ical reactions in crowded media at the macroscopic level;
however, this observation obviously requires further eluci-
dation at the microscopic level.
CONCLUSIONS

Our study indicates that 1), binding of DNSA to CA II in the
presence of crowding molecules is not consistently well
Biophysical Journal 100(10) 2495–2503
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described by the mass-action model; 2), the original Schnell-
Turner model does not provide any improvement over the
mass-action model for describing the reaction in crowded
media; 3), the STEQ and STST generalizations are also not
acceptable or preferred models; and 4), the Savageau model
(SVMA) is not preferred over the generalized Savageau model
(SVSV). The latter is equivalent to a change in reaction order
for association and dissociation, and was found to be prefer-
able for describing measured progress curves for reactions in
the presence of crowding. Our findings concerning this
model need to be further validated by studies involving
different binding reactions and crowding macromolecules.
In addition, it would be of interest to compare the generalized
Savageau model with the predictions of mesoscopic models
(11,51), which in principle can provide simulated progress
curves under controlled conditions.

We thank Professor John Goutsias for fruitful discussions about stochastic

effects.
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