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Abstract

A series of organochalcogenanes was synthesized and evaluated as protein tyrosine phosphatases
(PTPs) inhibitors. The results indicate that organochalcogenanes inactivate the PTPs in a time- and
concentration-dependent fashion, most likely through covalent modification of the active site
sulfur-moiety by the chalcogen atom. Consequently, organochalcogenanes represent a new class
of mechanism-based probes to modulate the PTP-mediated cellular processes.

Introduction

The prospection of tellurium and selenium compounds exhibiting biological activity has
been increased in the last decades, especially after a series of studies that have demonstrated
the biological potential of these exotic compounds.? Antioxidant activity,? anti-
inflammatory properties,3# neuroprotective and convulsant effects,® cancer prevention,8
apoptotic events,” and immunomodulator activities® are some of the biological properties
that have been documented for selenium and tellurium-containing compounds. The
development of small selenium- and tellurium-containing molecules as enzymatic inhibitors
is based on the reactivity and high affinity of selenium and tellurium atoms towards thiol-
dependent enzymes such as caspases,”? tyrosine kinasel9 and cysteine (papain, cathepsins)
proteases.11 A particular class of selenium and tellurium compounds that has been less
explored in enzymatic inhibition is the hypervalent organochalcogenanes. Recent
investigations have shown that organoselenanes and organotelluranes are very potent
inhibitors of cysteine cathepsins, a thiol-dependent enzyme.12 The affinity between the
sulfur-moiety from the catalytic site of these enzymes and chalcogen atom (especially
tellurium) makes favorable the formation of a oy.g.gnz (Y = Se and Te, S-Enz = thiol-
dependent enzyme) bound in the inhibitory process. Due to their distinct molecular
arrangement and charge distribution, the chalcogen, present in these hypervalent
compounds, accommodates a positive charge and consequently, become more electrophilic
than their chalcogenides congeners. In this way, based on the reactivity of selenium- and
tellurium-containing compounds and their molecular interaction with different enzymes, the
investigation of hypervalent chalcogenanes as inhibitors of other thiol-dependent enzymes is
warranted. Protein tyrosine phosphatases (PTPs) constitute a large family of cysteine-
dependent enzymes that catalyze the hydrolysis of phosphotyrosine residues in proteins.13
PTPs, together with protein tyrosine kinases, play a central role in cell signaling by
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regulating the phosphorylation status and, in turn, the functional properties, of target
proteins in various signal transduction pathways.4 Dysfunction in PTP activity has been
linked to the etiology of several human diseases, including cancer, diabetes and obesity, and
autoimmune disorders.1® Consequently, there is intense interest in developing small
molecule PTP inhibitors that not only serve as powerful tools to delineate the physiological
roles of these enzymes in vivo, but also as excellent leads for the development of new
therapeutic agents.

Herein, we described a study of the potential use of hypervalent selenium(IV) and
tellurium(1V) (selenanes and telluranes, respectively) as inhibitors of the PTPs (Figure 1).
Besides the presence of chalcogen atoms (Se or Te), these compounds were designed to
contain halogen (Cl or Br) atoms and a chiral center. The presence of a methyl group at the
benzylic carbon generates an asymmetric center, which offers the possibility of differential
recognition of the enantiomers by the enzyme (PTP) and also a good comparison with the
achiral congener. The halogens bounded to chalcogen were chosen to evaluate the possible
influence of the leaving group stability to the activity of these compounds. In this way, with
simple structural modifications a SAR could be established.

Results and discussion

Synthesis of organoselenanes and organotelluranes (1-12)

The synthesis of organoselenanes involved a short and versatile synthetic route, which
employed classic reactions of selenium chemistry (Scheme 1).11

Similar synthetic approaches were used to prepare the organotelluranes congeners. The
achiral organotelluranes 3 and 4 were synthesized from bromo-benzylic ether 1a. A bromo-
lithium exchange reaction of 1a followed by capture with an electrophilic tellurium specie
(BuTeTeBu) led to telluride 1c in 79% yield. The desired achiral organotelluranes 3 and 4
were obtained (Scheme 2-A) by a tellurium oxidation reaction with SO,Cl, or Br,. In order
to acquire the chiral organotelluranes (7-8, 11-12) a chemo-enzymatic methodology was
developed. In this way, (RS)-1-phenylethanol 1g was submitted to enzymatic kinetic
resolution (EKR) through enantioselective transesterification reaction mediated by Candida
antartica lipase-B (CAL-B). This reaction led to alcohol (S)-1g and the ester (R)-1h in high
enantiomeric excess (> 99%) and yield (45%), for each product. After hydrolysis of (R)-1h,
the BuTe- group was introduced to each enantiomer of 1g. An ortho-lithiation reaction of
(S)- or (R)-1g followed by its capture with BuTeTeBu led to the telluro-alcohols (S)- or
(R)-1i in good yields (46%). O-Methylation of the (S)- and (R)-1i and, finally, reaction of
tellurides (S)-and (R)-1j with SO,Cl; or Br» led to organotelluranes 7-8, 11-12 (Scheme 2-
B).

Assessment of organoselenanes and organotelluranes as PTP inhibitors

The PTPs share a conserved active site and a common catalytic mechanism that features a
highly nucleophilic Cys residue.13 This active site Cys displays an unusually low pK; of
~5,16 and is situated at the bottom of the phosphotyrosine-binding pocket (i.e. the active site)
such that its Sy atom is poised 3 A from the phosphorus atom of phosphotyrosine.1” In the
catalytic mechanism, the active site Cys initiates a nucleophilic attack on the phosphorus
atom, leading to the formation of a thiophosphoryl enzyme intermediate. Hydrolysis of this
covalent enzyme intermediate then completes the catalytic cycle.

Given the reactivity of selenium and tellurium atoms towards thiol-dependent enzymes, we
reasoned that the organochalcogenanes may also display inhibitory activity against the
PTPs. To determine whether organoselenanes and organotelluranes (1-12) can function as
mechanism-based PTP inhibitors, we first examined for their effect on PTP activity using
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para-nitrophenyl phosphate (pNPP) as a substrate (Supporting Information). All 12
compounds inactivated PTP1B and the PTP from Yersinia YopH in a time-dependent first
order process (Table 1).

These assays were very important to identify the relevance of the chalcogen atom for the
profile of the organochalcogenanes as inhibitor of PTPs. As we can see in Table 1, the
values of kqps Showed that organotelluranes are more potent than organoselenanes for
inhibition of PTP1B and the YopH. However, the contributions of the halogens and a
possible stereochemistry discrimination of these compounds were not clear from the
observed SAR towards the PTPs.

Inactivation of the PTPs by organoselenanes and organotelluranes appeared irreversible as
extensive dialysis and/or buffer exchange of the reaction mixture failed to recover enzyme
activity.

Since organotelluranes displayed higher inhibitory profile than organoselenanes, 3 was
chosen as a model inhibitor, to perform a more detailed kinetic analysis in the PTP1B
inactivation. Analysis of the pseudo-first-order rate constant as a function of inhibitor
concentration showed that compound 3-mediated PTP1B inactivation displayed saturation
kinetics (Figure 2), yielding values for the equilibrium binding constant K; and the
inactivation rate constant k; of 1.9 £ 0.17 mM and 17.2 + 0.9 min™1, respectively. These
results suggest that 3 is an active site-directed affinity agent whose mode of action likely
involves at least two steps: binding to the PTP active site followed by covalent modification
of the active site Cys residue. It is worthwhile to point out that the kinetic parameters K; and
kj for compound 3 compare very favorably to those determined for previously described
activity-based probes for the PTPs, including a-bromobenzyl phosphonatel8 and aryl vinyl
sulfonates.19

In summary, the results highlight the potential for developing hypervalent chalcogenated
based small molecule probes to modulate PTP activity in signaling and in diseases. Among
the organochalcogenanes used as inhibitor of PTPs, organotelluranes showed to be more
potent than organoselenanes for inhibition of PTP1B and the YopH. The general reactivity
of the organotelluranes toward the PTPs should facilitate the design of novel activity-based
PTP probes. Additionally, PTP isozyme-specific organotelluranes based inhibitors could be
developed by introducing specificity determinants into the aryl group to increase potency
and selectivity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 2.

Kinetic analysis of PTP1B inactivation by 3 at 25 °C and pH 7. Panel on the left: time and
concentration dependence of inhibitor 3-mediated PTP1B inactivation. Compound 3
concentrations were as follows: @ 6 uM, o0 10 uM, 4 18 uM, V 33 uM, € 59 uM, o 106
uM, @ 190 uM, 2 343 uM, ¥ 617 uM, « 1111 uM, and m 2000 uM. B. Concentration
dependence of the pseudo-first-order rate constants kqps for 3-mediated PTP1B inactivation.
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Scheme 1.
Synthesis of organoselenanes 1-2, 5-6 and 9-10.112
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Scheme 2.

Reagents and conditions: (i) a: t-BuLi, THF (—78-0 °C, 30 min); b: BuTeTeBu (r.t., 3 h); (ii)
SO,Cl5 or Bry, THF (0 °C, 15 min); (iii) NaBHg4, MeOH (r.t., 1h); (iv) vinyl acetate, CAL-
B, hexane (32 °C, 7 h); (v) K,CO3, MeOH, H,O0 (r.t. overnight); (vi) a: n-BuLi. TMEDA,
pentane (reflux, 24 h), b: BuTeTeBu (0 °C - r.t.,, 2 h); (vii) a: NaH, THF (0 °C, 30 min), b:
Mel (r.t., 2 h).
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Rate constants for onset inactivation of the PTPs by organochalcogenanes 1-12.
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Structure

Inactivator Code

PTP1B2 (Kgps, Min~1)

YopHP (Kgps, min)

OMe

7

0.43+0.25

0.74£0.22

0.31+0.15

0.59+0.10

0.20+0.16

0.39+0.20

OMe
se” TN
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0.20£0.23
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Structure Inactivator Code | PTP1B? (kops, min™) | YopHP (kgps, min)
- 11 0.46 £0.19 1.07 £0.46
=
—
Cl ’ TE |
12 0.60 £ 0.39 0.65+0.46
OMe
Cl Ci

a[inactivator] =0.05mM;

b[inactivator] =0.1mM
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