
Correlating magnetic resonance findings with neuropathology
and clinical signs in dogs and cats

Charles H. Vite and Johnny R. Cross

Abstract
The histologic characteristics that are the basis for diagnosis of central nervous system conditions
cannot be visualized directly using magnetic resonance (MR) methods, but clinical diagnosis may
be based on the frequency and pattern of MR imaging signs, which represent predominantly the
gross morphologic features of lesions. Additional quantitative MR measures of myelination, cell
swelling, gliosis, and neuronal loss may also be used for more specific characterization of lesions.
These measures include magnetization transfer ratio, apparent diffusion coefficient, and the
concentrations or ratios of metabolites identified by spectroscopy. Confidence that an MR
abnormality is responsible for the clinical signs depends primarily on the degree of
correspondence between the site of the lesion and the neuroanatomical localization.
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In general, magnetic resonance (MR) imaging is a sensitive, but non-specific method for the
diagnosis of neural lesions.1,2 Sensitivity is higher for masses, malformations, and
inflammation while lower for chronic progressive neuronal degeneration. Differential
diagnoses are usually generated based on a combination of imaging signs and patient data
such as signalment, progression of clinical signs, and clinicopathological results. Similarly,
confidence that an MR abnormality is responsible for the clinical signs depends primarily on
the degree of correspondence between the site of the lesion and the neuroanatomical
localization; however, for many common lesions, such as hydrocephalus, quadrigeminal
cyst, caudal occipital malformation and brain atrophy, there is no consensus about how to
correlate severity in MR images and the severity of clinical signs.

Towards more specific diagnosis of brain disease
The histologic characteristics that are the basis for definitive diagnosis of central nervous
system conditions cannot be visualized directly using MR imaging, but clinical diagnosis
may be based on the frequency and pattern of MR imaging signs, which for the most part
represent gross morphologic features of lesions. For example, the presence of a dural tail
and signal void suggestive of calcification in an extra-axial mass together with hyperostosis
of the overlying bone can help distinguish a meningioma, in which these signs are common,
from a peripheral nerve sheath tumor or a round cell neoplasm, in which this combination of
signs would be unusual. Various reports have described the MR signs in patients with age-
related degeneration,3 caudal occipital malformation syndrome,4-6 arachnoid cysts,7-9

hydrocephalus,10-12 cerebellar degeneration, 13,14 necrotizing encephalitis15, granulomatous
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meningoencephalitis,16 infarcts,17, 18 pituitary tumors,19, 20 and brain neoplasms.21-27

These studies help estimate the prevalence of MR signs associated with these diseases, thus
aiding interpretion of images of other patients. It may be that retrospective evaluation of
gross and microscopic findings obtained from large populations of specific diseases for the
frequency of potentially MR-visible abnormalities such as cysts, hemorrhage, and/or
mineralization would also provide very useful data regarding the incidence of these
abnormalities in imaged patients.30-32

Knowledge of the prevalence of gross and histologic abnormalities in specific diseases is
useful when interpreting MR images. 28, 29 For example, necrotizing encephalitis is an
inflammatory disease of the brain due to unknown etiology.33, 34 Multifocal to coalescing
lesions may be found throughout the brain, but are more commonly confined to the
prosencephalon. Histologically, these lesions appear as rarefied parenchyma with infiltration
of lymphocytes, histiocytes, and plasma cells.33, 34 Figure 1 shows the brain of a 1-year-old
Maltese dog. Multifocal lesions are limited to the cerebrum and thalamus and are
characterized by the presence of moderately contrast-enhancing parenchyma and meninges,
as well as by the loss of parenchyma and the replacement by fluid. A meningoencephalitis is
suspected from this pattern of multifocal enhancement. Diagnosis of necrotizing encephalitis
is supported by the parenchymal loss, sparing of the caudal fossa, and signalment of the
patient. In comparison, granulomatous meningoencephalomyelitis frequently causes lesions
throughout the CNS but large regions of parenchymal loss are rare (Figure 2).35

Globoid cell leukodystrophy is a genetic, degenerative disease of the white matter of
immature dogs.36 Histologically, lesions appear as demyelination and loss of
oligodendrocytes most severely affecting the centrum semiovale, corona radiata, and corpus
callosum.37 Large numbers of swollen macrophages (“globoid cells”) also occur. T2-
weighted images show bilaterally symmetrical hyperintensity of the white matter with the
centrum semiovale and corona radiata most severely affected (Figure 3). Gadolinium-
enhanced T1-weighted images show enhancement of these regions suggestive of
inflammation. The pattern of white matter involvement helps to distinguish leukodystrophy
from other white matter diseases of puppies, such as canine distemper virus infection, which
usually has a less symmetrical, multifocal appearance.

Other lesions remain difficult to distinguish. For example, gliomas and infarcts are intra-
axial lesions that affect similar regions of the brain in older dogs. Histologically, gliomas
appear as a proliferation of neoplastic cells with mass effect and rare hemorrhage.29 Infarcts
are associated with cell swelling and occasionally hemorrhage, followed by cell death,
invasion by inflammatory cells and eventual parenchymal loss.17 Although they are readily
distinguished histologically, gliomas and infarcts may appear similar in MR images. In
theory, the degree of enhancement and the presence or absence of mass effect should aid
diagnosis because gliomas commonly show moderate to strong enhancement, perilesional
edema and mass effect while infarcts show mild if any contrast enhancement and little mass
effect.17, 26 However, a recent study in which three blinded observers were requested to
classify 38 conventional T1- and T2-weighted images as either infarct or glioma, over 10%
of the infarcts were incorrectly interpreted to be gliomas.38 Distinguishing glioma from
infarct is difficult without the benefit of additional specific imaging sequences (Figure 4).

There is potential for more specific diagnosis by using additional MR techniques
complementary to the standard sequences. Examples include improved characterization of
white matter disease using magnetization transfer imaging (MTI);39, 40 detection of cell
swelling using diffusion-weighted imaging (DWI);41-43 and assessment of neuronal loss,
gliosis, and membrane turnover using magnetic resonance spectroscopy (MRS).44
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Magnetization transfer imaging (MTI)
MTI generates contrast by imaging the effect on signal intensity of the exchange of
magnetization between protons in structural macromolecules and protons in water. By
selectively saturating the signal from macromolecules, such as myelin, MTI can
substantially increase tissue contrast and can improve sensitivity for the detection of disease.
45, 46 MTI has been used to increase the sensitivity of lesion detection by increasing contrast
for magneztic resonance angiography, for gadolinium-enhanced images, and for T2-
weighted imaging to detect demyelinating disease.47, 48 The magnetization transfer ratio
(MTR) is the quantitative expression of MTI which aides in both the detection and the
characterization of white matter abnormalities. Use of the MTR is exemplified in imaging
studies of multiple sclerosis (MS).39, 40 T2-weighted imaging alone of brain lesions in MS
is insufficient to characterize the heterogeneity of plaques that may contain varying degrees
of inflammation, demyelination, remyelination, axonal damage and gliosis.49 In contrast,
regional MTR analysis shows differences between plaques that reflect differences in their
histology49, 51 MTR has also been used to differentiate demyelination from edema,39 to
measure myelin maturation,40, 53 to characterize periventricular hyperintense white matter
disease in elderly patients,54 and to quantify white matter lesions in trauma55 and
neurodegeneration.52, 56, 57

MTR has been used to examine Wallerian degeneration in the visual system of cats.52 MTR
values in white matter of the visual system increase as a result of Wallerian degeneration
within two weeks after injury, which is earlier than abnormalities could be detected using
either spin-echo imaging or light microscopy.

MTR has also been used to evaluate the maturation of brain myelin, the distribution and
severity of abnormal myelination, and the effect of gene therapy on resolving myelination
abnormalities in cats affected with the lysosomal storage disease alpha-mannosidosis.58, 59

In normal cats, regional increases in MTR of cerebral white matter are observed as myelin
maturation occurs between 8 and 16 weeks of age. In contrast, cats with the dysmyelinating
disease alpha-mannosidosis showed no such increase in MTR with time.58, 59 MTR has also
been used in dogs to study distribution of abnormal myelination, using both region of
interest analysis (Figure 5) and contour mapping.60

The most frequent uses of MTI in clinical veterinary patients are probably following
intravenous contrast administration to increase the conspicuity of enhancement of lesions or
aid in performing time-of-flight angiographic studies. When using MTI in combination with
gadolinium-containing contrast media, it is necessary to obtain pre-contrast magnetization
transfer images in order to accurately identify enhancing lesions on post-contrast
magnetization transfer images.61 Adding two sequences to a conventional protocol requires
additional scan time. Similarly, acquiring MTR data to characterize brain pathology
necessitates two additional imaging sequences (one with and one without saturation pulses),
higher power deposition in tissue, and additional time for data analysis. The authors have
used MTR data primarily to measure the severity of white matter lesions in specific genetic
diseases and to develop outcome measures in therapy trials. Clinical use of MTR has been
very limited.59, 60

Diffusion-weighted imaging (DWI)
DWI detects water molecule random motion, which is affected by various brain lesions,
notably infarcts.41 The apparent diffusion coefficient (ADC) is a quantitative expression of
water motion that is calculated from DW images generated using different gradient strengths
(b-values). Free water, such as in the cerebral ventricles, has a low signal intensity on DW
images and high ADC. In hyperacute infarction, cytotoxic edema appears hyperintense in
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DW images and hypointense on ADC.17, 62, 63 Low ADC correlates with the reduction in
the extracellular volume fraction that occurs in infarction as a result of swelling of cells.64

As cell swelling resolves and necrosis occurs, ADC increases.42, 65 Similar correlations
between low ADC and cellular swelling occur following toxin administration,66 status
epilepticus,67 and hypoglycemia.68 ADC may also be used to differentiate cytotoxic edema,
which decreases extracellular volume, from vasogenic edema, which increases it.69 In
addition to cell swelling and size of the extracellular space, the mobility of extracellular
water appears to be affected by its composition and the presence of cells. ADC has also been
used to measure brain maturation;49 to differentiate epidermal cysts from arachnoid cysts,
gliomas from abscesses, and ependymomas from oligodendrogliomas, and to determine
tumor grade and cellularity.74

In dogs, DWI and ADC have been used for diagnosis and characterization of acute and
chronic ischemic stroke17, 18, 70, 71 and as a marker of cytotoxic edema following status
epilepticus.72 In cats, ADC has been used to detect neuronal swelling associated with
experimental reversible ischemia42 and naturally-occurring alpha-mannosidosis, a lysosomal
storage disease.73 In cats with alpha-mannosidosis, neuronal and glial swelling and
astrogliosis occur together and all may contribute to reduced ADC.73

Diffusion tensor imaging (DTI) is a development of DWI that displays directional
differences (anisotropy) in water diffusion.75, 76 DTI can be used to determine the location
and orientation of white matter tracts, a technique known as diffusion tractography. This has
proved useful in decreasing post-surgical morbidity,74 and characterizing abnormal
myelination in multiple sclerosis.77 In cats, DTI has been used to study the development of
association tracts in the cerebrum,78 and to evaluate the development of experimentally-
induced vasogenic edema.79 Diffusion tractography of the feline cerebrum has also been
used to examine the normal post-natal development of the subplate zone and cortical plate
into mature cortical pathways.80

There are several important practical considerations when using DWI. 81,82 For example,
strong gradients are necessary. Motion of the patient's head with respiration and/or the
cardiac cycle may mask water diffusion in the brain and thus require further patient restraint
or use of respiratory and/or cardiac gating. Patient temperature affects ADC measurements,
hence the patient be maintained at a steady temperature, which for an anaesthetized animal
may necessitate blowing warm air through the bore of the magnet. A limitation of diffusion
tractography is that the reconstruction algorithms may not accurately display tracts that
contain crossing, branching or bending fibers.81

Magnetic resonance spectroscopy
Magnetic resonance spectroscopy (MRS) may be used to non-invasively evaluate brain
biochemistry by quantifying the concentrations of specific metabolites from spectra of
metabolite distributions. Proton MRS can be used to detect lactate, creatine (Cr), choline
(Cho), phosphocreatine, myoinositol (mI), N-acetylaspartate (NAA), glutamate, and other
metabolites44 (Figure 6). These metabolites are involved in cellular energy metabolism, cell
membrane synthesis, or serve as neuronal markers. For example, NAA is a marker of mature
viable neurons (decreases in NAA are indicative of neuronal loss); Cho is a marker of
membrane turnover (increases reflect membrane damage affecting myelin or neurons as well
as gliosis); mI is a glial cell marker (increases may reflect gliosis); and lactate is a marker of
anaerobic metabolism (increases may reflect metabolic abnormalities).44

Concentrations of metabolites can reveal the biochemistry of specific disease processes
including neoplasia,83-85 cerebral ischemia,86 metabolic encephalopathy,87 seizures88 and
neurodegenerative disorders.1, 44, 89 In one study of MRS, the pattern of metabolites in a
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given brain volume was used to correctly classify 104 out of 105 brain tumors of 5 different
types.83 MRS has been used to diagnose specific metabolic diseases such as Canavan's
disease, which shows elevations in NAA, as well as to monitor response to therapy.90, 91

MRS methods have also been developed to detect administered compounds including
specific anticancer agents such as fluorouracil, temozolomide and iproplatin92-94 and to
noninvasively monitor the pharmacokinetics of specific anticancer agents.93-95

In cats with alpha-mannosidosis, in vivo MRS was capable of detecting increased
concentrations of the oligosaccharides that are the specific intracellularly-stored substrates
associated with this disease.96 In FIV-infected cats, in vivo and ex vivo MRS of the brain
showed a reduction in both NAA and NAA/Cr ratio, increased trimethylamine/creatine ratio
and increased glutamate concentrations in the brain.97-99 Focal brain ischemia in cats
resulted in decreases in both NAA and Cr, and increase in lactate.100 Cardiac arrest in cats is
associated with increased brain lactate concentrations that become elevated within five
minutes of arrest and remain high for at least six hours following reperfusion.101

In dogs, MRS has also been used to characterize a number of brain diseases. Increases in
glutamate/glutamine and lactate, and decreases in creatine were identified post-ictally.102

NAA and creatine were indirectly correlated with tumor volume, and lactate was directly
correlated with tumor volume in an induced brain tumor study.103 Lactate concentrations
were associated with intracranial hypertension during fulminant hepatic failure.104 NAA/
Cho ratio was decreased in brain injury due to hypothermic circulatory arrest and the
therapeutic efficacy of diazoxide was examined using this measure.105 Elevations in lactate/
creatine and inositol/creatine ratios were used to evaluate cerebral tissue in studying
thanatochronology.106

Practical considerations for performing MRS reflect the balance between maximizing
signal-to-noise ratio by increasing voxel size versus achieving spatial accuracy in sampling,
which requires a small voxel. Voxel size on 1.5 T scanners may exceed 1 cm3 and inclusion
of calvaria within a large voxel cause magnetic field inhomogeneity and can lead to
production of uninterpretable spectra. If it is suspected that brain pathology is regional or
distributed asymmetrically throughout the brain, chemical shift imaging may be a useful
alternative for comparing regional pathology.49

Correlating MR findings with clinical signs
Assessment that an MR abnormality is responsible for the clinical signs depends primarily
on the degree of correspondence between the site of the lesion and the neuroanatomical
localization. Proper neuroanatomical localization of a lesion is based on identification of
clinical signs of dysfunction which commonly include 1) cerebral hemisphere/diencephalic
dysfunction - altered mental status, circling with preservation of gait, postural reaction
deficits, sensory abnormalities, loss of vision, pupillary abnormalities, and seizures, 2) brain
stem dysfunction - altered mental status, vestibular and general proprioceptive ataxia,
postural reaction deficits, sensory abnormalities, pupillary abnormalities, and cranial nerve
dysfunction (excluding the olfactory and optic nerve), and, 3) cerebellar dysfunction –
intention tremors, titubation, and cerebellar ataxia. Neurological examination lateralizing
signs are also used to predict the lesion side. As a general but imperfect rule, lesions rostral
to or including the midbrain are expected to cause contralateral deficits while lesions
affecting the pons, medulla oblongata and / or the spinal cord result in ipsilateral deficits.

In many cases it is difficult to know whether an imaging abnormality is responsible for the
clinical signs or is an incidental finding. For example, in animals with seizures, but without
EEG corroboration of the seizure focus, MR studies at best identify structural or
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biochemical abnormalities that could result in abnormal electrical activity. Alternatively,
some structural abnormalities that may result in neurological dysfunction, are frequently
observed in animals without clinical signs. Examples of these include hydrocephalus, caudal
occipital malformation syndrome, quadrigeminal cyst, and brain atrophy.

With regard to hydrocephalus, large variations in ventricular volume occur in many dog
breeds.12 Indeed, in both human and veterinary patients hydrocephalus may occur in the
absence of readily measureable clinical signs (see “Is your brain really necessary”107). In
this example, which imaging criteria may be used to determine whether hydrocephalus is
responsible for the identified clinical signs that may include behavioral abnormalities,
altered mental status, ataxia, circling, blindness, or vestibular dysfunction?108 Although size
might be expected to be an important factor, existing measures of ventriculomegaly do not
correlate well with the presence of clinical signs.109 Other patient and physiological
variables, including age at which hydrocephalus develops, location of the obstruction (if
present), and rate at which the ventricles enlarge, probably reflect better the degree of brain
damage and the likelihood of clinical signs.110 One study in children found a correlation
between size (area) of the corpus callosum and motor ability and cognitive skills.111 Other
studies have found some correlations between ventricular size and clinical signs; however,
these findings do not enable diagnosis and do not predict outcome following shunt
placement.112,113,114 Diagnosis of clinically significant, normal-pressure hydrocephalus is
confirmed only by improvement in clinical signs following shunting of cerebrospinal fluid.
113 A recent study concluded that NAA/Cr and NAA/Cho ratios of the periventricular white
matter and phase-contrast MR imaging of cerebrospinal fluid flow at the mesencephalic
aqueduct may be useful in predicting which patients could benefit from cerebrospinal fluid
shunting.115 Hydrocephalus is one example of many conditions for which there is a need for
MR measures that enable more specific diagnosis and prediction of therapeutic outcome.
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Figure 1.
Images of the brain of a 1 year old Maltese dog with necrotizing encephalitis. Extensive
signal abnormalities are present throughout the gray and white matter of the left cerebrum
and thalamus. Mild to moderate gadolinium enhancement is present in the cerebrum and
overlying meninges. Focal parenchymal loss and replacement with fluid are visible in the
left thalamus and temporal lobe. (A - T1-weighted image; B – T1-weighted image +
gadolinium; C – T2-weighted image, D – gradient echo image)
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Figure 2.
Images of the brain of a 6 year old dachshund with granulomatous
meningoencephalomyelitis. Extensive signal abnormalities are present throughout the gray
and white matter of the cerebellum on T2-weighted image. Strong ring enhancing lesions are
present in the cerebellum. Swelling is suggested by the lack of visible cerebellar folia. (A -
T1-weighted image + gadolinium; B – T2-weighted image)
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Figure 3.
T2-weighted image of the brains of a 16-week-old Cairn terrier with globoid cell
leukodystrophy showing the bilaterally symmetrical increase in signal intensity of the white
matter throughout the brain.
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Figure 4.
Images A and B are of the brain of an 8 year old mixed-breed dog with an
oligodendroglioma within the right side of the thalamus. The lesion shows strong ring-
enhancement and the presence of a central cavity with signal characteristics distinct from
that of CSF. Images C and D are of the brain of a 14 year old mixed breed dog with an
infarct within the right temporal lobe. The lesion shows moderate to strong ring-
enhancement, regionally extensive edema, and evidence of hemorrhage. (A & C – T1-
weighted image + gadolinium; B &D – T2-weighted image)
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Figure 5.
MTR of white matter regions (A) in a dog with globoid cell leukodystrophy (GLD)
compared to a normal age matched dog using previously described methods.60 Decreases in
MTR were identified in the affected dog in all white matter tracts examined with the most
significant differences occurring in the centrum semiovale, corpus callosum, and internal
capsule (CWM, cerebellar white matter; SCP, superior cerebellar pednucle; OR, optic
radiations; GL, corona radiata of gyrus lateralis; IC, internal capsule, CC, corpus callosum;
CS, centrum semiovale). Changes observed on MRI are consistent with the microscopic
changes seen in the white matter of the dog brain stained with Luxol fast blue (B; 25×).
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Figure 6.
Proton MRS centered over the centrum semovale (A) of a dog with globoid cell
leukodystrophy (GLD). Decreases in NAA (7.4 mM) and increases in choline (4.1 mM)
were identified in the affected dog when compared to an unaffected dog (10.6mM and 3.1
mM respectively (B).
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