
REVIEW

The epigenetics of autoimmunity

Francesca Meda1,2, Marco Folci1, Andrea Baccarelli3 and Carlo Selmi1,2

The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while

genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of

evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt

autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic

mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent

years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better

understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in

systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on

mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately,

epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases.
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WHY EPIGENETICS?

Autoimmune diseases are generally considered as complex (and/or multi-

factorial) diseases. Genetic background confers susceptibility to or pro-

tection from disease onset, but it is neither sufficient nor causative for

disease development. While numerous similarities between conditions

are being identified,1 the etiology of the majority of autoimmune diseases

remains largely unknown. Although strong genetic bases have been found

by recent genome-wide association studies,2 these studies fail to demon-

strate the presence of a unique genetic mechanism underlying immune

tolerance breakdown and, moreover, the significant genetic associations

identified are found only in relative small proportion of patients.

The largely incomplete concordance rates of autoimmune diseases

in monozygotic (MZ) twins (Table 1) strongly support other comple-

mentary mechanisms involved in gene expression regulation ulti-

mately causing overt autoimmunity. Based on these observations,

the use of novel strategies focusing on the analysis of histone modifi-

cations and DNA methylation supports the notion that epigenetic

alterations may play a crucial role in triggering autoimmunity.

Epigenetics (from the Greek ep (epi) over and cenetikz (genetics))

studies mechanisms that determine and/or perpetuate heritable geno-

mic functions without changes in DNA sequence.

Epigenome and/or epigenotype is, thus, considered as a cell-specific

and stable pattern of gene expression induced by such epigenetic

mechanisms. Functionally, epigenetic mechanisms are, indeed, crucial

for cell type development and differentiation, being able to induce

stable expression or repression of genes. Epigenetic mechanisms are,

also, able to confer a metabolic plasticity to cell, thus allowing the cell

to adapt itself to environmental changes.

The potential role of epigenetics in environmental/genetic interac-

tions, where environmental changes produce modifications in gene

expression, has been suggested by some intriguing experimental studies.

Firstly, a seminal study investigated the use of a specific dietary

regimen, i.e. foods rich in methyl donors, in order to modify coat

color in agouti pregnant rodents. Such regimen led the offspring to

manifest a specific coat color compared to mothers fed with a standard

diet. This observation has been explained by an altered DNA methyla-

tion process that is the most thoroughly studied epigenetic mech-

anism. Such process silences the intracisternal A particle retroviral

insertional element, ultimately limiting the appearance of agouti

alleles. A second major example came from Dutch individuals who

were exposed to famine during intrauterine life and childhood during

the World War II. The DNA methylation analysis of the region regu-

lating the insulin-like growth factor 2 (IGF2) expression constitutes a

major example of epigenetic imprinting by demonstrating subjects a

well-conserved hypomethylation status in exposed compared to non-

exposed subjects.3

Recent observational studies have shown association of DNA

methylation profiles with several environmental factors including

exposure to prenatal tobacco smoke,4 alcohol consumption,5 and

environmental pollutants.6,7 Based on these observations, it is becom-

ing clear how epigenetic mechanisms should be considered as the new

frontier in the interaction between genome and environment, thus

well conjugating the adagio stating that complex diseases ensue from

‘bad genes and bad luck’. This was strongly supported by the experi-

mental data proposed by Dr Fraga and colleagues who demonstrated

how epigenetics may well explain the discordance of autoimmune
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diseases in MZ twins.3 Phenotypic differences significantly increased

along with age of the twins in a trend coined as ‘epigenetic drift’, which

occurs during life according with the different expositions to envir-

onmental stressors.8

The present article will first illustrate the major epigenetic mechan-

isms under investigation and then will discuss available data in the

field of autoimmune diseases.

EPIGENETIC MECHANISMS

All epigenetic mechanisms share the feature of not altering DNA

sequence, but only the possibility that gene sequences are transcribed

under specific conditions. Comparing prokaryotic and eukaryotic

organisms may help our understanding of how epigenetic mechan-

isms can regulate gene expression. Prokaryotes do not have nucleus

and have a limited number of genes, whose transcription is regulated

by factors binding directly to DNA promoter elements.

In contrast, eukaryotes have a significantly larger number of genes

that have to be compacted in order to fit within the cell nucleus. In

order to do so, genes are packed together with specific proteins, i.e.

histones, in an ultra-structure known as chromatin. This DNA func-

tional packaging system has regulatory functions, as chromatin can

undergo steric changes, thus being able to interfere with proteins

involved in gene transcription. Similarly, transcription regulation is

derived from the methylation of cytosine DNA residues (particularly

within gene promoters) which inhibits the transcription of the down-

stream genetic sequence. DNA methylation and histone modifications

constitute the major epigenetic changes known so far, and therefore

their underlying processes will be discussed below in further details.

Moreover, the newest field of microRNA (miRNA) will be briefly

illustrated as an additional gene regulatory mechanism.

Histone modifications
As mentioned before, histones are highly conserved proteins that

reside within nuclei of eukaryotic cells. They can be classified into

two main groups: (i) core histones (H2A, H2B, H3 and H4) that are

part of the nucleosome core, the basic unit of DNA packaging in

eukaryotics; and (ii) linker histones (H1 and H5). Two of each of

the core histones assemble to form an octameric nucleosome core

particle by wrapping about 147 base pairs of DNA around the protein

spool in a 1.7 left-handed super-helical turn9 (Figure 1), thus provid-

ing DNA condensation and organization in the nucleus, as well as

modulating DNA accessibility to the transcription machinery. This

latter process could be represented as a drawer that can be opened

or closed following specific stimuli. In fact, each histone subtype can

be modified by different chemical modification at defined amino acids

leading to transcription modulation and, therefore, cell cycle regu-

lation, development and differentiation.

Each of the four core histones shares the same folding structure

known as histone fold domain, which consists of three a-helices (a1,

a2 and a3) separated by two loops (L1 and L2).10 The histone fold

domains fold together in antiparallel pairs (H3 with H4 and H2A with

H2B) to constitute tetramers. The subsequent assembly of two tetra-

mers forms the octameric core structure (H3/H4-H2A/H2B1) of the

nucleosome.11 The N-terminal regions of histones protrude outside the

nucleosome core and are prone to post-translational modifications,

which are important in chromatin compaction and gene regulation.

Histone post-translational modifications concur to determine the pat-

tern defined as ‘histone code’ and will be summarized below. All these

histone modifications are caused by specific enzymes which recognize

histone tails and can work to add or remove functional groups which

are in turn recognized by nuclear factors. Specific proteins have affinity

for modified amino acid residues (for instance bromodomains bind

acetylated lysines or chromodomains methylated lysines) and promote

specific changes in chromatin determining respectively the activation or

the silencing of gene transcription (Figure 2).

Among histone modifications, acetylation and deacetylation are one

of the most important gene expression regulatory mechanisms. These

processes involve selected lysine residues in the tails of nucleosomal

histones and are induced by histone acetyltransferase (HAT) and his-

tone deacetylase (HDAC) enzymes, respectively.12–15 HAT enzymes

share the ability to promote gene expression by transferring acetyl

groups to lysine16–18 while HDACs remove acetyl groups and generally

associate with gene repression.19–21 A second mechanism involves his-

tone methylation and its effects depend on the position of the modified

lysine residue within the histone tail and on the number of methyl

groups added to such residues. As an example, the presence of three

methyl groups on lysine 4 residue on histone H3 (Me-H3K4), has been

associated with transcriptional activation whereas the triple methylation

of residues 9 or 27 determines repression.3,22–26

As a third mechanism, arginine can also be methylated/demethy-

lated by specific enzymes and play a critical role in the dynamic regu-

lation of gene expression.27 Methylation of arginine residue 3 on

histone H4 (H4R3) and arginine 17 on histone H3 (H3R17) have been

shown to induce gene activation.23,28–30 Finally, ubiquitin is a 76

Figure 1 The structure of the nucleosome. The figure depicts the histone com-

posed of two tetramers with DNA wrapped around the proteins.

Table 1 Pairwise CRs of autoimmune diseases in MZ and DZ twin sets

were calculated as n of concordant sets/n of studied sets

MZ twins CR DZ twins CR

Systemic lupus

erithematosus

0.24 0.02

Sjögren’s syndrome Concordant pair reported —

Type I diabetes mellitus 0.21–0.70
a

0.00–0.13

Rheumatoid arthritis 12.3–15.4 3.50–3.60

Primary biliary cirrhosis 0.63 0.00

Primary sclerosing

cholangitis

Concordant pair reported —

Graves’ disease 0.17–0.29 0.00–0.02

Multiple sclerosis 0.25–0.31
a

0.03–4.7

Celiac disease 0.75–0.83 0.11

Abbreviations: CR, concordance rate; DZ, dizygotic; MZ, monozygotic.
a 7.5 years of observation.
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amino acid protein that is involved in specific protein labeling.

Ubiquitinated proteins are committed to proteosomal degradation

and ubiquitination thus controlling the stability and intracellular

localization of numerous proteins. Ubiquitination ultimately influ-

ences the status of histones methylation or acetylation31 to modulate

gene expression, as in the case of the nuclear factor-kB pathway.32

DNA methylation

DNA methylation consists of the addition of a methyl group to the fifth

carbon of cytosine residues, converting these to 5-methylcytosines. This

reaction involves specific enzymes called DNA methyltransferases

(DNMTs) and a methyl group donor, S-adenosylmethionine (Figure 3).

Among DNMTs, DNMT3A and DNMT3B are responsible for de

novo methylation, while DNMT1 maintains epigenetic covalent mod-

ifications during cell replication. In mammalian genome, DNA

methylation occurs mostly at CpG islands that are regions exceeding

500 base pairs with a CG content higher than 55%.33,34 CpG islands

have key regulatory functions, and can be found in promoter regions

of about half of all genes.35 Altered CpG island methylation may,

indeed, change chromatin structure, being typically able to modulate

the finely promoter–transcription factor interactions within the tran-

scription machinery.36

As a consequence, in most cases, both acquisition and somatic

maintenance of such methylation state induce gene repression.

Moreover, CpG-methylated sites can also interact with specific pro-

teins containing a domain called methyl-CpG-binding domain.

Although their specific contribution to different sites in different cell

contexts is still unclear, methyl-CpG-binding domain proteins have

been proposed to induce gene repression by binding to methylated

DNA, a process that would lead to chromatin modification and re-

modeling complexes.

The importance of DNA methylation process in gene expression

is well represented by sex chromosome balance, where females are

characterized by partial transcriptional suppression of X chromo-

some obtained through methylation of specific genetic sequences.37

Mammalian genome contains dispersed clusters of genes, whose spe-

cific allele expression is determined by inheritance of parental methy-

lation status. These genome regions that are rich in CpG and by which

an organism inherits a state of expressed or unexpressed genomic

sequence from parents, are usually referred as imprinting centers.

Therefore, errors in methylation of such imprinting centers can induce

an inherited altered gene expression.

From a clinical standpoint, the importance of DNA methylation,

and in particular, of an impaired methylation, is suggested by the two

Figure 2 (a) Nucleosomes: the interactions between eight histone proteins determine a quaternary structure which leads to a double wrapping of DNA molecule. (b)

Heterochromatin: histone deacetylation with the association of other histone modifications confers a dense configuration to DNA molecules. (c) Euchromatin: the

epigenetic process of histones’ tails acetylation is usually associated with an active configuration.
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rare congenital diseases known as Silver–Russel and Beckwith–

Wiedemann syndromes. Both conditions derive from errors in methy-

lation of a specific imprinting center located on chromosome 11

between genes encoding IGF2 and imprinted maternally expressed

transcript (H19). In physiological condition this center is methylated

only on the paternal allele. Beckwith–Wiedemann syndrome is char-

acterized by an overexpression of IGF2 due to methylation of both

parental alleles, while, in a complementary fashion, the double loss of

imprinting centre methylation suppresses IGF2 locus and increases

H19 expression causing Silver–Russel syndrome.

miRNAs
miRNAs are a group of post-transcriptional regulators involved in

many biological processes including development, differentiation,

proliferation and apoptosis.38 miRNAs are about 22 nucleotide-long

non-coding RNAs that suppress translation by binding to comple-

mentary target mRNA species and causing the degradation of the

target.39 miRNAs are genome encoded and transcribed by RNA

polymerase II, similar to ordinary protein-coding RNAs40 and were

recently investigated in autoimmune and chronic inflammatory

conditions.41

One of the best known examples of epigenetic regulation due to

miRNA–DNA interactions is represented by X-chromosome inactiva-

tion in women. Indeed, one of the two X chromosomes in female

organisms is silenced by epigenetic mechanisms leading to dosage

compensation of X-chromosome products. This balance is obtained

with the transcription of X-inactive-specific transcript gene from the

so called X-inactivation center and it leads to adapt gene expression in

female sex with male organisms.42 X-inactive-specific transcript codes

for a non-coding mRNA that coats one X chromosome, so this process

silences the expression of a great part of genetic sequences on the

future inactivated X chromosome.43 Silencing is stabilized by the

addiction of repressive histone marks and DNA methylation. For these

reasons it has been assumed that errors in epigenetic X-chromosome

silencing could be involved in the pathogenesis of several diseases,

including autoimmune diseases. This is indeed an attractive hypo-

thesis that could explain the noticeable female predominance in auto-

immune related disorders.44

AUTOIMMUNE DISEASES AND EPIGENETIC MODIFICATIONS

The impact of epigenetics is rapidly increasing in all complex diseases

and is soon expected to gain a more prominent role in our future

understanding of medicine. In general terms, we may well hypothesize

that epigenetics will fill the gap between genomics and environmental

factors in the pathogenesis of this type of conditions.

In the case of autoimmunity, presence of specific impairments in

the regulation of epigenetic processes in immune cells would be

responsible for immune-tolerance breakdown through both hypo-

methylation of genes or involvement of transcription repressors.45–47

In autoimmune diseases, epigenetics is mostly studied using peri-

pheral blood mononuclear cells in humans or using animal models.

Both in vitro and in vivo experimental models have shown that

Figure 3 Panel a: Biochemistry of DNA methylation. DNA methyltransferase catalyze the reaction. The enzyme shifts the methyl group from SAM to the fifth carbon of

cytosine. The reaction produces 59-methylcytosine and SAH. Cytosine bases are integrant part of DNA filament and cannot be found as free molecules. Panel b:

Cytosine and 59-methylcytosine molecular structure in a DNA fragment. The brown atom represents the methyl group -CH3. Grey: carbons; blue: azotes; red: oxygens;

yellow: phosphates. SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine.
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variation of the epigenome may lead to the onset of autoreactive T-cell

clones. Specific epigenetic defects have been associated with auto-

immune disorders.

As an example, the differentiation of T helper cells to Th1 subsets

producing interferon-c (IFN-c) and acting against bacteria or Th2

subpopulations producing interleukin-4 (IL-4) and IL-13 cytokines

is epigenetically regulated. Th1 cells present an IFN-c demethylated

promoter but have repressive epigenetic histone modifications at IL-

4-13 locus, opposite to what is observed in the Th2 subsets.48 This is an

example of the interactions between immune system dysregulation

and epigenetics but the loss of immune tolerance is a complex process

difficult to investigate particularly for non-traditional antigens.49 The

study of specific models may help to understand the mechanisms

involved in tolerance breakdown; one major example is represented

by a unique human model: MZ twins.50

MZ twins are an ideal model to study environmental and epigenetic

influences which could contribute to the autoimmune process, as

proposed by Francis Galton, an English scientist of the nineteenth

century. It was Galton’s work published in 1874 in his book ‘English

man of science: their nature and nurture’ that constitute the basis for

current epigenetics.3,51 Over a century later, Fraga et al.8,52 demon-

strated the presence of an epigenetic drift in several MZ twin pairs and

highlighted the importance of epigenetic modifications in the

development of differences between twins. From a clinical standpoint,

the concordance rates for autoimmune diseases in MZ twins are a

powerful tool to determine the impact of genetics and the envir-

onment in determining disease onset. Concordance rates among

MZ twins vary widely but, with only two exceptions, are well below

50% (Table 1), thus making this model an ideal target to investigate

the role of epigenetics. Recent years have witnessed an increasing

number of studies investigating epigenetics in specific autoimmune

diseases and will be discussed in the sections below and are summar-

ized in Table 2.

Systemic lupus erithematosous (SLE)

SLE is a systemic multiorgan autoimmune disease with different

immunological and clinical manifestations characterized by an auto-

antibody response to nuclear and/or cytoplasmic antigens.

Most recent genome-wide association studies demonstrated that

genomics significantly predispose to SLE onset,53–57 but the incom-

plete disease concordance between identical twins suggests a role for

other complementary factors.52,58 In this undefined scenario, experi-

mental data indicate that epigenetic mechanisms, and in particular

impaired T- and B-cell DNA methylation, may constitute one of these

factors.59

Several studies have uncovered the importance of DNA hypo-

methylation in SLE etiology,60,61 and in particular it has been sug-

gested that this phenomenon may affect the structure of T-cell

chromatin, resulting in cellular hyperactivity. Changes in DNA methy-

lation are regulated by the extracellular signal-regulated kinase signal-

ing pathway62 and this pathway is reduced in murine T cells causing a

decreased expression of DNMT1 and an overexpression of methyla-

tion-sensitive autoimmunity genes, similar to T cells in human SLE.63

Human data further confirmed these views as T cells from patients

with active SLE manifest decreased total deoxymethylcytosine content

and decreased DNMT1 transcripts64 leading to the hyperexpression of

several genes. Epigenetic similarities between patient lymphocyte and

experimentally demethylated T cells were also demonstrated with SLE

cells capable of stimulating antibody production by autologous B

cells.65,66 Another line of evidence came from the elevated CD70

Table 2 Available evidence on the epigenetics involvement in specific autoimmune diseases

Systemic lupus erithematosus T- and B-cell global DNA hypomethylation60,61 with decreased DNMT1 transcription64

miR-146a probably involved in disease onset82

CD41 T-cell changes:

. CD70 demethylation;65,67

. CD40L demethylation (in women);68

. hypoacetylation of histone proteins H3 and H4;81

. H3 acetylation negatively correlates with disease activity.81

B-cell changes:

. CD70 demethylation;67,79

. perforin demethylation.67,79

Rheumatoid arthritis RASF changes:

. global DNA hypomethylation;92

. hypomethylation of CpG islands in LINE-1 promoter;92,93

. hypomethylation of DR-3 promoter;95

. unmethylated CpG in IL-6 promoter;94

. miR-155,100 and miR-146 (Ref. 102) upregulated.

Systemic sclerosis Methylation of CpG islands in FL1 promoter with reduced expression107,109,111

Sjögren’s syndrome Upregulated miR-574-3p and -768-3p in salivary glands114

Upregulated miR-150 and -146 in salivary glands and lymphocytes115

Type 1 diabetes mellitus Global hypermethylation activity caused by altered metabolism:

. glucose and insulin levels increase methylation by altering homocysteine metabolism;130,179–181

. low protein diet decreases islet mass and vascularity.134,135

Multiple sclerosis PAD2 hypomethylation in white matter cells150,151

Effects of trichostatin A (histone deacetylase inhibitor) in murine models157

Abbreviations: DR-3, death receptor 3; DNMT, DNA methyltransferase; RASF, rheumatoid arthritis synovial fibroblast; PAD2, peptidyl arginine deiminase, type II
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expression in SLE cells similar to what is observed in vitro stimulating

CD41 T cells with the epigenetically active molecules procainamide

and hydralazine, as both drugs cause CD70 demethylation.65,67

Further, cells from women with SLE overexpress CD40L and manifest

a demethylation of the corresponding gene on the inactivated X chro-

mosome. Since cells from male patients do not overexpress CD40L,68

this finding has been advocated to explain SLE female predominance.

The common trait of these observations could reside in the epigeneti-

cally-mediated downregulation of the transcription factor RFX1 in

CD41 T cells.69

The study of 5-azacytidine to understand SLE pathogenesis was

prompted by the clinical evidence of a lupus-like syndrome in patients

treated with procainamide and hydralazine. It has been found that

CD41 T cells treated with an inhibitor of DNMT1, such as 5-

azacitidyne, become autoreactive, and the process is reversible after

the drug is discontinued.61 The study of these patients demonstrated

that only a group of treated subjects develop the syndrome, thus

suggesting the presence of an idiosyncratic reaction which remains

one of the most studied phenomena in modern pharmacology.

These rare adverse reactions arise in a restricted subset of people.

This group of patients is difficult to treat. Moreover, it is impossible

to predict what element of the human population could develop the

reaction. The most important drugs involved in induction of a lupus-

like disease are procainamide and hydralazine, even though both cause

antinuclear antibodies, ANA in a majority of people.70 The develop-

ment of a systemic involvement and clinical manifestation probably

require the presence of lupus susceptibility genes.71 Interestingly, both

drugs are DNA methylation inhibitors but procainamide is a compet-

itive inhibitor of DNMT1 enzymatic activity72 and hydralazine inhi-

bits T- and B-cell signal-regulated kinase pathways.73,74 The

observation of an increased expression of adhesion molecules on lupus

drug-induced lymphocytes proves the epigenetic mechanisms and

their role in the induction of autoreactivity.75 Similarly, lupus CD41

T cells have an abnormal interaction with major histocompatibility

complex (MHC) molecules as supported by the experimental evidence

of an abnormal self-antigen response following treatment with 5-aza-

cytidine76 which demethylates sequences encoding costimulatory

molecules like CD11a.77,78 These molecules take part in CD41 T-cell

activation and their hyperexpression influences lymphocytes inter-

action with self-antigens. Furthermore, 5-azacytidine demethylates

the cytotoxic molecule perforin and the B-cell costimulatory molecule

CD70 causing their overexpression, both phenomena being observed

also in patients’ T cells.67,79 The increased perforin and CD70 express-

ion levels contribute to autoreactive macrophage killing capability

which can generate a source of antigenic apoptotic nucleosomes,79

and antibody overproduction,65 respectively. One recent study com-

pared DNA methylation in genome-wide loci in a cohort of MZ twins

discordant for SLE, rheumatoid arthritis (RA) and dermatomyositis.80

MZ twins discordant for SLE manifested DNA methylation and

expression changes in genes relevant to SLE pathogenesis and a global

decrease in the methylation content.

Histone modifications have been studied in both lupus mouse mod-

els and human lupus. Global acetylation of histones H3 and H4 in

active SLE CD41 T cells was found to be decreased and H3 acetylation

negatively correlated with disease activity.81 A recent study also demon-

strated that a negative regulator of the IFN pathway, miR-146a, may

contribute to disease onset.82 Both H3 and H4 histones are hypoacety-

lated in spleen-isolated cells from lupus-prone mice compared with

controls.83 As observed in DNA methylation, the use of the HDAC

inhibitors such as trichostatin A or suberoylanilide hydroxamic acid

demonstrated improvement in glomerulonephritis and splenomegaly

commonly observed in SLE.84,85 These results are further supported by

the in vitro use of HDAC inhibitors leading to increased histones H3

and H4 acetylation and reduced production of IL-12, IFN-c, IL-6 and

IL-10.84 A murine strain carrying a HAT mutation develops a severe

lupus-like disease with serum anti-dsDNA autoantibodies, glomerulo-

nephritis and premature death.86

RA

RA is a chronic systemic inflammatory disease that primarily affects

peripheral joints. As observed for SLE, the clinical onset RA requires a

combination of genetic susceptibility factors, deregulated immuno-

modulation and environmental influences.87–89 We may, then, hypo-

thesize that only a genetic predisposition in concert with specific

epigenetic alterations leads to the RA-associated immune system dys-

regulation. The typical joint localization of RA can be explained with

the presence of local and environmental factors which remain

unknown but may well include epigenetic changes.

In recent years, the epigenetics of RA have been widely investi-

gated.90 It has been proposed that RA synovial fibroblasts (RASFs)

have a major role in the initiation and perpetuation of RA,91 possibly

via decreased global DNA methylation92 or hypomethylation of CpG

islands in LINE-1 promoter.92,93

Unmethylated CpG islands within IL-6 promoter gene in mono-

cytes have been associated with a local hyperactivation of the inflam-

mation circuit.94 RA monocyte cells also manifest a change in

methylation status of CpG islands within the promoter of death recep-

tor 3 (DR-3), which is, then, downregulated inducing resistance to

apoptosis.95

RA synovial tissues are characterized by a drift of the balance

between HAT and HDAC activity toward the former96 as supported

by the proposed benefits induced by HDAC inhibitors97 such as FK228

which inhibits joint swelling, synovial inflammation and joint destruc-

tion in murine RA models.98 Furthermore, FK228 suppresses the pro-

duction of vascular endothelial growth factor in vivo and blocks

angiogenesis in synovial tissue in collagen antibody-induced arth-

ritis.99 Conversely, a twofold lower HDAC activity was reported in

synovial extracts from RA patients compared to osteoarthritis

patients.96

Lastly, it has also been suggested that specific expression and func-

tion of miRNA, in particular miR-155 and miR-146, might be

involved in RA pathogenesis100 as these are highly expressed in

RASFs but not in osteoarthritis synovial fibroblast.100,101 Tumor nec-

rosis factor-a and IL-1b enhance miR-155 expression, which mani-

fests a repressive effect on metalloproteinases expression in RASFs.100

miR-146 is upregulated by proinflammatory molecules in RA synovial

tissues and has a negative regulatory function of the nuclear factor-kB

pathway of RA patients’ monocytes.102

Systemic sclerosis (SSc)

SSc or scleroderma is a rare condition of unknown etiology character-

ized by excessive collagen deposition in skin and other tissues with

progressive vasculopathy. The presence of autoantibodies against

nuclear autoantigens in patients with SSc, female predominance and

frequent autoimmune comorbidity are considered signs of autoim-

munity.103,104 Aberrant fibroblast activation and collagen deposition

ultimately lead to fibrosis with a gradual but progressive alteration of

involved tissues and organs, a process characterized by an inbalance of

stimuli favouring pro-collagen and a defective production of metallo-

proteinases.105,106 This is particularly evident for the skin where the
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increased collagen pool confers anelasticity to the derma causing the

pathognomonic hard and thick appearance.

Cultured SSc fibroblasts manifest typical cellular abnormalities for

multiple generations and maintain the profibrotic phenotype when

transferred outside the disease environment,107 thus suggesting the

presence of an imprinted profibrotic cell phenotype. This phenotype

is determined by an increase in production of a defined cytokines pool

including TGF-b and other growth factors in association with reduced

synthesis of matrix metalloproteinases 1 and 3. The clonal selection of

profibrotic fibroblasts108 is one of the proposed pathogenetic mechan-

isms but there are insufficient data to confirm this hypothesis and the

causative mechanism could be represented by epigenetics. This hypo-

thesis is primarily supported by Wang and colleagues, who reported an

epigenetic influence on collagen gene expression by the addiction of

DNMT and HDACs inhibitors in cultured SSc fibroblasts. Most recent

studies identified a reduced expression of FL1,107 a transcription factor

that inhibits collagen production109 with an inverse correlation

between FL1 expression and type I collagen production in cultured

fibroblasts.110 An epigenetic regulation of FL1 is indirectly suggested

by the presence of CpG islands in FL1 promoter that can be methylated

and bound to specific regulatory proteins.111 Epigenetic FL1 changes

lead to increased collagen synthesis which is not balanced by metallo-

proteinase activity ultimately leading to collagen accumulation and

fibrosis. This finding raises the possibility that aberrant DNA methy-

lation within fibroblasts may contribute to the development of the

disorder,107 but genome-wide studies on DNA methylation and pos-

sibly histone modifications are awaited.

Sjögren’s syndrome (SjS)

SjS affects salivary and lacrimal glands, resulting in dry mouth and/or

dry eye conditions in patients as a consequence of autoimmune res-

ponses to self-antigens.112 Despite extensive investigations into the

etiology of SjS focusing on genetic, environmental and immune fac-

tors, neither the triggering nor the disease-initiating events have been

identified.113 Nevertheless, most recent data reported the overexpres-

sion of two miRNAs (namely, miR-574-3p and -768-3p) in the salivary

glands of SjS patients,114 while the study of non-obese diabetic mice

with associated SjS demonstrated the upregulation of other miRNAs

(miR-150 and -146) in target tissues and in peripheral lymphocytes.115

The overexpression of miR-146 was confirmed in the salivary glands

and peripheral lymphocytes of patients with SjS.115

Type 1 diabetes (T1D)

T1D is a T cell-mediated autoimmune disease116 that develops in

genetically susceptible individuals. In fact, predisposing genetic poly-

morphisms have been identified in T1D patients such as those in MHC

class II (DR and DQ), insulin, PTPN22, CTLA4 and IL-rRA.117 The

disease incidence has been increasing over the past decades, as well

represented by the data from Finland, where T1D yearly incidence has

increased from 12 to 63 per 100 000,118,119 somehow in conflict with

MHC data.120,121 Several studies focus on environmental exposures to

dietary antigens and infectious agents, but evidence is limited.122,123

Epigenetic studies on MZ twins concordant for T1D demonstrated

significant differences in the epigenome, particularly for DNA methy-

lation content and histone modifications through a trend coined ‘epi-

genetic drift’.8 The presence of a primitive pancreatic damage can

initiate the autoimmune attack and lead to the activation of repair

mechanisms like cellular proliferation124,125 and ultimately influ-

ence the integrity of the epigenome. Another mechanism by which

epigenetics may play an important role in T1D is by modulating

lymphocyte maturation and cytokine gene expression.126 An example

is the differentiation of subtype T helper cells, one of the most complex

immune process, which is ruled by epigenetic controls.127–129 The

epigenetic modifications are also important in pancreatic islet cells

through the influence of repair mechanisms. Interestingly, glucose

and insulin levels are major determinants on the methylation pro-

cesses that take place in the cell via elevated homocysteine and homo-

cysteine remethylation with a concurrent reduced capacity to

eliminate homocysteine by transsulfuration. Homocysteine can

be thus remethylated to form methionine and then converted to

S-adenosylmethionine, the major methyl group donor in cellular

methylation reactions.130

The establishment and maintenance of methylation patterns of

CpG dinucleotides in DNA and histones depend on cellular methyl

group metabolism, which is dependent on various nutrients, as in the

case of folate.130 These relations between food and epigenetic mechan-

isms acquire importance during embryogenesis, intrauterine and peri-

natal life as demonstrated in animal models131 and human studies.132

These changes may well affect the offspring pancreas133 as in the case of

a low-protein diet decreasing islet mass and vascularity.134,135

Multiple sclerosis (MS)

MS is an inflammatory chronic disease characterized by myelin

destruction followed by a progressive grade of neurodegeneration in

multifocal loci called plaque.136,137 The etiopathogenesis of MS

remains largely unknown but the current hypothesis encompasses

an immune-mediated damage determined by the activation of

immune cells types against self white matter epitopes to develop dif-

fuse plaques in the central nervous system with resulting inflam-

mation. Genetic linkage studies and genome-wide profiling arrays

have enabled the identification of several genes significantly associated

with MS susceptibility,138–141 as in the case of MHC.142 However, the

20–30% concordance rate for MS among MZ twins143,144 emphasizes

the importance of environmental factors in MS pathogenesis possibly

via epigenetic mechanisms.142 Tissue damage implies the activation of

developmental pathways,145,146 but in patients with MS these appear

to be unregulated in the presence of repair events.147,148

There is limited data on epigenetics of MS, but a 30% reduction was

reported in the methylation rate of cytosines in CpG islands was found

in the white matter of affected central nervous tissue compared to

controls.149 Further evidence on the role of hypomethylation was

found at the promoter region of peptidyl arginine deiminase, type

II, which is overexpressed in MS and is involved in the citrullination

process of myelin basic protein (MBP).150,151 These data are in agree-

ment with the observation of an increased demethylase enzyme activ-

ity in MS.152 The citrullination of MBP by peptidyl arginine deiminase

determines important biologic effects such as to promote protein

autocleavage153 and a resulting increased probability to create new

epitopes.154 Several studies support the importance of citrullination

of MBP in modulating the immune response in MS155 via two

mechanisms. In fact, citrullination increases the production of immu-

nodominant peptides, due to increased autocleavage of the protein.153

This process leads to irreversible changes in the biological properties of

MBP which becomes more prone to proteolytic digestion and

causes myelin instability.154 These MBP alterations during the early

stages of MS may contribute to the sensitization of T cells also by

enhancing the autoimmune response153 leading through a chronic

inflammatory response. Most recently, the comparison of multiple

epigenetic readouts in CD41 T cells from MZ twins discordant

for MS failed to identify consistent associations,156 thus possibly
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suggesting that broad approaches may not constitute the ideal

approach to complex conditions. These negative findings also applied

to HLA haplotypes, confirmed MS susceptibility polymorphisms,

copy number variations, mRNA and genomic single nucleotide poly-

morphism and insertion/deletion genotypes, or the expression of

approximately 19 000 genes.

The importance of determining the epigenetic bases of MS, similar

to other complex conditions, is of particular importance in the

search for therapeutic implications, as well represented by the

beneficial effects of trichostatin A, a HDAC inhibitor, in MS murine

models.157

Primary biliary cirrhosis (PBC)

PBC is a chronic immune-mediated cholestatic liver disease charac-

terized by the destruction of the small interlobular bile ducts, leading

to portal inflammation, fibrosis and/or cirrhosis.158

Similar to most autoimmune diseases, PBC affects primarily

women (female/male ratio estimated as 10 : 1) with a peak of incidence

in the fifth decade of life. Enhanced awareness of the condition and

increased availability of diagnostic tools, in particular serological test-

ing, have led to a more frequent and earlier diagnosis of PBC,159,160

more commonly at asymptomatic stages.161

PBC etiopathogenesis recognizes an important role for genomics,

possibly stronger than in other autoimmune disorders.162,163 Indeed,

PBC concordance rate in MZ twins is 63% the highest among auto-

immune diseases with the exception of celiac disease.164

New approaches are being sought to identify the presence of epige-

netic marks which can participate to PBC susceptibility. In fact not

only genetic polymorphisms in the first genome-wide studies but also

epigenetic impaired mechanism could be involved in the break of self-

tolerance. Mitchell and colleagues most recently described the differ-

ential expression of two X-linked genes (PIN4 and CLIC2) that were

differentially methylated in discordant MZ twins.165 This is of par-

ticular importance based on our previous report of a possible

X-chromosome haploinsufficiency.166

WHERE WE ARE AND WHAT IS NEXT FOR THE EPIGENETICS

OF AUTOIMMUNITY

Most recently, there have been numerous studies to support the

importance of epigenetics in the initiation and perpetuation of auto-

immunity in specific conditions. In some cases, findings were recapi-

tulated in different conditions, thus supporting the theory of a

common theme for the autoimmunologist1,167 and providing fascin-

ating bases for the geographical pattern of autoimmunity epidemi-

ology (i.e. geoepidemiology).89,168–170 Over the past years, there has

been an enormous development of genome-wide mapping for DNA

methylation171 and histone modifications26 with novel issues aris-

ing172,173 particularly in terms of environmental epigenetics.174

Every cell process is permeated by epigenetic regulation, from

cancer175 to autoimmune diseases.176 The understanding of these

mechanisms and the identification of target molecules are expected

to lead to new classes of therapeutical molecules, coined ‘epigenetic

therapies’.177,178 We foresee that only a common effort between

researchers involved in human and experimental autoimmunity

and the use of powerful tools such as MZ twins will soon provide

fascinating developments in the relatively young field of epigenomics.

As an example, epidemiology and basic epigenetics should work

together to provide solid associations between environmental factors

and DNA methylation or histone changes in patients with auto-

immune diseases.
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