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Expression of vascular endothelial growth factor-A

(VEGFA) by tumour-associated macrophages is critical

for tumour progression and metastasis. Hypoxia, a com-

mon feature of the neoplastic microenvironment, induces

VEGFA expression by increased transcription, translation,

and mRNA stabilization. Here, we report a new mechan-

ism of VEGFA regulation by hypoxia that involves reversal

of microRNA (miRNA)-mediated silencing of VEGFA

expression. We show that the CA-rich element (CARE)

in the human VEGFA 30-UTR is targeted by at least four

miRNAs. Among these miRNAs, miR-297 and -299 are

endogenously expressed in monocytic cells and negatively

regulate VEGFA expression. Unexpectedly, hypoxia com-

pletely reverses miRNA-mediated repression of VEGFA

expression. We show that heterogeneous nuclear ribonu-

cleoprotein L (hnRNP L), which also binds the VEGFA

30-UTR CARE, prevents miRNA silencing activity. Hypoxia

induces translocation of nuclear hnRNP L to the cyto-

plasm, which markedly increases hnRNP L binding to

VEGFA mRNA thereby inhibiting miRNA activity. In sum-

mary, we describe a novel regulatory mechanism in

which the interplay between miRNAs and RNA-binding

proteins influences expression of a critical hypoxia-indu-

cible angiogenic protein. These studies may contribute to

provide miRNA-based anticancer therapeutic tools.
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Introduction

The recruitment and infiltration of tumour-associated macro-

phages (TAMs) is a prominent feature of most solid tumours,

and they have a principal role in tumour progression

and metastasis (Lin et al, 2006; Stockmann et al, 2008). TAMs

display a relatively immature phenotype but are conditioned by

the hypoxic tumour microenvironment to upregulate tumouri-

genic genes, including vascular endothelial growth factor-A

(VEGFA), a critical regulator of angiogenesis (Ferrara, 2005).

TAM-derived VEGFA is primarily responsible for the ‘angiogenic

switch’ that initiates tumour vascularization, and it cannot be

compensated by VEGFA from other cell sources within the

tumour (Lin et al, 2006; Qian and Pollard, 2010).

Hypoxia induces VEGFA expression by increased transcrip-

tion, translation, and mRNA stabilization. Post-transcrip-

tional induction of VEGFA by hypoxia is mediated by

specific mRNA-binding proteins (Claffey et al, 1998; Levy,

1998; Shih and Claffey, 1999; Vumbaca et al, 2008; Ray et al,

2009). The proximal human VEGFA 30-UTR contains a 126-nt

AU-rich domain, termed the hypoxia stability region (HSR),

that is critical for VEGFA mRNA stabilization under hypoxia

(Claffey et al, 1998). The cytoplasmic interaction of hetero-

geneous nuclear ribonucleoprotein L (hnRNP L), a splicing

factor with extranuclear activities (Piñol-Roma et al, 1989),

with the HSR is required for VEGFA mRNA stabiliza-

tion during hypoxia (Shih and Claffey, 1999). Two adjacent

cis-elements have been identified in the VEGFA HSR: a 21-nt

CA-rich element (CARE) that binds with high affinity to

hnRNP L (Shih and Claffey, 1999) and a 29-nt GAIT (inter-

feron-g-activated inhibitor of translation) element that binds

the heterotetrameric GAIT complex and silences inflamma-

tory gene expression (Ray and Fox, 2007). In hypoxia, a

conformational switch in the VEGFA HSR, dictated by

mutually exclusive binding of the GAIT complex and

hnRNP L, overrides the repressive effect of the GAIT complex

and permits high-level VEGFA translation (Ray et al, 2009).

microRNAs (miRNAs) are endogenous, B21-nt RNA regu-

lators of gene expression (Farh et al, 2005; Rana, 2007;

Filipowicz et al, 2008; Bartel, 2009). About 30% of human

genes are under the control of one or more miRNAs (Chen and

Rajewsky, 2006). They are constituents of miRNA-ribonucleo-

protein RNA-induced silencing complexes (miRISCs), and

guide these complexes to specific mRNA targets bearing

miRNA-binding sites (Rana, 2007; Bartel, 2009). In metazoans,

miRISCs silence gene expression by translational repression,

mRNA degradation, or a combination of both (Nilsen, 2007;

Filipowicz et al, 2008; Eulalio et al, 2008a). Most studies

suggest that miRNAs do not switch off their target genes

completely, but rather fine-tune expression (Hobert, 2007;

Karres et al, 2007; Baek et al, 2008; Bartel, 2009). miRNA

expression and activity are tissue-, cell-, and developmental

stage-specific (Lagos-Quintana et al, 2002; Lim et al, 2005),

and aberrant function can contribute to disease (Kloosterman

and Plasterk, 2006; Voorhoeve et al, 2006). VEGFA mRNA is

targeted and silenced by miR-15, -16, -20a, and -20b and their

downregulation by hypoxia contributes to increased VEGFA

expression (Hua et al, 2006; Karaa et al, 2009; Lei et al, 2009).

An additional layer of regulatory complexity is introduced

by the superimposition of crosstalk between miRNAs and

RNA-binding proteins (RBPs). RBP interaction with the

30-UTR of mRNAs can modulate activity of miRNAs, either
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reducing (Bhattacharyya et al, 2006; Mishima et al, 2006;

Huang et al, 2007; Kedde et al, 2007) or enhancing (Hammell

et al, 2009; Schwamborn et al, 2009) miRNA activity.

Alternatively, RBP function can be modulated by miRNA

(Eiring et al, 2010). Because RBPs and miRNAs that bind

mRNA 30-UTRs are diverse and abundant, we anticipate that

many examples of these types of complex regulatory interac-

tions are yet to be discovered (Filipowicz et al, 2008). In this

report, we reveal a novel mechanism of VEGFA gene regula-

tion involving condition-dependent crosstalk of miRNAs

and an RBP. Specifically, we show that miR-297 and -299

are endogenous negative regulators of VEGFA expression in

human monocytic cells, and that their function is negatively

modulated by hnRNP L during hypoxia.

Results

miRNAs target the 30-UTR CARE of VEGFA mRNA and

inhibit its translation

The 21-nt CARE in the HSR of the VEGFA 30-UTR is critical

for post-transcriptional regulation of VEGFA during hypoxia.

To test whether miRNAs might also participate in this regula-

tory mechanism, we investigated potential miRNA targets in

the CARE. TargetScan (Lewis et al, 2005), miRanda (John

et al, 2004), and MicroCosm Targets (miRBase) (Griffiths-

Jones et al, 2006) algorithms revealed miR-297, -299, -567,

and -609 as candidates (Figure 1A and B). To investigate the

activity of the candidate miRNAs, a luciferase reporter bearing

the VEGFA HSR was cotransfected into HEK293T cells with

Pre-miRTM miRNA precursors that are stable, chemically mod-

ified double-stranded RNAs that mimic endogenous, mature

miRNAs. The pre-miR mimetics of the four miRNAs reduced

reporter expression by about 50–80% compared with the

control, a random precursor with no homology to the

human genome (Figure 1C, left). Pre-miR mimetics of miR-

410 and -369, predicted to target the adjacent GAIT element in

the HSR, were not inhibitory, suggesting site specificity. In an

additional control, a mutant HSR was generated in which ‘C’

and ‘A’ residues in the CARE were mutated to ‘G’ and ‘U’,

respectively. Expression of the mutant reporter was not re-

duced by CARE-binding miRNAs, indicating the specific role of

the CARE element in VEGFA silencing (Figure 1C, right).
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Figure 1 CARE in human VEGFA 30-UTR is targeted by miRNAs. (A) Schematic of human VEGFA 30-UTR elements. The full-length VEGFA 30-UTR
(top) is expanded to show elements in the HSR (middle) and the sequence of the CARE and seed regions of predicted CARE-binding miRNAs
(bottom). (B) CARE-binding miRNA candidates. (C) CARE-binding miRNAs inhibit expression of reporter bearing human VEGFA HSR. FLuc
reporter constructs in pcDNA3 vector bearing either wild type (left) or mutant (right) CARE in the HSR were transfected into HEK293T cells with
CARE-binding miRNA candidates (miR-297, -299, -567, and -609), miR-control (Cont.), negative controls (miR-410 and -369), and with RLuc-
expressing pRL-SV40 vector as internal control. Relative Luc levels were measured after 24 h and expressed as percentage of control. Results are
expressed as mean±s.d., for n¼ 3 independent experiments. An asterisk (*) indicates a significant difference, Po0.05, two-tailed t-test.
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To investigate the effect of CARE-targeting miRNAs

on endogenous VEGFA expression in myeloid cells, the

miRNAs were overexpressed by transient transfection of

U937 monocytic cells, and VEGFA was determined in cell

lysates by immunoblot analysis. VEGFA expression was

reduced by miR-297, -299, -567, and -609 by about 50–70%

compared with controls (Figure 2A). As before, GAIT-ele-

ment-targeting miRNAs were ineffective. In a positive control

experiment, miR-16, which binds the distal 30-UTR (nt 1793–

1818) of human VEGFA and downregulates its expression

(Karaa et al, 2009), markedly repressed VEGFA expression.

miRNAs can silence gene expression by mRNA degrada-

tion or translation inhibition (Bartel, 2004; Guo et al, 2010).

Quantitative real-time RT–PCR showed that CARE-binding

miRNAs did not alter VEGFA mRNA expression, suggesting

inhibition at the level of translation (Figure 2B). To confirm

the silencing mechanism, translation efficiency was deter-

mined by polysome fractionation. A firefly luciferase (FLuc)

reporter mRNA upstream of the VEGFA HSR was cotrans-

fected with miR-299 into HEK293T cells. After 24 h, cell

lysates were fractionated by sucrose gradient to separate

dense, rapidly translating polysome fractions from light,

non-translating ribonucleoprotein fractions (Figure 2C, top

panels). RT–PCR analysis using FLuc-specific primers

showed that miR-299 shifted the reporter from the rapidly

translating to the non-translating fractions (Figure 2C, middle

panels). As a control, GAPDH mRNA was primarily detected

in the translating fractions and was unaffected by miR-299

(Figure 2C, bottom panels). Together, these results indicate

translational inhibition as the mechanism by which CARE-

binding miRNA reduces VEGFA expression.

Role of endogenous CARE-binding miRNAs

in regulating VEGFA expression

The endogenous levels of miR-297, -299, -567, and -609 were

measured in monocytic cells by RNA blot using miRNA-

specific probes. miR-297 and -299 were detected at compar-

able levels in human U937 and THP1 cell lines, and in human

peripheral blood monocytes (PBMs) (Figure 3A); miR-567

and -609 were not detected in any of the cells (not shown).

To determine the effect of endogenous miRNAs on VEGFA

expression, U937 cells were cotransfected with FLuc reporter

RNA bearing the VEGFA HSR, with chemically stabilized anti-

miR-297 and -299, and with the same anti-miRNAs contain-

ing two point mutations in the seed regions as specificity

controls. FLuc expression was nearly doubled by both

anti-miRNAs, but not by the mutated or random control

anti-miRNAs, suggesting that these endogenous miRNAs

negatively regulate reporter expression (Figure 3B). To

investigate the role of endogenous miRNAs on endogenous

gene expression, anti-miR-297 and -299 were transfected in

U937 cells and after 24 h VEGFA in cell lysates was measured

by immunoblot. An B75% increase in VEGFA expression

was observed after miRNA inhibition (Figure 3C). VEGFA is a
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Figure 2 The effect of CARE-binding miRNAs on VEGFA expression. (A) Ectopically expressed CARE-binding miRNAs inhibit VEGFA
expression. U937 cells were transfected with CARE-binding miRNAs or controls. After 24 h, cell lysates were subjected to immunoblot
analysis with anti-VEGFA (top) or anti-GAPDH (middle) antibodies. VEGFA expression was quantitated and expressed as percentage of control
(B) CARE-binding miRNAs do not inhibit VEGFA mRNA expression. After transfection with miRNAs for 24 h, VEGFA mRNA amount was
measured by real-time, quantitative RT–PCR and normalized to GAPDH mRNA. (C) CARE-binding miRNAs repress translation of HSR-bearing
reporter RNA. HEK293Tcells were cotransfected for 24 h with FLuc reporter bearing the VEGFA HSR and either control miRNA (left) or miR-299
(right). Lysates were subjected to sucrose density gradient fractionation and RNA was monitored by absorption at 254 nm (top). RNA isolated
from each fraction was subjected to RT–PCR to determine FLuc (middle) and GAPDH (bottom) mRNAs. Results are expressed as mean±s.d.,
for n¼ 3 independent experiments. An asterisk indicates a significant difference, Po0.05, two-tailed t-test.
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secretory protein and transfection with either anti-miR-297 or

-299 induced nearly a two-fold increase in 24 h conditioned

medium (Figure 3D). These results indicate a physiological

role of endogenous miR-297 and -299 in negative regulation

of VEGFA in monocytic cells.

Hypoxia prevents activity of miRNAs targeting the

VEGFA CARE

miRNA activity can be modulated in a state-specific manner,

for example, by cell stress (Bhattacharyya et al, 2006; Huang

et al, 2007; Kedde et al, 2007; Hammell et al, 2009), thus

we investigated whether hypoxia, an established regulator of

VEGFA expression, modulates the activity of CARE-binding

miRNAs. The repressive activity of CARE-binding miRNAs

was almost completely alleviated by hypoxia (Figure 4A).

The effect of hypoxia was specific for miRNAs targeting the

CARE as repression by miRNAs targeting other regions of the

VEGFA 30-UTR (Hua et al, 2006; Karaa et al, 2009; Lei et al,

2009), for example, miR-16 (Figure 4A) or miR-20a and miR-

20b (data not shown) was observed in both conditions. We

considered the possibility that hypoxia decreased the amount

of CARE-targeting miRNAs, thereby reducing its effect on

VEGFA expression. RNA blot analysis showed that hypoxia

did not alter endogenous expression of CARE-binding miR-

297 or -299 (Figure 4B). This result was confirmed by quanti-

tative RT–PCR in both U937 cells and PBM (Figure 4C). These

findings suggest that hypoxia might influence non-miRNA,

trans-acting factors that target the VEGFA mRNA CARE.

Hypoxia induces hnRNP L translocation and binding

to VEGFA mRNA

hnRNP L is an abundant nucleocytoplasmic protein that

binds the VEGFA CARE in human melanoma cells and

increases VEGFA mRNA stability during hypoxia (Shih and

Claffey, 1999). Quantitative RT–PCR (Figure 5A, top) and

RNA blot analysis (not shown) showed that exposure of U937

cells to hypoxia did not significantly alter hnRNPL expres-

sion. Likewise, immunoblot analysis of cell lysates showed

no effect of hypoxia on hnRNP L protein expression

(Figure 5A, bottom two panels). We investigated the effect

of hypoxia on hnRNP L localization. Immunofluorescence

detection indicated that hnRNP L is primarily localized in the

nucleus of U937 cells under normoxic conditions, but after

24 h treatment with hypoxia, substantial hnRNP L is observed

in the cytoplasm (Figure 5B). To confirm the subcellular

localization of hnRNP L, cell fractionation studies were

done in U937 cells and PBM exposed to hypoxia or normoxia

for 24 h and nuclear and cytoplasmic lysates were prepared.

Hypoxia increased the cytoplasmic level of hnRNP L by

three- to five-fold in both cell types (Figure 5C).

We investigated whether hypoxia induces an interaction

between hnRNPL and VEGFA mRNA in monocytic cells.

Following a 24-h treatment of U937 cells with hypoxia or

normoxia, cytosolic lysates were subjected to immunopreci-

pitation with monoclonal anti-hnRNP L antibody followed by

RT–PCR using VEGFA-specific primers. No interaction of

hnRNP L with VEGFA mRNA was detected in normoxic

cells, but hypoxia induced a very robust and specific inter-

action of hnRNP L with VEGFA mRNA; RT–PCR with primers

specific for GAPDH mRNA indicated specificity of the inter-

action (Figure 5D). Because hnRNP L is a nucleocytoplasmic

protein, we examined whether the interaction between
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Figure 3 Presence and activity of endogenous CARE-binding
miRNAs. (A) miR-297 and -299 are endogenously expressed in
monocytic cells. Total small RNAs were isolated from human
U937 cells, THP1 cells, and PBM under normoxic condition. RNA
was subjected to RNA blot analysis using probes against
miR-297 (top), miR-299 (middle), and U6 as control (bottom).
(B) Endogenous miR-297 and -299 negatively regulate expression
of HSR-bearing reporter. FLuc reporter upstream of the HSR was
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hnRNP L and VEGFA mRNA occurs in the nucleus, followed

by transport to the cytoplasm, as would be expected for a

shuttling factor. Both precursor and mature VEGFA mRNAs

are detected in the nuclear lysates from cells treated with

normoxia or hypoxia (Figure 5E, top). The same lysates were

subjected to immunoprecipitation with anti-hnRNP L anti-

body and RT–PCR for VEGFA mRNA and pre-mRNA. hnRNP

L binding to VEGFA pre-mRNA in the nucleus was detected,

but binding to the mature mRNA was not (Figure 5E, middle).

Immunoprecipitation using anti-hnRNP A1 was used as a

positive control since it interacts with pre-mRNAs and re-

mains mRNA-bound during transport to the cytoplasm (Mili

et al, 2001). As expected, hnRNP A1 bound both VEGFA

mRNA forms in the nucleus. RT–PCR with primers specific

for GAPDH mRNA verified the selectivity of the interaction

between VEGFA mRNA and hnRNP L (Figure 5E, bottom).

We conclude that the interaction between hnRNP L and

mature VEGFA mRNA occurs in the cytoplasm and is

independent of nucleocytoplasmic transport.

Role of hnRNP L in overcoming miRNA-mediated

repression of VEGFA

To determine whether the increase in cytoplasmic hnRNP L in

hypoxia is sufficient to induce binding to VEGFA mRNA, we

overexpressed hnRNP L and determined its binding to VEGFA

mRNA in normoxia. U937 cells were transfected with

pcDNA3-c-Myc-hnRNP L (or empty vector) for 24 h under

normoxic condition and expression confirmed by immuno-

blot using anti-c-Myc antibody (Figure 6A, top two panels).

Immunoprecipitation of cell lysate with anti-hnRNP L anti-

body, followed by RT–PCR with VEGFA or GAPDH-specific,

primers revealed a selective interaction (Figure 6A, bottom

two panels). Interestingly, the finding that ectopically ex-

pressed hnRNP L binds VEGFA mRNA suggests hypoxia or

other hypoxia-inducible factors are not required, but rather

the cytoplasmic concentration of hnRNP L determines its

association with VEGFA mRNA. To specifically show the

role of hnRNP L in overcoming miRNA-mediated inhibition,

HEK293T cells were cotransfected with an expression vector
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encoding c-Myc-hnRNP L and FLuc reporter bearing the

VEGFA HSR, in addition to CARE-binding miRNAs. Ectopic

expression of hnRNP L almost completely restored expression

of the reporter in the presence of the inhibitory miRNAs

(Figure 6B). Similarly, the effect of hnRNP L on miRNA-

mediated regulation of endogenous VEGFA expression was

examined. Cotransfection of c-myc-hnRNP L with CARE-

binding miRNAs blocked the repressive activity of miRNAs,

completely restoring endogenous expression of VEGFA, and

verifying the direct role of hnRNP L in preventing the miRNA-

mediated inhibition of VEGFA expression (Figure 6C).

Discussion

Induction of VEGFA during hypoxia is a critical pathophysio-

logical response facilitated by diverse transcriptional

and post-transcriptional mechanisms. The unusually long

30-UTR of human VEGFA mRNA appears to be a ‘hot-spot’

for post-transcriptional control by hypoxia. Hypoxia stabi-

lizes VEGFA mRNA by interaction of the RBP Hur to AU-rich

elements in the 30-UTR (Brennan and Steitz, 2001; Goldberg-

Cohen et al, 2002), or by an independent mechanism in

which hnRNP L binds the CARE in the HSR of the 30-UTR

(Claffey et al, 1998; Shih and Claffey, 1999). Hypoxia, via an

HSR-mediated mechanism, can increase translation of VEGFA

in monocytic cells exposed to interferon-g. In this case,

hypoxia induces a conformational switch in the VEGFA HSR

by increasing hnRNP L binding to the CARE, which in turn

reduces binding of the GAIT complex to the adjacent GAIT

element, and overrides translational repression (Ray et al,

2009). Previous reports have shown that the VEGFA 30-UTR

is targeted by multiple miRNAs. For example, miR-15b, -16,

-20a, and -20b downregulate VEGFA expression, but the

levels of the miRNAs themselves are downregulated during
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hypoxia, thus enabling VEGFA expression (Hua et al, 2006).

Likewise, miR-126 downregulates VEGFA mRNA expression

and is postulated to have tumour suppressor function, but its

expression is downregulated in lung cancer cells (Liu et al,

2009). Our target analysis (not shown) suggests that the

miRNAs in these earlier reports target regions outside of the

CARE and HSR of VEGFA.

Our results indicate that at least four miRNAs, miR-297,

-299, -567, and -609, target the CARE of human VEGFA

30-UTR, and when ectopically expressed markedly inhibit

VEGFA protein expression. Two of these miRNAs, miR-297

and -299, are endogenously expressed in U937 cells and in

freshly isolated human PBM. These miRNAs have no effect

on the amount of VEGFA mRNA, indicating that their silen-

cing activity is at the level of mRNA translation. This con-

clusion was rigorously established for miR-299 that induces a

shift of HSR-bearing reporter RNA from the rapidly translat-

ing polysome fractions to the non-translating mRNP pool.

Although many miRNA-targeted mRNAs undergo extensive

degradation (Guo et al, 2010), there are also examples of

repression at the translational level, or by a combination

of both processes (Eulalio et al, 2008a, b). The molecular

determinants and mechanisms that direct RISC-mediated degra-

dation or translational repression have not been elucidated;

however, the specific silencing pathway for a given mRNA can

be tissue specific or cell specific (Lagos-Quintana et al, 2002).

The inhibitory activity of the miRNAs is prevented during

hypoxia by hnRNP L, which translocates from the nucleus to

the cytoplasm and binds the CARE in the VEGFA mRNA,

presumably blocking the accessibility of the miRISC targeting

the same element. Several recent reports have shown that

RBPs can modulate repression by miRNAs in a cell state-

specific manner (Bhattacharyya et al, 2006; Mishima et al,

2006; Huang et al, 2007; Kedde et al, 2007). For example, HuR

binding to the 30-UTR of CAT-1 mRNA during cellular stress

prevents miR-122-mediated repression of CAT-1 expression

(Bhattacharyya et al, 2006). Similarly, during germline devel-

opment in zebrafish, Dnd1 binds U-rich sequences in nanos1

and TDRD7 mRNAs near the binding site of miR-430, reliev-

ing its repression (Kedde et al, 2007). In another example of

an RBP-disrupting miRNA function, Lin28 selectively blocks

the processing of pri-let-7 miRNAs in embryonic cells

(Viswanathan et al, 2008). Finally, during synaptic develop-

ment, brain-derived neurotrophic factor relieves miR-134
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inhibition of Limk1 mRNA translation by an undefined

mechanism (Schratt et al, 2006). In most cases, the RBP

inhibits the expression or activity of an miRNA; however,

other regulatory interactions between these moieties have

been described. For example, several reports have revealed a

cooperative interaction between an RBP and a specific

miRNA where both are required for repression of gene

expression (Hammell et al, 2009; Kim et al, 2009). In another

atypical case, miR-328 functions as an RNA decoy by binding

to the inhibitory RBP hnRNP E2 and preventing its interaction

with target mRNA (Eiring et al, 2010).

The crosstalk between hnRNP L and inhibitory miRNAs

described here exhibits several unique characteristics. First,

the inhibition of VEGFA expression by endogenous miRNAs

occurs under basal conditions in unstressed cells, and is

derepressed upon stress, that is, hypoxia. Second, hypoxia

activates hnRNP L by inducing its translocation from the

nucleus to the cytoplasm. The molecular mechanism regulat-

ing hnRNP L localization is not known; however, another

miRNA regulator, HuR, has been shown to undergo stress-

dependent translocation to the cytoplasm following depho-

sphorylation (Kim and Gorospe, 2008). Finally, hnRNP L and

miR-297, -299, -567, and -609 share the same target site in the

VEGFA 30-UTR, namely the 20-nt CARE. To our knowledge,

this is the first example of a protein-binding regulatory

element identified as an miRNA target. The coincidence of

the protein and miRNA target site on the VEGFA 30-UTR, and

our finding that hnRNP L binds mature VEGFA mRNA only

after transport to the cytoplasm, suggests a specific mechan-

ism. Namely, normoxic monocytic cells constitutively express

miR-297 and -299; in the absence of substantial cytoplasmic

hnRNP L, these miRNAs bind the 30-UTR CARE of VEGFA

mRNA and repress its expression by inhibiting translation

(Figure 7). Upon switching to hypoxia, hnRNP L translocates

from the nucleus to cytoplasm where it binds the same CARE

region of the VEGFA mRNA, thereby obstructing the miRISC-

binding site and preventing the repression of VEGFA expres-

sion. Our results suggest that the major function of the

endogenous, inhibitory miRNAs is to restrict VEGFA expres-

sion during normoxia, and the function of hnRNP L translo-

cation is to overcome this restriction during hypoxia.

Unexpectedly, VEGFA expression is not increased in hypoxia

in our experiments, and we speculate that additional inhibi-

tory mechanisms might be operative in hypoxic myeloid cells

that are balanced by the suppression of miRNA activity by

hnRNP L. Together, our results suggest an intricate interplay

of regulatory mechanisms that might function to maintain

myeloid cell VEGFA expression at a constant level in both

normoxia and hypoxia. miR-297 is also expressed in non-

monocytic HEK293T cells, and CARE-binding miRNAs inhibit

VEGFA expression in normoxia but not hypoxia, suggesting

that the mechanism might be broadly applicable to multiple

cell types (Supplementary Figure S1A and B). Interestingly,

hypoxia increases VEGFA expression in HEK293T cells com-

pared with normoxic cells, even in the presence of inhibitory

miRNAs thus indicating the potential for this mechanism to

influence total VEGFA expression in non-myeloid cells.

The discovery of endogenous miRNAs that target and

repress VEGFA has physiological and pathophysiological im-

plications. VEGFA is the principal agonist of angiogenesis and

is essential for blood vessel formation during development

and tissue repair (Ferrara, 2005). VEGFA also induces vessel

permeability and leukocyte chemoattraction, events asso-

ciated with chronic inflammation (Ferrara, 2005). Cancer

cells ‘hijack’ VEGFA to promote tumour vascularization and

growth. Interestingly, recent studies point to the critical

importance of VEGFA produced by TAMs for throwing the

‘angiogenic switch’ that induces tumour angiogenesis during

hypoxia (Lin et al, 2006; Qian and Pollard, 2010).

Overexpression of miR-297, -299, -567, and -609 all cause

robust inhibition of VEGFA expression. However, the increase

in VEGFA expression observed upon inhibition of endogen-

ous miR-297 and -299 was more modest, consistent with a

‘tuning’ function of the miRNAs rather than an all-or-none

response. Recent studies in vertebrates suggest that this type

of regulation by miRNAs may be the norm rather than the

exception (Hobert, 2007). Experimental criteria for a tuning

relationship between an miRNA and its respective target has

been suggested: the miRNA and the protein product of the

target mRNA must both be present in the cell, and both

upregulation and downregulation of the respective target

protein must be detrimental (Hobert, 2007). Certainly, the

regulation of VEGFA by miR-297 and -299 fulfill these char-

acteristics. Both of the miRNAs as well as VEGFA mRNA and

protein are constitutive in monocytic cells. Accumulating

evidence suggests that VEGFA expression must be regulated

within a relatively narrow range. Deletion of a single VEGFA

allele causes abnormal blood vessel formation and mid-

gestational lethality in mice (Carmeliet et al, 1996). In con-

trast, modest overexpression induces aberrant vasculogenesis

and heart development, and ultimately, embryonic lethality

(Miquerol et al, 2000). In adult humans (and mice), elevated

serum VEGFA is associated with a lethal hepatic syndrome

(Wong et al, 2001). Interestingly, although reduction of

VEGFA level or action by VEGFA or VEGFA receptor antago-

nists has been successfully applied in cancer therapy, the

same repression can cause vascular disturbance, regression

of blood vessels, and an array of severe side effects that

hamper its clinical applicability (Kamba and McDonald,

2007). Moreover, deletion of macrophage-derived VEGFA

results in accelerated tumour growth (Stockmann et al,

2008). These observations strongly indicate that VEGFA

must be subject to tight bi-directional regulation. Negative
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Figure 7 Schematic showing effects of CARE-binding miRNAs and
hnRNP L on VEGFA expression. In normoxia, translation of VEGFA
mRNA is negatively regulated by endogenous miRNA/RISC com-
plexes binding to CARE (left). In hypoxia, hnRNP L is translocated
to cytoplasm where it binds CARE, prevents miRNA/RISC activity,
and increases VEGFA expression (right).

Regulation of VEGFA by microRNAs and hnRNP L
F Jafarifar et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 7 | 2011 1331



regulation by miRNAs may contribute to management

of VEGFA dosage within the optimal range by providing

a negative regulatory effect that partially counterbalances

positive transcriptional and post-transcriptional regulatory

mechanisms.

Under the conditions of our experiments, hypoxia induces

hnRNP L translocation to the cytoplasm where it not only

overrides miRNA-mediated inhibition of translation of VEGFA

mRNA, but it also stabilizes the transcript (Claffey et al,

1998), both contributing to elevated expression of VEGFA

that reverses hypoxia by inducing blood vessel formation.

Although we found that hypoxia did not alter miRNA expres-

sion, there might be other stress conditions that induce

CARE-binding miRNAs to a level that prevents hnRNP L-

mediated induction of VEGFA, and in fact, inhibits VEGFA

expression. Alternatively, the inhibitory activity of CARE-

binding miRNAs against VEGFA expression might present

potential therapeutic agents against tumour growth. In a

recent successful application of this approach, systemic

administration of miR-26a, which targets cyclins D2 and

E2, inhibited hepatocellular carcinoma cell proliferation and

tumour progression in mice (Kota et al, 2009). Conventional

anti-VEGFA therapies target either circulating protein or cell

surface receptors. In contrast, therapies using chemically

stabilized miRNAs target VEGFA at the level of intracellular

synthesis. This approach, combined with cell-type specific

targeting strategies might permit localized inhibition or

fine-tuning of VEGFA expression while minimizing adverse

systemic consequences.

Materials and methods

Cells and lysates
Human monocytic cells, that is, U937 cells (CRL-1593.2, ATCC),
THP1 cells (TIB-202, ATCC), and PBM were cultured in RPMI 1640
medium supplemented with 10% heat-inactivated fetal bovine
serum (FBS). Human PBM were isolated by leukapheresis, followed
by countercurrent centrifugal elutriation (Czerniecki et al, 1997),
under a Cleveland Clinic Institutional Review Board-approved
protocol that adhered to American Association of Blood Bank
guidelines. Human HEK293Tcells (CRL-11268, ATCC) were cultured
in DME medium supplemented with 4.5 mg/ml glucose and 10%
heat-inactivated FBS. Cells were treated under either normoxic
(21% rO2) or hypoxic (1% rO2) conditions in a humidified
incubator for 24 h. Cell lysates were prepared in phosphosafe
extraction buffer (Novagen) containing protease inhibitor cocktail
(Thermo Scientific). Cytoplasmic and nuclear extracts were
obtained using NE-PER nuclear and cytoplasmic extraction reagents
(Thermo Scientific).

Plasmid construction, transfection, and dual luciferase
activity assay
pcDNA3-FLuc-VEGFA HSR (wild type and mutant) and pcDNA3-c-
Myc-hnRNP L were generated as described (Ray et al, 2009). U937
cells (2�106 cells) were transfected with oligomers including pre-
miR miRNA precursors, miRNA-negative control, anti-miR miRNA
inhibitors, anti-miR-negative control, and anti-miR mutants
(200 nM, Ambion), using GenomONE-Neo EX HVJ Envelope Vector
Kit (Cosmo Bio). For anti-miR mutants, nt 3 and 4 of the seed
regions of miR-297 (G, U to A, A) and miR-299 (U, G to A, A) were
mutated. The same kit was used to transfect U937 cells (2�106

cells) with plasmid DNA (40mg). For dual luciferase assay,
oligomers were cotransfected into U937 cells with FLuc reporter
plasmid (40mg) and RLuc-expressing vector pRL-SV40 (20mg) to
normalize for transfection efficiency, and relative Luc activities
measured using dual luciferase assay kit (Promega). For HEK293T
cells, 2�106 cells were transfected with pre-miR miRNA precursors
(100 nM), or cotransfected with FLuc reporter plasmid (2 mg) or

pcDNA3-c-Myc-hnRNP L (2mg) and pRL-SV40 (0.5mg) as internal
transfection control using lipofectamine 2000 (Invitrogen).

Immunocytochemistry
U937 cells (about 50% confluence) on glass slides were washed
three times with phosphate-buffered saline (PBS) and fixed in 1%
paraformaldehyde for 30 min. Fixed cells were washed with PBS
and permeabilized with 0.1% Triton X-100 for 15 min. After further
washing, the cells were incubated with rabbit polyclonal anti-
hnRNP L antibody (Santa Cruz) for 2 h at room temperature. After
thorough washing, anti-rabbit Alexa fluor 488 (Invitrogen) was
added for 60 min at room temperature. DAPI (Sigma-Aldrich) was
added to stain nuclei. The slides were mounted with 90% glycerol
in PBS and immunofluorescent images were acquired by confocal
microscopy with LaserSharp software.

Immunoblot analysis
Cell lysates were subjected to SDS–PAGE (12%). The transferred
blot was probed with rabbit anti-human VEGFA polyclonal antibody
(Santa Cruz) and HRP-conjugated anti-rabbit secondary antibody
(GE Healthcare), and detected with ECL Plus (Amersham).
Immunoblot with mouse monoclonal anti-GAPDH-peroxidase
(Sigma) antibody provided a loading control. Band intensities were
measured using ImageJ software. VEGFA in conditioned media was
measured following concentration with rabbit anti-human VEGFA
polyclonal antibody (2 mg/ml) and GammaBind Plus Sepharose
beads (GE Healthcare) followed by immunoblot with mouse
monoclonal anti-VEGFA antibody (Santa Cruz) (Kim et al, 2002).
Other antibodies used for immunoblotting were mouse monoclonal
anti-c-Myc (Santa Cruz), rabbit polyclonal anti-hnRNP L (Santa
Cruz), and mouse monoclonal anti-a-tubulin (Sigma).

Analysis of RNA by PCR
Total small RNA was extracted with miRVana miRNA Isolation kit
(Ambion), and quality and quantity determined using a NanoDrop
spectrophotometer. miRNA was assessed by real-time PCR using
TaqMan probe and primer sets in an ABI PRISM 7000 system
(Applied Biosystems), and normalized with hsa-miR-17-5p. Briefly,
of total small RNA (10 ng) was reversed transcribed using Taqman
MicroRNA Reverse Transcription Kit (Applied Biosystems) and
amplified using TaqMan 2x Universal PCR Master Mix, No
AmpErase UNG (Applied Biosystems). To determine VEGFA and
hnRNPL mRNAs, first-strand cDNAs were synthesized with Super-
script III reverse transcriptase (Invitrogen) using total RNA (2mg)
extracted with Trizol (Invitrogen), and amplified with SYBR
Green PCR master mix (Applied Biosystems) in an ABI PRISM
7000 system. GAPDH mRNA was used as internal normalization
control. Primers for 120-nt VEGFA PCR product were TATGCGGA
TCAAACCTCAC (forward) and CTCGGCTTGTCACATTTTTCTTGTC
TTGC (reverse); primers for 180-nt hnRNPL product were
TTCTGCTTATATGGCAATGTGG (forward) and GACTGACCAGGCAT-
GATGG (reverse); primers for 96-nt GAPDH product were TGCA
CCACCAACTGCTTAGC (forward) and GGCATGGACTGTGGTCA
TGAG (reverse).

RNA blot analysis
RNA blot analysis using locked nucleic acid probes was used to
determine miRNAs (Varallyay et al, 2008). Briefly, total RNA
(100 mg) was mixed with an equal volume of gel loading buffer II
(Ambion), heated at 801C for 5 min, snap-cooled, and fractionated
by 15% denaturing acrylamide gel electrophoresis. RNA was
transferred to Hybond Nþ (GE Healthcare) by capillary blotting
using 20� SSC buffers (Invitrogen) and fixed using UV crosslinker.
miRCURY LNA detection probes (10 pmol, Exiqon) complementary
to the CARE-binding miRNAs were radiolabelled with 1ml T4
polynucleotide kinase (New England Biolabs) and 1ml [g-32P] ATP
(0.4 MBq) for 1 h at 371C. Labelled LNA probes were heated at
951C for 1 min, ice-cooled, diluted 1:1000 in pre-warmed (501C)
PerfectHyb Plus hybridization solution (Sigma) with denatured
salmon sperm DNA (20mg/ml, Ambion), and added to the pre-
hybridized UV crosslinked membrane at 501C for 1 h. Membranes
were washed 3� in 2� SSC, 0.1% SDS at 501C. Decade Marker
(Ambion) was used as molecular weight markers. The membranes
were stripped with boiled 0.1% SDS, 5 mM EDTA for 30 min, and
reprobed with radiolabelled LNA-modified U6 as loading control.

Regulation of VEGFA by microRNAs and hnRNP L
F Jafarifar et al

The EMBO Journal VOL 30 | NO 7 | 2011 &2011 European Molecular Biology Organization1332



Interaction of hnRNP L with VEGFA mRNA
In vivo interaction of hnRNP L with VEGFA mRNA was determined
by immunoprecipitation followed by RT–PCR as described (Shih
and Claffey, 1999; Majumder et al, 2009). Briefly, nuclear and
cytoplasmic extracts (500 mg) prepared in NE-PER extraction reagent
(Thermo) were incubated with Halt Protease Inhibitor Cocktail
(EDTA-free, Thermo), RNase inhibitor (Promega), mouse IgG (4mg),
and 50 ml of GammaBind Plus Sepharose beads for 1 h at 41C. The
supernatant was incubated overnight at 41C with 4mg of mouse
monoclonal antibody against hnRNP L or hnRNP A1 (Santa Cruz),
and then with protein G Sepharose beads (50 ml) for 4 h at 41C. The
supernatant was discarded and the beads washed four times with
NE-PER cytoplasmic or nuclear extraction buffers, resuspended,
and RNA extracted with an equal volume of Trizol reagent
(Invitrogen) and 1/5 volume of chloroform. Total RNA was
isolated from the same extracts using Trizol reagent. mRNAs
and pre-mRNAs were detected by RT–PCR with Superscript
reverse transcriptase III (Invitrogen) using oligo d(T) and Taq
DNA polymerase (Invitrogen). For in vivo cytoplasmic interactions,
PCR primers for VEGFA (Shih and Claffey, 1999) generated a 716-nt
product resolved by 1.5% agarose gel electrophoresis. A 96-nt PCR
product generated from GAPDH primers served as a control.
For in vivo nuclear interactions, PCR primers for VEGFA exon and
intron recognition generated 600- and 300-nt PCR products,
respectively, and a 96-nt GAPDH PCR product served as a
control. The VEGFA exon-recognizing primers giving a 600-nt PCR
product were TGCGGATCCATGAACTTTCTGCTCTCTTGGG (exon 1,
forward primer) and ATGCAAGCTTGCTATGGGTAGTTCTGTG
(exon 8, reverse primer). The intron-recognizing primers giving a
300-nt PCR product were GTGTCATCGCCTCTCATGCAG (intron 2,
forward primer) and CCACTTCCCAAAGATGCCCAC (intron 3,
reverse primer).

Sucrose gradient fractionation for polysome analysis
Ribosomal fractions were prepared as described (Merrick and
Hensold, 2001). Briefly, 24-h transfected HEK293T cells were lysed
in TMK lysis buffer containing cycloheximide (0.1 mg/ml) and the
cytosolic extract was obtained by centrifugation at 10 000 g
for 20 min. The extract was overlaid on a 10–50% (w/v) sucrose
gradient and centrifuged at 100 000 g for 4 h at 4 1C. Absorbance of
fractions was measured at 254 nm. RNA was isolated from each
fraction using Trizol reagent (Invitrogen) and used for RT–PCR.

Statistical analysis
All quantitative data are expressed as mean±s.d., n¼ 3 indepen-
dent experiments. An asterisk indicates a significant difference,
Po0.05, two-tailed t-test.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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