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Diffusion amid random overlapping obstacles: Similarities, invariants,
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Efficient and accurate numerical techniques are used to examine similarities of effective diffusion in
a void between random overlapping obstacles: essential invariance of effective diffusion coefficients
(Deff) with respect to obstacle shapes and applicability of a two-parameter power law over nearly
entire range of excluded volume fractions (φ), except for a small vicinity of a percolation thresh-
old. It is shown that while neither of the properties is exact, deviations from them are remarkably
small. This allows for quick estimation of void percolation thresholds and approximate reconstruc-
tion of Deff (φ) for obstacles of any given shape. In 3D, the similarities of effective diffusion yield
a simple multiplication “rule” that provides a fast means of estimating Deff for a mixture of over-
lapping obstacles of different shapes with comparable sizes. © 2011 American Institute of Physics.
[doi:10.1063/1.3578684]

I. INTRODUCTION

In a recent study,1 we revisited a problem of determin-
ing effective properties of heterogeneous media in the con-
text of molecular diffusion in living cells. Complex topology
of space available for diffusion in cytoplasm was mimicked
using an extended three-dimensional (3D) “Swiss-cheese”
model2 in which obstacles corresponding to cellular struc-
tures, such as long thin cylinders (cytoskeleton), flat disks (en-
doplasmic reticulum), and spheres (small organelles), were
randomly placed and allowed to overlap. This is similar
to Boolean reconstruction of complex geometries developed
over a decade ago for modeling spatial patterns in problems
ranging from transport in porous media to mechanical (and
other) properties of composite materials.3

Applying fast homogenization techniques,4 we per-
formed numerical studies of various factors affecting molec-
ular diffusion in complex environments. On scales for which
the concept of effective diffusion is applicable,1 we have ob-
served striking similarities. In particular, we found that ef-
fective diffusion of a molecule in the Swiss-cheese model is
well approximated by a simple two-parameter power law. It
should be noted that the law applies not to the actual effective
diffusion coefficient, Deff, but rather to the modified diffusion
coefficient, D̃eff = (1 − φ)Deff:

D̃eff(φ) ≈ fα,φc (φ) =
(

1 − φ

φc

)αφc

. (1)

(Here and throughout the article, the effective diffusion co-
efficients are normalized by the diffusion coefficient for the
space free of obstacles.) Parameters in Eq. (1), φc and α,
correspond, respectively, to a zero-diffusion point (percola-
tion threshold) and a slope of the curve in the dilute limit.
Parameter α, scaled by the volume of an obstacle, is some-
times called “magnetic polarizability”5 in a mathematically
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equivalent problem of conductivity in presence of dielectric
inclusions.4, 6 It is fully determined by the obstacle shape and
can be obtained numerically for arbitrary shapes in a straight-
forward manner.1, 5 The physical meaning of α in the context
of effective diffusion is discussed in more detail in Sec. II.

Equation (1) was first proposed in mid-1980s by
McLachlan7 as an “interpolation” between two versions of
the effective medium theory,8 the self-consistent formulation,
which predicts the existence of a percolation threshold but
results in a linear dependence, and the differential effective
medium theory that yields a power law with no percolation
threshold (Archie’s law9). McLachlan showed that Eq. (1)
provided a good approximation for effective conductivities of
many metal–insulator mixtures over a wide range of volume
fractions.10 Consistently with his observations, we found that
the function in Eq. (1) provided numerically accurate approx-
imations for effective diffusion in the Swiss-cheese model in
the interval D̃eff > 10−3, both for individual shapes and mix-
tures of shapes. This interval corresponds to the nearly entire
range of φ, except for the vicinity of a percolation threshold
where the critical dependence, D̃eff ∼ (φc − φ)μ, with a uni-
versal scaling exponent μ is expected.11, 12

Another remarkable property of effective diffusion in
the Swiss-cheese model, which we observed in our previous
study, is the collapse of dependences D̃eff(φ) for various ob-
stacle shapes, after appropriate rescaling of obstacle volumes,
to the curve for spheres. Thus, the effective diffusion in a com-
plex 3D matrix of overlapping obstacles is essentially invari-
ant with respect to obstacle shapes. Indeed, in the case of an
ideal collapse, a given set of identical obstacles of a certain
shape and volume v0, placed randomly with a number den-
sity n, could be equivalently replaced with a set of n spheres
with an appropriate radius, such that for all volume densities
V = nv0, V ∈ [0, Vc],

D̃eff(V ) = D̃sphere
eff (Vsphere). (2)
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In Eq. (2), Vsphere = kV where the scaling coefficient k

= V sphere
c /Vc. The percolation thresholds V sphere

c and Vc di-
rectly relate to φ

sphere
c and φc through the identity φ = 1

− e−V .1, 13 A similar collapse was previously reported by
Garboczi et al. for the 2D conductance in the presence of ran-
dom overlapping dielectric inclusions of various shapes.13

In this study, the similarities of effective diffusion out-
side the critical region are re-examined with enhanced pre-
cision. In particular, we perform computations for spheroids
whose exact values of α are known. Even though we are not
concerned with the critical behavior of the system (the lat-
ter was recently studied for overlapping spheres12, 14 and for
hard spheres and large-size tracers15), we did perform accu-
rate computations of percolation thresholds because this al-
lowed us to assess the accuracy of approximation (1) without
resorting to fitting. Having accurate estimates of Vc also made
it possible to verify the existence of a universal curve for dif-
fusivities in two and three dimensions.

We have found that both properties are not exact but de-
viations from Eqs. (1) and (2) are remarkably small. Thus for
many practical purposes, such as estimation of effective dif-
fusivities in the cytoplasm, they can be used as if they were
exact. One consequence of these similarities is that depen-
dences Deff (φ) can be approximated with reasonable accu-
racy based on the parameter α alone. Indeed, according to
Eq. (1), two parameters, α and φc, are needed to approxi-
mate D̃eff(φ) but both of them are influenced by the obstacle
shape and are linked due to Eq. (2). Interestingly, the fact that
both parameters in Eq. (1) depend on the obstacle shape is
consistent with the findings of Arns et al.16 These authors
used general principles of integral geometry to show that the
precise description of effective properties of systems with ge-
ometries obtained via Boolean reconstruction requires, in ad-
dition to n and v0, two parameters that depend on the object’s
shape. The results of our study show that the number of nec-
essary parameters can be reduced without significant loss of
accuracy.

The slight imprecision of the properties described by
Eqs. (1) and (2) is in fact required for their coexistence. In-
deed, Eq. (2) implies that D̃eff(V ) must be a function of V/Vc.
This is because for a given obstacle shape,

D̃eff(V ) = D̃sphere
eff (kV ) = D̃sphere

eff

(
V sphere

c
V

Vc

)
,

where D̃sphere
eff (...) and V sphere

c do not depend on the obstacle
shape, and therefore Vc enters the function only in combina-
tion with V , V/Vc. On the other hand, fα,φc (φ) in Eq. (1) is
obviously not a function of V/Vc. Thus, at least one of the
equations is approximate. Because both properties hold with
remarkable accuracy, there must be a function of V/Vc that
would closely approximate fα,φc (φ). In 3D, the power func-
tion of the “Archie’s law” type provides such approximation,
leading to an approximate multiplication “rule” for mixtures
of obstacles of different shapes with comparable polarizabil-
ity. We also found that the harmonic average provides accu-
rate estimates of percolation thresholds for these mixtures.

The article is organized as follows. Sections II and III
include analyses of effective diffusion for a matrix of

identical obstacles whereas Sec. IV presents results for mix-
tures of shapes. A brief review of results for the 2D Swiss-
cheese model is given in Sec. V, and the summary of the study
is provided in Sec. VI.

II. SIMILARITIES OF EFFECTIVE DIFFUSION AND A
SIMPLE APPROXIMATION FOR D̃eff(φ)

A necessary condition for the existence of a univer-
sal curve provides a link between α and Vc. Specifically,
the combination αVc must be the same for all obstacle
shapes. Indeed, if Eq. (2) holds for any V, linearizing it in
the dilute limit yields αV = αsphereVsphere, and the scaling
coefficient k that connects equivalent volume densities in
Eq. (2) is k = Vsphere/V = α/αsphere; on the other hand, at

the percolation threshold, k = V sphere
c /Vc, and we arrive

at

αVc = C. (3)

The constant in Eq. (3) can be evaluated using the pa-
rameters for spheres of which αsphere = 1.5 is exact17 and

φ
sphere
c = 0.9699 is an accurate numerical estimate;18 hence C

= 5.255. Then the corresponding relationship between φc and
α involves a natural small parameter e−C , (1 − φc)α = e−C

= 0.00522.
The link between α and Vc described by Eq. (3) can be

qualitatively understood by interpreting the polarizability v0α

as the average volume of space, in and around the obstacle,
that is largely inaccessible for a diffusive flux in the dilute
limit [see Eqs. (5a) and (5b) and the discussion after Eq. (5b);
averaging is done over all directions of the flux]. It is then in-
tuitively clear that for the system to become impermeable for
diffusive flow, each such space should overlap, on average,
with at least one neighboring obstacle, ncv0α = αVc ∼ 1.
This line of reasoning was first applied by Balberg and co-
workers19, 20 in the context of “grain” percolation (conduct-
ing inclusions in the dielectric medium). They introduced a
concept of “average excluded volume” 〈Vex〉, defined as the
volume around the object into which the center of another
object is not allowed to enter if the overlap of the two is to
be avoided, and proposed the relationship nc〈Vex〉 = const. In
Eq. (3), the average excluded volume is represented by the
polarizability v0α, the parameter that can be computed for an
arbitrary obstacle by a regular procedure described at the end
of this section. The value of the constant C in Eq. (3) can be
interpreted as the number of overlaps per obstacle required to
reach the void percolation threshold; the 2D value of C is 2.3
(Sec. V).

Equation (3) provides a means for assessing the accuracy
of the collapse onto a universal curve. A simple test is to see
whether it holds for shapes with precise values of α and φc. In
this study we use spheroids with varying aspect ratios χ , for
which exact values of α are known:17

α = 1

3

(
4

2 − M
+ 1

M

)
,
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TABLE I. Verification of existence of a universal curve.

Aspect ratio, χ Polarizability, α Percolation threshold for V, Vc Percolation threshold for φ, φc Absolute error of φc, δφc (1−φc)α αVc

4 1.600 3.281 0.9624a 0.0007a 0.00525 5.25
1 1.5 3.503 0.9699 0.0001 0.00522 5.254
1/4 1.907 2.643 0.9289 0.0002 0.00646 5.041
1/8 2.699 1.823 0.8385 0.0004 0.00729 4.922
1/16 4.365 1.125 0.6752 0.0005 0.00737 4.91
1/32 7.744 0.6333 0.4692 0.0007 0.00741 4.905

a The data were kindly provided by Yi (Ref. 21).

where

M =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ϕ − (1/2) sin ϕ)

sin3 ϕ
cos ϕ, for χ = cos ϕ < 1

1

sin2 ϕ
− 1

2

cos2 ϕ

sin3 ϕ
ln

(
1 + sin ϕ

1 − sin ϕ

)
, for χ = 1/ cos ϕ > 1.

For these shapes, we have also obtained accurate nu-
merical values of φc by employing a method proposed in
Ref. 21. In this method, a large number of obstacles (n ∼ 103

–105) are randomly generated in a unit cube. Consistently
with periodic boundary conditions used to compute D̃eff (see
below), the positions of obstacles at opposite boundary planes
were made identical by duplication. The entire system is dis-
cretized using a small mesh size h, h � v1/3

0 , thus reducing
the problem to determination of the percolation threshold on
the lattice. The latter is achieved by applying a “burning” al-
gorithm where nodes on one side of the cube “are set on fire,”
and the fire then propagates to the neighboring nodes until no
more nodes are reachable. The system is deemed percolating
if and only if the fire reaches the opposite side of the cube. The
implementation details and error estimation are described in
the Appendix. The procedure has been validated against the
case of spheres (χ = 1), for which accurate estimates of φc

were obtained previously by different algorithms.14, 18, 22

Our results for percolation thresholds are summarized in
Table I. The error of the φc values, δφc, ranges from 10−4

to 7 × 10−4 (column 5 of Table I). Given this precision, the
differences in (1 − φc)α for varying χ (column 6 of Table I)
are significant. We therefore conclude that the collapse onto
the curve for spheres, as described by Eq. (2), is not ideal.
However, (1 − φc)α varies only modestly over a wide range
of aspect ratios χ , and the corresponding values of αVc fall in
a narrow interval between 4.9 and 5.3 (Table I).

Thus, the approximate equality

φc ≈ 1 − exp

(
− 5

α

)
, (4)

will provide a fairly accurate estimate of a percolation thresh-
old for an arbitrary obstacle shape. Equation (4) is struc-
turally similar to the formula for the grain percolation thresh-
olds proposed by Balberg,23 φc = 1 − exp(−Bc/(〈Vex〉/v0)),
where Bc is the critical number of overlaps per object re-
quired for percolation; the value of Bc was found to vary
between 0.7 and 2.8 depending on shape and orientation of
objects.

The small variations of αVc do not necessarily guarantee
that deviations from Eq. (2) at the intermediate values of V

will be small as well. To examine the collapse onto a single
curve over the entire range of V, we performed direct com-
putations of D̃eff using a fast method based on the homog-
enization analysis.1 The method approximates a disordered
medium by a periodic one, in which a large number of ob-
stacles are randomly generated in a basic cubic unit ω. Let
ω1 denote the free space inside ω. The transformed effective
diffusion coefficient is then computed as

D̃eff = 1

3|ω|
3∑

i=1

∫
ω1

(∇wi (x) + ei )
2dx, (5a)

where the auxiliary functions wi (x) (i = 1, 2, 3) satisfy the
equation,

div(D(x)(∇wi (x) + ei )) = 0. (5b)

In Eq. (5b), which is solved in ω with periodic bound-

ary conditions,4 D(x) =
{

1, if x ∈ ω1

0, otherwise
and ei (i = 1, 2, 3)

are the orts colinear with the edges of ω. Note that Eq. (5b)
is formally equivalent to the equation describing the distribu-
tion of polarization density induced by the constant external
field. For our case, a qualitative interpretation of the “polariza-
tion density” vector ∇wi (x) is that the diffusive flow is effec-
tively unable to penetrate the space around obstacles where
|∇wi (x)| is large. Equation (5b) was solved numerically us-
ing VIRTUAL CELL (vcell.org).24 Comparing to our previous
study, the accuracy of the solution was enhanced by increas-
ing the number of grid points to 5673 and by using obstacles
with a smooth shape (details about the method and error esti-
mates are given in the Appendix).

The effective diffusion coefficients were computed for
the matrix of random overlapping spheroids with the follow-
ing aspect ratios: χ = 4, 1, 1/4, 1/8, and 1/16 (Fig. 1). The
computations were performed for a number of D̃eff “levels.”
For each of those levels, volume densities of obstacles of dif-
ferent shapes V were picked in the inverse proportion to the
corresponding values of α, so that the computations would
yield same values of D̃eff, should Eq. (2) be exact. The re-
sults for different shapes were indeed close at each level,
with differences typically in the third digit after the decimal
point, often within the limits of computational error. A nearly
ideal collapse of the data onto the curve for spheres is ob-
tained upon rescaling of volume densities, V → αV/αsphere

[Fig. 1(b)]. Still, small systematic deviations of D̃eff from the
values predicted by Eq. (2) can be discerned as the obstacles
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FIG. 1. (a) Values of D̃eff obtained for spheroids with aspect ratios χ = 1, 4,
1/4, 1/8, and 1/16 by homogenization method, plotted as functions of obsta-
cle volume density, V. The number of obstacles used in the computations is
n = 2560. Dashed lines indicate average values. Inset: a semilog plot of the
same data. The error bars are not shown if they are comparable to symbol
sizes. (b) Collapse of D̃eff for spheroids onto D̃eff for spheres under rescaling
of volume densities V → αV/αsphere.

become more oblate, particularly in the range of small D̃eff

[see inset in Fig. 1(a)].
Having precise values of α and φc also make it possible

to evaluate the accuracy of the power-law approximation of
Eq. (1) without fitting. Figure 2 demonstrates that the power
function fα,φc (φ) of Eq. (1) provides a reasonably good ap-
proximation for D̃eff (the values of D̃eff are the same as in
Fig. 1 but plotted as functions of φ). The differences in this
case are greater than, but still comparable to, computational
errors δ D̃eff and do not exceed 0.02 (Table II).

The properties of effective diffusion described by Eqs. (1)
and (2) allow one to approximately reconstruct D̃eff(φ) based
on α alone. Given α, the percolation threshold φc can be esti-
mated using Eq. (4), and then the entire curve can be approx-
imated by the power function fα,φc (φ) of Eq. (1). Accurate

FIG. 2. The data of Fig. 1 plotted vs excluded volume fractions, φ. Solid
lines are graphs of fα,φc (φ) = (1 − φ/φc)αφc with the corresponding values
of α and φc. The error bars are not shown if they are comparable to symbol
sizes. Inset: a semilog plot of the same data.

numerical estimates of α for an obstacle of arbitrary shape
can be obtained by computing D̃eff for small excluded vol-
ume fractions, φ � 1. For this, Eq. (5b) is solved for a single
obstacle placed at the center of a unit cube ω (note that the
obstacle should be much smaller than ω). Once the auxiliary
functions wi (x) corresponding to this arrangement are found,
D̃eff is obtained by evaluating the integral in Eq. (5a). Then
α = (1 − D̃eff)/φ.

III. “ARCHIE’S LAW”

The ideal collapse to a single curve of the dependences
D̃eff(φ) for individual obstacle shapes would imply that
D̃eff(φ(V )) should be a function of V/Vc (Sec. I). But the
function fα,φc(Vc)(φ(V )) in Eq. (1) does not possess this prop-
erty. This inconsistence, however, cannot be significant given
that both Eqs. (1) and (2) hold with remarkable accuracy, and
therefore there should be functions of V/Vc that would be
good approximations for fα,φc (φ). Here we show that in 3D,
the power function of the “Archie’s law” type,9, 20

gα(φ) = (1 − φ)α, (6)

is both a good approximation for fα,φc (φ) and, essentially, a
function of V/Vc.

That gα(φ) is close to a function of V/Vc follows from
the necessary condition for the existence of a universal curve,
Eq. (3),

gα(φ) = (1 − φ)α = exp(−αV )

= exp(−αVcV/Vc) ≈ exp(−CV/Vc).

In 3D, Eq. (6) is also a good approximation for fα,φc (φ).
This is due to the existence of the small parameter ε = e−C

= 0.00522, which in turn follows from Eq. (3) and from
the fact that there is at least one shape (sphere), for which
φc is close to 1 (Sec. II). Indeed, for prolate spheroids,
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TABLE II. Deviation of D̃eff(φ) from fα,φc (φ), Eq. (1), for spheres (α = 1.5, φc = 0.9699).

Excluded volume
fraction, φ

Transformed
effective

diffusivity, D̃eff(φ)

Deviation of D̃eff(φ) from
Eq. (1), 	 =

(1 − φ/φc)αφc − D̃eff(φ)
Absolute error of D̃eff,

δ D̃eff

Relative error of D̃eff,
δ D̃eff/D̃eff

Relative deviation
of D̃eff(φ)from
Eq. (1), 	/D̃eff

0 1 0 0 0 0
0.2227 0.6817877 0.0025 0.0037 0.00543 0.00367
0.3692 0.4915673 0.0065 0.0054 0.01099 0.01322
0.5106 0.3267252 0.01034 0.0068 0.02081 0.03165
0.6484 0.1876078 0.013 0.0083 0.04424 0.06939
0.7304 0.1158310 0.0149 0.0076 0.06561 0.12863
0.7804 0.0740143 0.019 0.0077 0.10403 0.25671
0.8441 0.0394638 0.0118 0.0066 0.16724 0.29901
0.8841 0.0193188 0.01 0.0051 0.26399 0.51763
0.92792 0.0049364 0.0055 0.0036 0.72927 1.11417
0.9363 0.001777 0.0057 0.0036 2.02592 3.20771

α ranges from 3/2 to 5/3, and parameters εα ≡ 1 − φc(α)
≈ ε1/α = e−C/α are also small. Then the expansion of
fα,φc (φ) in powers of εα yields fα,φc (φ) = gα(φ) + O(εα).
More precisely, 	(α) = max

0≤φ≤φc

|gα(φ) − fα,φc (φ)| does not

exceed 0.013. For oblate spheroids, α can be arbitrarily large
and φc can be rather small. Nevertheless, gα(φ) remains a
good approximation for fα,φc (φ), in part because it “misses”
the zero-diffusion point by only gα(φc) = (1 − φc)α ≈ ε. This
is illustrated by Fig. 3, where the data for oblate spheroids
with χ = 1/8 (α = 2.699) are plotted against the correspond-
ing fα,φc (φ) and gα(φ). Overall, 	(α) is a monotone function
bounded from above; it approaches 0.055 as α → ∞.

The “Archie’s law,” D̃eff(φ(V )) = (1 − φ(V ))α

= exp(−αV ) can be derived from the differential effec-
tive medium theory.25 In this theory, an approximate equation
describes how the effective diffusion coefficient would
change after random addition of a small number of obstacles
to an already existed macroscopically large system of the
same obstacles. The idea is to replace the existed system

FIG. 3. Values of D̃eff obtained for oblate spheroids with χ = 1/8 by ho-
mogenization method, plotted as a function of the obstacle volume density
V . Solid and dashed curves are the plots of fα,φc (φ(V )) = (1 − φ(V )/φc)αφc

and gα(φ(V )) = (1 − φ(V ))α = e−αV , respectively; α = 2.699 and
φc = 1 − exp(−5/α). The error bars are comparable to the symbol size. In-
set: a semilog plot of the same data.

of obstacles by a uniform “effective medium” with the
diffusion coefficient D̃eff(V ), so that the added obstacles,
corresponding to the infinitesimally small increase of volume
density 	V can be approximated by the equation in the
dilute limit, D̃eff(V + 	V ) = D̃eff(V )(1 − α	V ), yielding
D̃eff(V ) = e−αV . The assumption would be exact if the
obstacles already present were much smaller than the added
ones. But because all obstacles are the same, the substitution
of the existed system with a continuum is an approximation.
Note that the equation can be interpreted as a multiplication
rule, D̃eff(V + 	V ) = D̃eff(V )D̃eff(	V ), applied to the
superposition of the macroscopic and infinitesimally small
subsystems composed of identical obstacles. In Sec. IV, we
show that in 3D, both “Archie’s law” and the multiplication
“rule” extend to superposition of macroscopic subsystems of
obstacles of different shapes. However, in 2D these approxi-
mations become poor (see Sec. V). This can be qualitatively
understood by taking into account that in the dilute limit, the
2D single-obstacle “polarization density” |∇wi (x)| decays
with distance from the obstacle an order of magnitude slower
than in 3D. Therefore, multiobject correlations ignored in the
equation of the effective medium theory are expected to be
much stronger in 2D.

IV. MIXTURES OF SHAPES

In living cells, diffusion of molecules is occluded by
structures of different shapes, and therefore it is necessary to
be able to compute parameters of effective diffusion for mix-
tures of shapes.

We first show that Eq. (3) also applies to the mixtures of
obstacles of different shapes and comparable polarizability.
Consider a mixture of obstacles of two shapes characterized
by α1 and α2, and volume densities V1 and V2 (we assume
that obstacles have comparable polarizability, α1v1 ∼ α2v2,
to exclude possible size dependence18, 26). Percolation thresh-
olds for several compositions of spheres (χ = 1) and oblate
spheroids (χ = 1/32), (f1, f2) = {(1/4, 3/4), (1/2, 1/2), (3/4, 1/4)},
obtained by the “burning” algorithm, are presented in
Table III. Because of the linear superposition in the dilute



154104-6 Novak et al. J. Chem. Phys. 134, 154104 (2011)

TABLE III. Percolation thresholds φc for mixtures of spheroids with aspect ratios χ1 = 1 and χ2 = 1/32.

Phase fraction of spheres, f1 Percolation threshold for V, Vc Percolation threshold for φ, φc Absolute error of φc, δφc αVc

1 3.503 0.9699 0.0001 5.254
3/4 1.5878 0.7956 0.0007 4.86
1/2 1.0451 0.6483 0.0015 4.831
1/4 0.7837 0.5433 0.0012 4.846
0 0.6333 0.4692 0.0007 4.905

limit, values of αVc (column 5) were computed using

α = α1 f1 + α2 f2 (7)

with f1 = V1/(V1 + V2), f2 = V2/(V1 + V2).
Given that the results for αVc are similar to those for the

individual obstacle shapes (Table I), we conclude that Eq. (3),
αVc = C , approximately holds for the mixtures as well. Two
corollaries follow from this fact for parameters of effective
diffusion in mixtures of shapes.

A. Void percolation thresholds for mixtures of
shapes: Harmonic averaging

Percolation thresholds for systems of objects of differ-
ent shapes and sizes were studied extensively using con-
tinuous models of grain percolation20, 27 and lattice models
of void percolation.28 Effects of polydispersity were also
studied for the models of void percolation, both discrete28

and continuous.18, 26 Here we show that in the Swiss-cheese
model, the void percolation thresholds of mixtures of shapes
with comparable sizes, Vc,mix, are well described by the har-
monic mean of the thresholds of the components. This im-
mediately follows from Eq. (7) and from the fact that Eq. (3)
holds for mixtures of shapes,

V −1
c,mix ≈ V −1

c,1 f1 + V −1
c,2 f2,

and

φc ≈ 1 − exp
{ − (

V −1
c,1 f1 + V −1

c,2 f2
)−1}

. (8)

That the nonlinear relationship (8) provides an excel-
lent approximation for percolation thresholds φc is illustrated
in Fig. 4 where the corresponding concave curve is plot-
ted against the data of Table III (column 3). If the perco-
lation thresholds for the components, φc,1 and φc,2, are not
very different, Eq. (8) becomes close to a linear function,
φc = φc,1 f1 + φc,2 f2, used in Ref. 1 to interpolate data with
only slight concavity. But as evident from Fig. 4, the nonlinear
interpolation based on harmonic averaging is generally more
accurate.

B. Multiplication “rule”

Equation (1) also holds for mixtures of shapes,1 with α

and φc determined from Eqs. (7) and (8). But one can also
use a simple multiplication “rule,” particularly convenient for
analyzing experiments which probe effective diffusion by al-
tering (or eliminating) certain components of the system (e.g.,
dissolving cytoskeletal filaments or varying the tracer size; the

latter is equivalent to changing parameters of the filamentous
subsystem alone1).

The “rule” follows from the fact that both Eqs. (1) and (3)
apply to mixtures of shapes. Then, based on the results of
Sec. III, Eq. (6) also provides a good approximation for the
mixtures,

D̃eff, mix(φ) ≈ (1 − φ)α = e−αV = e−α1V1 e−α2V2

= (1 − φ1)α1 (1 − φ2)α2 ≈ D̃eff, 1(φ1)D̃eff, 2(φ2).

We therefore conclude that D̃eff, mix(φ) is approximated
well by the product of diffusivities corresponding to the indi-
vidual submatrices of identical obstacles,

D̃eff, mix(φ) ≈ D̃eff, 1(φ1)D̃eff, 2(φ2),

where the total excluded volume fraction φ relates to the
partial excluded volume fractions φ1 and φ2 as 1 − φ

= (1 − φ1)(1 − φ2). Given this relationship, the same
multiplication “rule” holds for the actual effective
diffusion coefficients Deff = D̃eff/(1 − φ) : Deff, mix(φ)
≈ Deff, 1(φ1)Deff, 2(φ2).

The accuracy of the multiplication “rule” is demonstrated
by Fig. 5, where the values of the effective diffusion coeffi-
cient obtained by the homogenization method for a mixture
of disks and cylinders are shown against the solid line repre-
senting the multiplication “rule”. The line is the plot of the
function fα1,φc,1 (φ1) × fα2,φc,2 (φ2) where fα1,φc,1 and fα2,φc,2

are the power-law approximations for cylinders and disks with

FIG. 4. Percolation thresholds φc for mixtures of spheres (χ1 = 1) and
oblate spheroids (χ2 = 1/32), as a function of the phase fraction of spheres,
f1 (diamonds). The error bars are smaller than the symbol size. The data,
obtained using the “burning” algorithm, are well approximated by Eq. (8)
(solid curve); the dashed line represents the linear function φc = φc,1 f1
+ φc,2(1 − f1).



154104-7 Similarities of effective diffusion J. Chem. Phys. 134, 154104 (2011)

FIG. 5. Multiplication “rule” for mixtures of shapes. Values of D̃eff (and
Deff, inset) for the mixture of cylinders (χ1 = 4) and disks (χ2 = 1/16)
with phase fractions f1 = f2 = 0.5 (circles) and for disks only (squares) and
cylinders only (triangles) are plotted against the corresponding power-law
approximations fα1,φc,1 (φ) and fα2,φc,2 (φ) (dashed lines), with parameters
α1 = 3.6, φc,1 = 0.74 and α2 = 1.64, φc,2 = 0.953 taken from Ref. 1, and
the multiplication rule, fα1,φc,1 (φ1) · fα2,φc,2 (φ2) (solid line); φ1 = 1 − (1
− φ) f1 ,φ2 = 1 − (1 − φ) f2 . Error bars were smaller than the symbol sizes.

φ1 = 1 − (1 − φ) f1 and φ2 = 1 − (1 − φ) f2 ( f1 and f2 are
the phase fractions). Our numerical estimates indicate that
the multiplication “rule” provides an accurate approximation
with an absolute error less than 0.031.

V. SIMILARITIES OF EFFECTIVE DIFFUSION IN 2D

In this section, we examine similarities of effective diffu-
sion in the 2D Swiss-cheese models. A mathematically equiv-
alent problem of effective conductivity in presence of random
overlapping dielectric inclusions of various shapes was stud-

FIG. 6. Effective diffusion in 2D. Effective diffusivities for ellipses with χ

= 1, 1/2, and 1/5 obtained by homogenization method are plotted as a func-
tion of area density A and compared to fα,φc (φ(A)) = (1 − φ(A)/φc)αφc

(solid curves) and gα(φ(A)) = (1 − φ(A))α = e−αA (dashed curves) with the
corresponding values of α and φc from Table IV. The number of obstacles
used in the computations is n = 40 000. Error bars are comparable to the
symbol sizes.

TABLE IV. Parameters α and φc for ellipses with different aspect ratios.

Aspect
ratio, χ Polarizability, α Percolation threshold, φc

Absolute error of
φc, δφc

1 2 0.676348 (Ref. 26) 0.000001
1/2 2.25 0.63 (Ref. 32) 0.01
1/5 3.6 0.455 (Ref. 33) 0.001

ied numerically by Garboczi et al.13 They observed the col-
lapse of the data obtained for individual obstacle shapes onto
a single curve and found that for a number of different of
shapes, αAc varied only slightly (Ac is the critical area density
of inclusions, an analogue of Vc in 3D). Based on these obser-
vations, Garboczi et al. proposed a universal curve for the 2D
conductivity, attributing differences of αAc to computational
errors.

Since then, accurate values of Ac have been estab-
lished for several shapes. In particular, for squares, φc

= 0.6666(4) and Ac = 1.098(1) (Ref. 29) and for circles,
φc = 0.6763475(6) and Ac = 1.128085(2).26 Given these
values and the exact values of α, αcircle = 2 and αsquare

= 
4( 1
4 )/8π2 = 2.188439(6),30 the necessary condition for

the existence of the universal curve, αAc = const., is not
fulfilled exactly. Indeed, with the error less than 10−4,
(αAc)circle = 2.25617, whereas (αAc)square = 2.4031.

Independently, we have computed accurate values of the
effective diffusion coefficients in the presence of elliptical
obstacles with χ = 1, 1/2, and 1/5, using the same numer-
ical techniques as for the 3D case. The results obtained for
the area densities, such that A1 : A2 : A3 = α−1

1 : α−1
2 : α−1

3 ,
are presented in Fig. 6 where the data are plotted against the
power function fα,φc (φ) of Eq. (1) with the exact values of α,
α = (1/2)(χ + χ−1) + 1,31 and the accurate numerical val-
ues of φc (Table IV). Variations of the corresponding values
of D̃eff and the deviations from Eq. (1) were less than 0.01
but slightly greater than computational errors. Overall, as in
3D, the similarities of the effective diffusion in the 2D Swiss-
cheese models are not exact but deviations from Eqs. (1)
and (2) are rather small.

But unlike the 3D case, the similarities in 2D do not re-
sult in a multiplication rule for mixtures of shapes. This is
because exponential functions e−αA (dashed curves in Fig. 6)
provide a poor approximation in 2D, owing to the fact that
(1 − φcircle

c )αcircle is insufficiently small. However, given the co-
existence of the two properties, there must be other functions
of A/Ac that would approximate fα,φc (φ) well. As an exam-
ple, the functions (1 − A/Ac)C , where C is the constant in the
approximate equality αAc ≈ C = 2.3,26, 29, 32, 33 the 2D equiv-
alent of Eq. (3), approximate the curves in Fig. 6 with errors
∼0.05.

VI. CONCLUSIONS

Earlier studies of effective transport in a matrix of ran-
dom overlapping obstacles revealed remarkable regularities.
It has been shown that effective diffusion coefficients for var-
ious shapes of obstacles collapse to a single curve after appro-
priate rescaling of volume fractions. It has been also observed
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that a simple two-parameter power law provides an accurate
description of effective diffusivities as functions of excluded
volume fractions over nearly entire range of values, except for
the critical region.

In this article, we re-examined these similarities with en-
hanced precision and found that while they are not exact, devi-
ations from the equations describing them are small. This has
important implications. In particular, the similarities of effec-
tive diffusion allow for simple estimation of void percolation
thresholds for obstacles of any given shape and for fast recon-
struction of Deff (φ) over nearly the entire range of excluded
volume fractions [Eqs. (4) and (1)]. In fact, all that is needed
is a single parameter, the slope of the curve in the dilute limit;
the latter is fully determined by the obstacle shape and can be
computed in a straightforward manner (Sec. II).

The similarities hold for mixtures of shapes as well, lead-
ing to simple and accurate approximations. In particular, we
found that the void percolation thresholds for the mixture are
well approximated by the harmonic mean of the thresholds
of components. And in 3D, the effective diffusion coefficient
for the mixture can be estimated simply as a product of dif-
fusion coefficients for the components. This multiplication
“rule” can be conveniently applied for analyzing results of
experiments which probe effective diffusion by altering (or
eliminating) certain components of the system.
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APPENDIX: METHODS AND ERROR ANALYSIS

1. Method of homogenization

Originally formulated for composites with periodic
microstructures,34 homogenization is an asymptotic analy-
sis that utilizes a small parameter, the ratio of “micro-” and
“macro-” length scales, to obtain accurate effective charac-
teristics of the medium.35 Consider a periodic arrangement
of identical obstacles in a large rectangular box � with the
free space �1 in it and φ = 1 − |�1|/|�|. The spatial periods
a1, a2, and a3 in respective Cartesian directions are such that

the ratio ε =
√

a2
1 + a2

2 + a2
3/

3
√|�| is small: ε � 1. The dif-

fusion coefficient, Dε(x) =
{

1, if x ∈ �1

0, otherwise
, oscillates with the

same periods. Steady-state diffusive fluxes in � are found by
solving the equation,

div(Dε(x)∇uε) = 0, (A1)

for the tracer distribution uε(x), with Dirichlet boundary con-
ditions maintaining mismatch of the tracer concentrations at
the opposite sides of � in a certain Cartesian direction and
with zero flux conditions at other sides of � and at the sur-
faces of the obstacles.

Because uε in Eq. (A1) describes behavior of the
tracer on two different spatial scales, it is convenient

to think of it as a function of two variables: a “macro-
scopic” slow variable x and a “microscopic” fast variable
y ≡ x/ε, so that uε is periodic with respect to y: uε(x)
≡ u(x, y) and ∂xuε(x) ≡ ∂xu(x, y) + ε−1∂yu(x, y). Since
Dε(x) is also a periodic function with the same period, both
Dε(x) ≡ D(x/ε) = D(y) and u(x, y) are periodic in y. A
solution to Eq. (A1) is then sought in the form of expansion,

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · ,

where ui (x, y) are found from a cascade of equations obtained
by substituting the expansion into Eq. (A1) and collecting
terms of the same order in ε. The result is that the first term
of the expansion does not depend on y, u0(x, y) ≡ u0(x), thus
representing the “homogenized” solution, u0(x) = lim

ε→0
uε(x),

which satisfies a “macroscopic” diffusion equation with the
effective diffusion coefficient (the latter is generally a ten-
sor because periodic structures of asymmetric obstacles are
anisotropic),

div(Deff∇u′) = div(Deff(1 − φ)∇u0) = div(D̃eff∇u0) = 0,

(A2)
where the function u′(x) = (1–φ) u0(x) is the “macroscopic”
density, given that u0(x) is defined only in free space [as is
uε(x)].6 The elements of D̃eff,

D̃eff,i j = 1

|�0|
∫

�0

D(y)(∇wi (y) + ei )(∇w j (y) + e j )dy

are expressed in terms of auxiliary periodic functions wi (y),
which satisfy the equation

div(D(y)(∇wi (y) + ei )) = 0, i = 1, 2, 3, (A3)

in the unit cell �0 = (1, a1/ε) × (1, a2/ε) × (1, a3/ε). Equa-
tion (A3) is to be solved with periodic boundary conditions
(ei, i = 1, 2, 3, are the orts colinear with the edges of �0).

To extend the concept of homogenization to random
structures, for which stochastic homogeneity is the analog of
periodicity,4 a disordered medium is approximated with a pe-
riodic one, where the unit cell �0 includes sufficiently large
number of randomly placed obstacles (its effect on the error
of computing D̃eff is described in Computation error of D̃eff ,
below). In this case,

D̃eff = T r (D̃eff(φ))

3
. (A4)

Note that Eqs. (A4) and (A3) are equivalent to Eqs. (5a)
and (5b), respectively.

2. Computation of percolation thresholds

The void percolation threshold φc for a system of
random overlapping obstacles was obtained using the proce-
dure proposed in Ref. 21, with slight modifications aimed at
improving precision. In this method, a certain excluded vol-
ume fraction φ is achieved by randomly generating n obsta-
cles of a particular size in a unit cube. The system is then
discretized with a mesh size h, and the “burning” algorithm is
applied to determine whether the resulting lattice percolates
(see Sec. II). For each set of n, h, and φ, the procedure was
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repeated multiple times to obtain the probability Pn,h(φ) of
percolation in a fixed direction. The number of realizations,
limited by computation cost per realization that scales as h−3,
ranged from 500 to 2000.

Figure 7 illustrates typical behavior of the percolation
probability as a function of φ, for given n and h. Clearly,
with n → ∞ and h → 0, Pn,h(φ) tends to a step func-

tion, P∞,0(φ) =
{

1, φ < φc

0,φ ≥ φc
. Let φp(n, h) be the solution

of the equation Pn,h(φ) = p, for some p∈(0,1). Because for
finite n and nonzero h, Pn,h(φ) is a continuous and mono-
tone function, this solution exists, is unique, and for any
p, lim

n→∞,h→0
φp(n, h) = φc.

A particular choice of p becomes important for opti-
mizing the convergence rate with respect to n and improv-
ing accuracy. Based on the results for lattice percolation
models,36, 37 it is expected that there exists a limiting probabil-
ity π = lim

n→∞ Pn,h(φc), independent of h. For periodic bound-

ary conditions used in this study, the known value of π for
lattice models is 0.573.37 We therefore use p = 0.573 because
convergence is the fastest for this choice of p. Indeed, with h̄
defined as hn1/3,

φp

(
h̄,

1

n

)
=

{
φc + O(h̄) + O(n−θ−1/(3ν)), for p = 0.573
φc + O(h̄) + O(n−1/(3ν)), otherwise

,

where ν = 0.8811, and, based on our data, θ ∼1/3. The val-
ues of φπ (h̄, 1/n)were computed for a large set of points in
the parameter space (h̄, 1/n). Each value φπ (h̄, 1/n) was ob-
tained by linear interpolation of the data points with Pn,h in the
interval (1/4, 3/4) (see Fig. 7), and the error was estimated us-
ing standard regression analysis. To determine φc, the values
of φπ (h̄, 1/n) were extrapolated to the point (0, 0) by fitting
the data to the function, φπ (h̄, 1/n) = φc + a1h̄ + a2h̄2 +
a3n−1/(3ν)−θ + a4h̄n−1/(3ν)−θ . A typical surface φπ (h̄, 1/n) is
shown in Fig. 8. The error of the obtained φc was estimated
as maximum of the errors of all φπ (h̄, 1/n).

FIG. 7. Percolation probability Pn ,h (φ) computed for a system of n = 12 500
random spheres in a unit cube; the total number of nodes is 3133, the corre-
sponding mesh size h = 1/312 = 0.0032. Each data point representing the
probability of percolation in a fixed direction was obtained from 500 inde-
pendent realizations. The curve is drawn for eye guidance only.

FIG. 8. Extrapolation of φπ (h̄, 1/n) computed for spheres to the point (0, 0).
The extrapolated value is shown as an empty circle.

3. Computation error of D̃eff

Error of computing D̃eff is determined mainly by trun-
cation and statistical errors. The truncation error arises from
spatial discretization of the computational domain with a fi-
nite mesh size h, which is required for solving Eq. (5b) nu-
merically. The statistical error is due to computing D̃eff for
particular random realizations of a system of n obstacles. In
this study, D̃eff was determined from a single realization as
¯̃D = 1/3

∑3
i=1 D̃i , where D̃i are effective diffusion coeffi-

cients in three orthogonal directions [diagonal elements of
D̃eff, Eq. (A2)]. Given the large number of obstacles used in
the computations, n = 2560, this is equivalent to averaging
over three independent random realizations. Yet another error
is associated with the finite linear size of the sample. While
the latter cannot be diminished by averaging over a large num-
ber of realizations because E(Dn

eff) �= E(D∞
eff) [E( . . . ) stands

for the mathematical expectation], it decreases with growing
n more rapidly than the statistical error and therefore can be
ignored.

In our computations, the truncation error was O(h). To
reduce it, D̃eff was computed for several mesh sizes h1, h2, h3,
. . . and the results were extrapolated to h = 0 using a least-
square fitting to a quadratic polynomial. The accuracy of the
procedure was estimated as the absolute difference between
the quadratic and linear extrapolations (Fig. 9).

Estimation of the statistical error was based on the fol-
lowing observations. The standard deviations, computed as

σD̃ =
√

1/3
∑3

i=1 (D̃i − ¯̃D)2 for varying volume densities V,
albeit noisy, appeared to be essentially independent of obsta-
cle shapes, in line with the fact that different shapes could be
interchanged without affecting D̃eff appreciably. This reduces
the problem of accurate estimation of σD̃ to that for spheres.
The probability distribution of D̃eff for spheres, inferred from
a large number of realizations, was observed to follow closely
the probability distribution of the excluded volume fractions
φ. The standard deviation for the latter can be found analyti-
cally: σφ ≈ n−1/2e−V V 1.5(a0 + a1V ), where a0 = √

17/105,



154104-10 Novak et al. J. Chem. Phys. 134, 154104 (2011)

FIG. 9. Determination of the truncation error for computed D̃eff as a differ-
ence between quadratic (solid curve) and linear (dashed line) extrapolations.

a1≈0.046. In fact, our results suggest that σD̃ for spheres
is well approximated by σD̃ ≈ n−1/2e−(αV )sphere V 1.5

sphere(a0

+ a1Vsphere) with the same a0 and a1. Then the approxi-
mate formula for obstacles of arbitrary shape can be ob-
tained by taking into account that Vsphere = (α/αsphere)V , σD̃
≈ n−1/2e−αV (αV/αsphere)3/2(a0 + a1αV/αsphere).
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