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Abstract
Mass spectrometry-based proteomics has become the tool of choice for identifying and
quantifying the proteome of an organism. Though recent years have seen a tremendous
improvement in instrument performance and the computational tools used, significant challenges
remain, and there are many opportunities for statisticians to make important contributions. In the
most widely used “bottom-up” approach to proteomics, complex mixtures of proteins are first
subjected to enzymatic cleavage, the resulting peptide products are separated based on chemical or
physical properties and analyzed using a mass spectrometer. The two fundamental challenges in
the analysis of bottom-up MS-based proteomics are: (1) Identifying the proteins that are present in
a sample, and (2) Quantifying the abundance levels of the identified proteins. Both of these
challenges require knowledge of the biological and technological context that gives rise to
observed data, as well as the application of sound statistical principles for estimation and
inference. We present an overview of bottom-up proteomics and outline the key statistical issues
that arise in protein identification and quantification.

1. Introduction
The 1990s marked the emergence of genome sequencing and deoxyribonucleic acid (DNA)
microarray technologies, giving rise to the “–omics” era of research. Proteomics is the
logical continuation of the widely-used transcriptional profiling methodology (1).
Proteomics involves the study of multiprotein systems in an organism, the complete protein
complement of its genome, with the aim of understanding distinct proteins and their roles as
a part of a larger networked system. This is a vital component of modern systems biology
approaches, where the goal is to characterize the system behavior rather than the behavior of
a single component. Measuring messenger ribonucleic acid (mRNA) levels as in DNA
microarrays alone does not necessarily tell us much about the levels of corresponding
proteins in a cell and their regulatory behavior, since proteins are subjected to many post-
translational modifications and other modifications by environmental agents. Proteins are
responsible for the structure, energy production, communications, movements and division
of all cells, and are thus extremely important to a comprehensive understanding of systems
biology.

While genome-wide microarrays are ubiquitous, proteins do not share the same
hybridization properties of nucleic acids. In particular, interrogating many proteins at the
same time is difficult due to the need for having an antibody developed for each protein, as
well as the different binding conditions optimal for the proteins to bind to their
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corresponding antibodies. Protein microarrays are thus not widely used for whole proteome
screening. Two-dimensional gel electrophoresis (2-DE) can be used in differential
expression studies by comparing staining patterns of different gels. Quantitation of proteins
using 2-DE has been limited due to the lack of robust and reproducible methods for
detecting, matching and quantifying spots as well as some physical properties of the gels (2).
Although efforts have been made to provide methods for spot detection and quantification
(3), 2-DE is not currently the most widely-used technology for protein quantitation in
complex mixtures. Meanwhile, mass spectrometry (MS) has proven effective for the
characterization of proteins and for the analysis of complex protein samples (4). Several MS
methods for interrogating the proteome have been developed: Surface Enhanced Laser
Desorption Ionization (SELDI) (5), Matrix Assisted Laser Desorption Ionization (MALDI)
(6) coupled with time-of-flight (TOF) or other instruments, and gas chromatography MS
(GC-MS) or liquid chromatography MS (LC-MS). SELDI and MALDI do not incorporate
on-line separation during MS analysis, thus separation of complex mixtures needs to be
performed beforehand. MALDI is widely used in tissue imaging (7–9). GS-MS or LC-MS
allow for online separation of complex samples and thus are much more widely used in
high-throughput quantitative proteomics. Here we focus on the most widely-used “bottom-
up” approach to MS-based proteomics, LC-MS.

In LC-MS-based proteomics, complex mixtures of proteins are first subjected to enzymatic
cleavage, then the resulting peptide products are analyzed using a mass spectrometer; this is
in contrast to “top-down” proteomics, which deals with intact proteins and is limited to
simple protein mixtures (10). A standard bottom-up experiment has the following key steps
(Figures 1–3): (a) extraction of proteins from a sample, (b) fractionation to remove
contaminants and proteins that are not of interest, especially high abundance house-keeping
proteins that are not usually indicative of the disease being studied, (c) digestion of proteins
into peptides, (d) post-digestion separations to obtain a more homogeneous mixture of
peptides, and (e) analysis by MS. The two fundamental challenges in the analysis of MS-
based proteomics data are then the identification of the proteins present in a sample, and the
quantification of the abundance levels of those proteins. There are a host of informatics tasks
associated with each of these challenges (Figures 4–6).

The first step in protein identification is the identification of the constituent peptides. This is
carried out by comparing observed features to entries in a database of theoretical or
previously identified peptides (Figure 5). In tandem mass spectrometry (denoted by MS/
MS), a parent ion possibly corresponding to a peptide is selected in MS1 for further
fragmentation in MS2. Resulting fragmentation spectra are compared to fragmentation
spectra in a database, using software like SEQUEST (11), Mascot (12), or X!Tandem
Alternatively, high-resolution MS instruments can be used to obtain extremely accurate
mass measurements, and these can be compared to mass measurements in a database of
peptides previously identified with high confidence via MS/MS (13) using the same
software tools above. In either case, a statistical assessment of the peptide identification
confidence level is desired. Protein identification can be carried out by rolling up peptide-
level identification confidence levels to the protein level, a process that is associated with a
host of issues and complexities (14). The goal of the identification process is generally to
identify as many proteins as possible, while controlling the number of false identifications at
a tolerable level. There are a myriad of options for the exact identification method used,
including (i) the choice of a statistic for scoring the similarity between an observed spectral
pattern and a database entry (12, 15), and (ii) the choice of how to model the null
distribution of the similarity metric (16–17). Two other methods of protein identification
exist: de novo and hybrids of de novo and database matching. This is further explained in
Section 5.
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In quantitation experiments, protein abundances are inferred from the identified peptides.
One of the most common and simplest methods is to count the number of times a peptide
has been seen and accumulate those counts for all the peptides seen for a given protein. This
gives a value that is proportional to the abundance of the protein, i.e. a more abundant
protein would be expected to have peptides that are observed more often (18–19). A more
accurate method for quantifying the abundance of a peptide is to calculate the peak volume
(or area) across its elution profile using its extracted ion chromatogram. Protein abundances
are inferred from the corresponding peptide abundances (Figure 6).

Peak capacity is a function of the number of ions detected for a particular peptide, and is
related to peptide abundance (20). Peptide abundances can be computed with or without the
use of stable isotope labels (21–22). In the case of isotopic labeled experiments, usually a
ratio of the peak capacities of the two isotopically labeled components is reported.
Regardless of the specific technology used to quantify peptide abundances, statistical
models are required to roll peptide-level abundance estimates up to the protein level. Issues
include widespread missing data due to low-abundance peptides, misidentified peptides,
undersampling of peaks for fragmentation in MS/MS, and degenerate peptides that map to
multiple proteins, among others. This is further explained in Section 6.

The purpose of this paper is to provide an accessible overview of LC-MS-based proteomics.
Our template for this paper was a 2002 Biometrics paper of similar focus in the DNA
microarray setting (23). It is our hope that this, like the 2002 paper for DNA microarrays,
will serve as an entry-point for more statisticians to join the exciting research that is ongoing
in the field of LC-MS-based proteomics.

2. Basic Biological Principles Underlying Proteomics
Proteins are the major structural and functional units of any cell. Proteins consist of amino
acids arranged in a linear sequence, which is then folded to make a functional protein. The
sequence of amino acids in proteins is encoded by genes stored in a DNA molecule. The
transfer of information from genetic sequence to protein in eukaryotes proceeds by
transcription and translation. In transcription, single-stranded mRNA representations of a
gene are constructed. The mRNA leaves the nucleus and is processed into protein by the
ribosome in the translation step. This information transfer, from DNA to mRNA to protein is
essential for cell viability and function. In genomic studies, microarray experiments measure
gene expression levels by measuring the transcribed mRNA abundance. Such measurements
can show the absence, under- or over-expression of genes under different condition.
However, protein levels do not always correspond to the mRNA levels due to a variety of
factors such as alternative splicing or post translational modifications (PTMs). Thus,
proteomics serves an important role in a systems-level understanding of biological systems.

A three-nucleotide sequence (codon) of mRNA encodes for one amino acid in a protein. The
genetic code is said to be degenerate as more than one codon can specify the same amino
acid. In theory, mRNA could be read in three different reading frames producing distinct
proteins. In practice however most mRNAs are read in one reading frame due to start and
stop codon positions in the sequence. The raw polypeptide chain (a chain of amino acids
constituting a protein) that emerges from the ribosome is not yet a functional protein, as it
will need to fold into its 3-dimensional structure. In most organisms, proper protein folding
is assisted by proteins called chaperones that stabilize the unfolded or partially folded
proteins, preventing incorrect folding, as well as chaperonins that directly facilitate folding.
Misfolded proteins are detected and either refolded or degraded. Proteins also undergo a
variety of PTMs, such as phosphorilation, ubiquitination, methylation, acetylation,
glycosylation, etc., which are additions/removals of specific chemical groups. PTMs can
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alter the function and activity level of a protein and play important roles in cellular
regulation and response to disease or cellular damage.

A key challenge of proteomics is the high complexity of the proteome due to the one-to-
many relationship between genes and proteins and the wide variety of PTMs. Furthermore,
MS-based proteomics does not have the benefit of probe-directed assays like those used in
microarrays. Although protein arrays are available, they (a) are challenging to design and
implement and (b) are not well-suited for protein discovery, and are thus not as widely-used
as MS-based technologies (4). Several steps are involved in preparing samples for MS, such
as protein extraction, fractionation, digestion, separation and ionization, and each
contributes to the overall variation observed in proteomics data. In addition, technical
factors like day-to-day and run-to-run variation in the complex experimental equipment can
create systematic biases in the data-acquisition stage.

3. Experimental Procedure
A LC-MS-based proteomic experiment requires several steps of sample preparation (Figure
2), including cell lysis to break cells apart, protein separation to spread out the collection of
proteins into more homogenous groups, and protein digestion to break intact proteins into
more manageable peptide components. Once this is complete, peptides are further separated,
then ionized and introduced into the mass spectrometer.

3.1 Sample Preparation
Analysis of the complete cell proteome usually involves collecting intact cells, washing
them and adding a lysate buffer, containing a combination of chemicals that break the cell
membrane and protease inhibitors that prevent protein degradation. Cells are homogenized
and incubated with the buffer, after which centrifugation is used to separate the cellular
debris and membrane from the supernatant, or cell lysate. The cell lysis step is unnecessary
when analyzing bodily fluids such as blood serum. Blood samples are centrifuged after
which red blood cells pellet at the bottom of the tube, and plasma is collected at the top.
Fibrinogen and other clotting factors are removed to obtain serum. High abundance proteins
are also removed, as usually they do not play a role in disease. If some of the high
abundance proteins are not removed, they may dominate spectral features and obscure less
abundant proteins of interest. In LC-MS/MS, for example, the most abundant peptides are
selected in the first MS step for further fragmentation in the following MS step, and only
peptides selected for further fragmentation have a chance to be identified; see Section 3.2 for
more details.

Because of the complexity of the proteome, separation steps are employed to spread out the
proteins according to different chemical or physical characteristics, making it easier to
observe a greater number of proteins in more detail. At the protein level, two-dimensional
gel electrophoresis (2DE) is often used to separate on the basis of both isoelectric point and
mass (24–25). Proteins in the gel can be stained and extracted. Analyzing each stained
region of the gel separately, for example, would allow for more detailed assessment of the
total collection of proteins in the sample than if all proteins were analyzed at once. One of
the main sources of error in the gel analysis is unequal precipitation of the proteins between
gels. Thus horizontal or vertical shifts and even diagonal stretching effects can be seen in
two-dimensional (2D) gels, necessitating alignment of all the gels to a reference gel. After
gel alignment, spot detection is performed which may introduce further errors; see Section
7.2 for more details.

To facilitate protein identification, proteins are usually cleaved/digested chemically or
enzymatically into fragments. Digestion overcomes many of the challenges associated with
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the complex structural characteristics of proteins, as the resulting peptide fragments are
more tractable chemically, and their reduced size, compared to proteins, makes them more
amenable to MS analysis. As examples of digestion agents, the trypsin enzyme cleaves at
the carboxyl side of lysine and arginine residues, except when either is followed by proline,
while chemical cyanogen bromide (CNBr) cleaves at the carboxyl site of methionine
residues; trypsin is the most commonly used digestive enzyme. Specificity of the trypsin
enzyme allows for the prediction of peptide fragments expected to be produced by the
enzyme and create theoretical databases. Enzymatic digestion of proteins could be achieved
in solution or gel, although digestion in solution is usually preferred, as gel is harder to
separate from the sample after digestion. Missed cleavages can cause misidentified or
missed peptides when searched against the database. Database searches can be adjusted to
include one or more missed cleavages but such searches take longer to complete.

Multiple distinct peptides can have very similar or identical molecular masses and thus
produce a single intense peak in the initial MS (MS1) spectrum, making it difficult to
identify the overlapping peptides. The use of separation techniques not only increases the
overall dynamic range of measurements (i.e. the range of relative peptide abundances) but
also greatly reduces the cases of coincident peptide masses simultaneously introduced into
the mass spectrometer. We will describe one of the most commonly used separation
techniques, high-performance liquid chromatography (HPLC), which is generally practiced
in a capillary column format for proteomics. Other separation techniques exist and are
similar in that they separate based on some molecular properties.

A HPLC system consists of a column packed with non-polar (hydrophobic) beads, referred
to as the stationary phase, a pump that creates pressure and moves the polar mobile phase
through the column and a detector that captures the retention time. The sample is diluted in
the aqueous solution and added to the mobile phase. As the peptides are pushed through the
column, they bind to the beads proportionally to their hydrophobic segments. Thus,
hydrophilic peptides will elute faster than hydrophobic peptides. HPLC separation allows
for the introduction of only a small subset of peptides eluting from the LC column at a
particular time into the mass spectrometer. Peptides of similar molecular mass but different
hydrophobicity elute from the LC column and enter the mass spectrometer at different times,
no longer overlapping in the initial MS analysis. The additional time required for the LC
separation is well worth the effort, as the reduction in the overlap of the peptides of the same
mass in MS1 phase dramatically increases peak resolution (and hence, peak capacity). Note
that LC columns must be regularly replaced, and it is common to observe systematic
differences in the elution times of similar samples on difference columns. Thus, replacing a
column during an experiment may contribute to technical variation in the resulting observed
abundances between two columns.

Further separation techniques include sample fractionation prior to HPLC, and
complementary techniques such as Ion Mobility Separation (IMS) after HPLC.
Multidimensional LC has been successfully used to better separate peptides. Strong cation
exchange (SCX) chromatography is usually used as a first separation step and reversed-
phase chromatography (RPLC) as a secondary separation step because of its ability to
remove salts and its compatibility with MS through electrospray ionization (ESI, described
below) (26–30). Combination of SCX with RPLC forms the basis of the Multidimensional
Protein Identification Technology (MudPIT) approach (31–32). While multidimensional LC
is capable of achieving greater separation, it requires larger sample quantities and more
analysis time. In HPLC coupled with IMS, peptides eluting from the HPLC system are
ionized using ESI, and the ions are injected into a drift tube containing neutral gas at
controlled pressure. An electric field is applied, and the ions separate by colliding with the
gas molecules. Larger ions experience more collisions with the gas and take longer to travel
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through the drift tube than smaller ions. IMS is very fast as compared with HPLC and, when
used in conjunction with HPLC, achieves better separation than HPLC alone. IMS is not
entirely orthogonal to HPLC, but it has been shown to increase the peak capacity (number of
detected peaks) by an order of magnitude (33). While not currently in wide use, IMS
technologies are rapidly evolving, and MS-based proteomics will likely involve multiple
dimensions of separation based on both IMS and HPLC in the near future. New algorithms
will need to be developed and existing ones modified to incorporate the extra separation
dimensions.

3.2 Mass Spectrometry
A mass spectrometer measures the mass-to-charge ratio (m/z) of ionized molecules. Recent
years have seen a tremendous improvement in MS technology, and there are about 20
different mass spectrometers commercially available for proteomics. All mass spectrometers
are designed to carry out the distinct functions of ionization and mass analysis. The key
components of a mass spectrometer are the ion source, mass analyzer, and ion detector
(Figure 3). The ion source is responsible for assigning charge to each peptide. Mass
analyzers take many different forms but ultimately measure the mass-to-charge (m/z) ratio of
each ion. The detector captures the ions and measures the intensity of each ion species. In
terms of a mass spectrum, the mass analyzer is responsible for the m/z information on the x-
axis, and the detector is responsible for the peak intensity information on the y-axis.

Ionization methods include electron impact, chemical ionization, fast atom bombardment,
field desorption, electrospray ionization (ESI) and laser desorption, and they usually operate
by the addition of protons to the peptides. ESI and matrix assisted laser desorption/
ionization (MALDI) are the most widely used methods in proteomics. In the ESI method,
the sample is prepared in liquid form at atmospheric pressure and flows into a very fine
needle that is subjected to a high voltage. Due to the electrostatic repulsion, the solvent
drops leaving the needle tip dissociate to form a fine spray of highly charged droplets. As
the solvent evaporates, the droplets disappear leaving highly charged molecules. ESI is the
most effective interface for LC-MS, as it naturally accommodates peptides in liquid
solution. ESI is a soft ionization method, in that it achieves ionization without breaking
chemical bonds and further fragmenting the peptides. In MALDI analysis, the biological
molecules are dispersed in a crystalline matrix. A UV laser pulse is then directed at the
matrix, which causes the ionized molecules to eject so that they can be extracted into a mass
spectrometer.

The mass analyzer is key to the sensitivity, resolution and mass accuracy of an instrument.
Sensitivity describes an instrument’s ability to detect low-abundance peptides, resolution to
its ability to distinguish ions of very similar m/z values, and mass accuracy to its ability to
obtain mass measurements that are very close to the truth. There are several basic mass
analyzer types: quadrupole (Q), ion-trap (IT), time-of-flight (TOF), Fourier transform ion
cyclotron resonance (FTICR), and the orbitrap. Different analyzers are commonly combined
to achieve the best utilization as a single mass spectrometer (e.g. QTOF, triple-Q). We do
not go into the details of the different mass analyzer types; interested readers are pointed
elsewhere (34–35).

In tandem MS (referred to as MS/MS or MSn), multiple rounds of MS are carried out on the
same sample. This results in detailed signatures for detected features, which can be used for
identification. Most MS/MS instruments can automatically select several of the most intense
(high abundance) peaks from a parent MS (MS1) scan and subjects the corresponding ions
(precursor or parent ions) for each to further fragmentation, followed by further scans. This
process is repeated until all candidate peaks of a parent scan are exhausted (35–36). This
results in a fragmentation pattern for each selected peptide, providing detailed information
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on the chemical makeup of the peptide. While the resulting fragmentation patterns are the
basis for identification, MS/MS suffers from undersampling, in that relatively few (and
generally only higher intensity) precursor ions are selected for fragmentation (35–37). The
issue of undersampling is not serious enough to steer away from using MSn for protein
identification and quantitation, but researchers should remember that not all peptides will
have equal chances of being selected for fragmentation and thus may not be observed in the
subsequent MS scans. Furthermore, MS/MS is time-intensive and thus not always ideal for
high-throughput analysis (38). Nevertheless, MS/MS is widely used for quantitative MS-
based proteomics and forms the basis for most peptide and protein identification procedures
(Section 5). Typically, MS/MS is preceded by LC separation and can more accurately be
denoted by LC-MS/MS.

High-resolution LC-MS instruments (e.g. FTICR) are very fast and can achieve mass
measurements that are sufficiently accurate for identification purposes. Furthermore, since
fragmentation and repeated scans are not required, the undersampling issues due to peptide
selection for MS/MS are avoided. Still, fragmentation patterns are valuable for
identification, and so hybrid platforms involving both LC-MS/ MS and high-resolution LC-
MS are increasingly being used. One such example is the Accurate Mass and Time (AMT)
tag approach (13, 39–40). In the AMT tag approach, MS/MS analysis is used to create an
AMT database of peptide theoretical mass and predicted elution time, based on high-
confidence identifications from fragmentation patterns, followed by a single MS run on
FTICR to obtain highly accurate mass measurements, as well as liquid chromatography
elution times; peptide identification is then made by comparing the observed mass
measurements and elution times to the AMT database entries. We note that an AMT
database is typically constructed using many LC-MS/MS runs, resulting in a nearly
complete database of proteotypic peptides (41). Because in the AMT-based approach LC-
MS spectra are matched to the database built from previous multiple MS/MS scans, the
undersampling associated with LC-MS/MS on individual samples is avoided.

4 Data Acquisition
In LC-MS, each sample may give rise to thousands of scans, each containing a mass
spectrum (Figure 4(a)). The mass spectrum for a single MS scan can be summarized by a
plot of m/z values versus peak intensities (Figure 4(b)). Buried in these data are signals that
are specific to individual peptides. As a first step towards identifying and quantifying those
peptides, features need to be identified in the data and, for example, distinguished from
background noise. The first step in this is MS peak detection. Many approaches to peak
detection have been proposed, as this is an old problem in the field of signal processing. Our
lab employs a simple filter on the signal-to-noise ratio of a peak relative to its local
background (42). Each peptide gives an envelope of peaks due to a peptide’s constituent
amino acids. The presence of a peptide can be characterized by the m/z value corresponding
to the peak arising from the most common isotope, referred to as the monoisotopic mass.
While there are several isotopes of the elements that make up amino acids, 13C is the most
abundant, constituting about 1.11% of all carbon species. Since the mass difference
between 13C and 12C is approximately 1 Da, the monoisotopic peak for a peptide will be
separated from an isotope with a single 13C by approximately 1/z, where z is the charge state
of that peptide. Similarly, isotopes with additional copies of 13C will be separated in units of
approximately 1/z. (Figure 4(d)).

The process of deisotoping a spectrum is often used to simplify the data by removing the
redundant information from isotopic peaks and involves (i) locating isotopic distributions in
a MS scan, (ii) computing the charge state of each peptide based on the distance between the
peaks in its isotopic distribution, and (iii) extracting each peptide’s monoisotopic mass. Note
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that this step is only possible if sufficiently high-resolution mass measurements have been
obtained, as otherwise isotopic peaks can not be resolved. For (i), detected peaks are
considered as possible members of an isotopic distribution, and theoretical isotopic
distributions, derived from a database of peptide sequences, are overlaid with the observed
spectra. A measure of fit is computed, and the peaks are called an isotopic distribution if the
fit is good enough. One of the challenges encountered in deisotoping is the presence of
overlapping isotopic distributions from different peptides. There are many algorithms
available for peak detection and deisotoping, including commercial software from vendors
such as Agilent, Rosetta Biosoftware, and Thermo Fisher. Our lab uses Decon2LS (42),
open-source software that implements a variation of the THRASH algorithm (43); the
Decon2LS publication contains an extensive discussion of the above issues, as well as many
helpful references for the interested reader.

A peptide will likely elute from the HPLC over multiple scans, creating an elution profile
(Figure 4(e)). Elution profiles for peptides are typically relatively short in duration, and
serve to define a feature in LC-MS data sets. However, there are often contaminants present
in an LC-MS sample with very long elution profiles, and these are filtered out in
preprocessing steps. Various approaches to summarizing an elution profile are available.
Our lab computes a normalized elution time (NET) (44). At this stage, an LC-MS sample
has been resolved into a list of LC-MS features, each with an assigned monoisotopic mass
and an elution time. However, due to mass measurement errors and the random nature of
elution times, (mass, elution time) assigned pairs will vary between LC-MS samples.
Alignment is often performed to line up the LC-MS features in different samples. There are
several algorithms for LC-MS alignment; examples include Crawdad (45) and LCMSWarp
(46).

As with all high-throughput –omics technologies, MS-based proteomic data is typically
subjected to substantial preprocessing and normalization. Systematic biases are often seen in
mass measurements, elution times, and peak intensities (47–48). Filtering of poor-quality
proteins and peptides is also common (49). In normalization, care must be taken to separate
biological signal from technical bias (50). Widely-used normalization techniques in high-
throughput genomic or proteomic studies involve some variation of global scaling,
scatterplot smoothing, or ANOVA (51). Global scaling generally involves shifting all the
measurements for a single sample by a constant amount, so that the means, medians, or total
ion currents (TICs) of all samples are equivalent. Since common technical biases are more
complex than simple shifts between samples, global scaling is unable to capture complex
bias features. Scatterplot smoothing, TIC, and ANOVA normalization methods are sample-
specific and hence more flexible. However, more complex preprocessing steps can result in
overfitting, causing errors in downstream inference. For example, fitting a complex
preprocessing model may use up substantial degrees of freedom, and analyzing the
processed data assuming that no degrees of freedom have been used may result in overly
optimistic accuracy levels and overestimated statistical significance; specific examples can
be seen in Karpievitch, et al., 2009. Ideally, preprocessing would be carried out
simultaneously with inference, or the downstream inferential steps would incorporate
knowledge of what preprocessing was done (52). A recently proposed method, called
EigenMS, removes bias of arbitrary complexity by the use of the singular value
decomposition to capture and remove biases from LC-MS peak intensity measurements
(53). EigenMS removes biases of arbitrary complexity and adjusts the normalized intensities
to correct the p-values after normalization (ensuring that null p-values are uniformly
distributed).

Mass spectrometer manufacturers have developed a variety of proprietary binary data
formats to store instrument output. Examples include: .baf (Bruker), .Raw (Thermo)
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and .PKM (Applied Biosystems). Handling data in different proprietary formats typically
requires corresponding proprietary software, making it difficult to share datasets. Several
open-source, XML-based vendor-independent data formats have recently been developed to
address this limitation: mzXML (54–55), mzData (56) and mzML (57–58). mzML 1.0 was
released in June 2009 and is considered a merge of the best of mzData and mzXML. The
format can store spectral information, instrument information, instrument settings and data
processing details. mzML also has extensions such as chromatograms and multiple reaction
monitoring (MRM) profile capture, and it now replaces both mzData and mzXML.

5 Protein Identification
In bottom-up proteomics protein identification is usually accomplished by first comparing
observed MS features to a database of predicted or previously identified features (e.g. by
MS/MS or on the basis of previous analysis of a well characterized sample, Figure 5). The
most widely-used approach is tandem MS with database searching (4), in which peptide
fragmentation patterns are compared to theoretical patterns in a database using software like
Sequest (11), X!Tandem (15), and Mascot (12). With high-resolution LC-MS instruments,
identifications can be made on the basis of mass and elution time alone, or in conjunction
with MS/MS fragmentation patterns (13). Alternatives to database-searching include (i) de
novo peptide sequencing (59–62) and (ii) hybrids of the de novo and database searching
approaches (63–66). For detailed reviews of the database searching algorithms see (4, 67–
70).

In tandem MS, precursor ions for the most abundant peaks in a scan are fragmented and
scanned again. In collision-induced dissociation (CID), precursor ions are fragmented by
collision with a neutral gas (71–74). Subsequent MS analysis measures the m/z and intensity
of the fragment ions (product or daughter ions), creating a fragmentation pattern (Figure 5).
CID usually leads to b- and y-ions through breakage of the amide bond along the peptide
backbone. B-ions are formed when the charge is retained by the amino-terminal fragment,
and y-ions are formed when charge is retained by the carboxy-terminal fragment. Breaks
near the amino acids glutamic acid (E), aspartic acid (D), and proline (P) are more common,
as well as breaking of the side-chains (75). Other fragmentation patterns are possible, such
as a-,c-,x-, and z-types. Electron capture dissociation (ECD) produces c- and z-ions and
leaves side-chains intact. The fragmentation pattern is like a fingerprint for a peptide. It is a
function of amino acid sequence and can therefore be predicted. The observed fragmentation
pattern should match well with its theoretical pattern, assuming that its peptide sequence is
included in the search database.

A search database is created by specifying a list of proteins expected to contain any proteins
present in a sample. In human studies, for example, the complete known proteome can be
specified with a FASTA file, which can then be used to create peptide fragment sequences
by simulating digestion with trypsin. For each resulting peptide, a theoretical fragmentation
pattern is then created. For details on protein digestion and fragmentation see Siuzdak 2003.
Several software programs are available for database matching (e.g. SEQUEST, X!Tandem,
and Mascot). Each has its own algorithm for assessing the fit between observed and
theoretical spectra, and there can be surprisingly little overlap in their results (76).

Note that a correct match can only be made if the correct sequence is in the database in the
first place. If an organism’s genome is incomplete or has errors, this will not be the case.
Furthermore, because of undersampling issues in MS/MS, only a small percentage of
peptides present in a sample will even be considered for identification. This is due to the fact
that only a small portion of higher abundance peaks (for example, the 10 most abundant
peaks) are selected from the spectra in the first MS step for fragmentation in the second MS
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analysis. Thus, lower abundance proteins are obscured by the presence of the high
abundance ones.

High-resolution LC-MS instruments can be used to identify peptides on the basis of
extremely accurate mass measurements and LC elution times. A database is again required,
containing theoretical or previously-observed mass and elution time measurements. In
hybrid approaches, like the AMT tag approach (13), identifications from MS/MS are used to
create a database of putative mass and time tags for comparison with high-resolution LC-MS
data. Since MS/MS is sample- and time-intensive, hybrid approaches allow for higher-
throughput analysis, subjecting only a subset of the sample to MS/MS and the rest to rapid
LC-MS. Alternatively, previously-observed MS/MS fragmentation patterns can be used to
create a mass and time tag database. By using many LC-MS/MS datasets in the creation of
the database, the undersampling issues associated with LC-MS/MS are avoided.

In each of the above approaches, there is a statistical problem of assessing confidence in
database matches. This is typically dealt with in one of two ways. The first involves
modeling a collection of database match scores as a mixture of a correct-match distribution
and an incorrect-match distribution. The confidence of each match is assessed by its
estimated posterior probability of having come from the correct-match distribution,
conditional on its observed score (77); PeptideProphet is a widely-used example (17).
Improvements have been made to PeptideProphet to avoid fixed coefficients in computation
of discriminant search score and utilization of only one top scoring peptide assignment per
spectrum (78). Decoy databases are an alternative approach, in which the search database is
scrambled so that any matches to the decoy database can be assumed to be false (79–80).
The distribution of decoy matches is then used as the null distribution for the observed
scores for matches to the search database, and p-values are computed as simple proportions
of decoy matches as strong or stronger than the observed matches from the search database.
A hybrid approach that combines mixture models with decoy database search can also be
used (81). Whether working from posterior probabilities or p-values, lists of high-confidence
peptide identifications can be selected in terms of false discovery rates (82–83). Both decoy
database matching and empirical Bayes approaches are global, in that they model the
distribution of database match scores for all spectra at the same time. An “expectation
value” is an alternative significance value, which models the distribution of scores for a
single experimental spectrum with all peptide match scores from the theoretical database
(84).

An alternative to database search approaches is de novo sequencing (59–62, 64–65). De
novo sequencing involves assembling the amino acid sequences of peptides based on direct
inspection of spectral patterns. For a given amino acid sequence, the possible fragmentation
ions and masses can be enumerated, as well as the expected frequency with which each type
of fragment ion would be formed. De novo sequencing therefore tries to find the sequence
for which an observed spectral pattern is most likely. The key distinction from database-
search approaches is that there is no need for a priori sequence knowledge. Suppose, for
example, that we are studying human samples. With database-search, we would load a
human proteome FASTA file and only have access to amino acid sequences generated
therein. With de novo sequencing, any amino acid sequence could be considered. This can
be important when studying organisms with incomplete or imperfect genome information
(85). Drawbacks include increased computational expense as well as the need for relatively
large sample quantities.

Combinations of de novo sequence tag generation and database searching (hybrid methods)
are widely used in PTM identification (86). The de novo approach infers a peptide sequence
tag (not the full-length peptide) from the spectrum without searching the protein database.
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These sequence tags can then be used to filter the database to reduce its size which in turn
speeds up the calculation of the spectrum matches with all possible PTMs. InsPect is a
widely used tool for identification of PTMs (63). Lui et al. proposed a similar sequence tag-
based approach with a deterministic finite automaton model for searching peptide sequence
database (87).

While bottom-up MS-based proteomics deals with peptides, the real goal is to identify
proteins present in a sample. In most cases, peptide amino acid sequence can be used to
identify the protein from which it was derived. Software like ProteinProphet can translate
peptide-level identifications to the protein level and assign each resulting protein
identification a confidence measure (14). A key challenge in translating peptide
identifications to the protein level is degeneracy. A degenerate peptide is one that could
have come from multiple proteins; this is most common for peptides with short amino acid
sequences or ones that come from homologous proteins (where homology refers to a
similarity in amino acid sequences). Based on the information present in an individual
degenerate peptide, it is not necessarily clear how to decide between multiple proteins.
However, by taking the information present in uniquely identified and degenerate peptides
that were identified as belonging to multiple proteins into account, sensible model-based
decisions can be achieved (88). PeptideProphet shares degenerate peptides among their
corresponding proteins and produces a minimal protein list that accounts for such peptides.
Another challenge is due to the fact that correctly identified peptides usually belong to a
small set of proteins, but incorrectly identified peptides match randomly to a large variety of
proteins. Thus a small number of incorrectly identified peptides (with high scores) can make
it difficult to determine the correct parent protein, especially in a single-peptide
identification, and may result in a much higher error rate at the protein level (89).

6 Protein Quantitation
Quantitative proteomics is concerned with quantifying and comparing protein abundances in
different conditions (Figure 6). There are two main approaches: stable isotope labeling and
label free. In all cases, as in the identification setting, there is the challenge of rolling
peptide-level information up to the protein level. This can be viewed as an analogous
problem to the probe-set summarization step required with many DNA microarrays (90).

In label-based quantitative LC-MS, chemical, metabolic or enzymatic stable isotope labels
are incorporated into control and experimental samples, the samples are mixed together and
then analyzed with LC-MS (21, 91–92). In chemical labeling, such as isotope-coded affinity
tag (ICAT), Cystine (Cys) residues are labeled (21). In metabolic labeling, cells from two
different conditions are grown in media with either normal amino acids (1H/12C/14N) or
stable isotope amino acids (2H/13C/15N) (93–94). This approach is not applicable to human
or most mammalian protein profiling. In enzymatic labeling, proteins from two groups are
digested in the presence of normal water (H2 16O) or isotopically labeled water (H2 18O)
(95–96). In all of the above methods, differences in label weight create a shift in m/z values
for the same peptide under the two conditions. After tandem mass analysis (LC-MS/MS),
spectra are matched against a database, and ratios of peptide abundances in the two
conditions are determined by integrating the areas under the peaks of each labeled ion that
was detected. Strong linear agreement has been shown between true concentrations and
those estimated by label-based approaches (20). Of the two quantitation methods considered
here, label-based methods are able to achieve the most precise estimates of relative
abundance. Limitations include: (i) its restriction to two comparison groups, (ii) associated
difficulties with incorporating future samples into an existing dataset, and (iii) expense. A
newer method that allows for the comparison of four treatment samples at a time and avoids
the cystineselective affinity of ICAT is iTRAQ (97–99). iTRAQ uses isobaric labels at N-
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terminus which have two components: reporter and balance moieties. Combined reporter
and balance moieties always have masses of 145 Da. For example, if for treatment group
one we use reporter of mass 114 and balance of mass 31, then for another treatment group
we can use reporter of mass 116 and balance of mass 29. Precursor ions from all treatment
groups appear as a single peak of the same weight in MS1. After further fragmentation,
peptides break down into smaller pieces and separate balance and reporter ions. Reporter
ions thus appear as distinct masses, and peptide abundances are determined from those.
iTRAQ is limited to four group comparisons, but limitations (ii) and (iii) above still apply.

Label-free quantitative analysis measures relative protein abundances without the use of
stable isotopic labels. In contrast to label-based methods, samples from different comparison
groups are analyzed separately, allowing for more complex experiments as well as the
addition of subsequent samples to an analysis; label-free methods are also faster than label-
based methods. Label-free quantification can be grouped into two categories: spectral
feature analysis and spectral counting. In spectral feature analysis, peak areas of identified
peptides are used for abundance estimates. The peak areas are sometimes normalized to the
peak area of an internal standard protein spiked into the sample at a known concentration
level. Good linear correlation between estimated and true relative abundances has been
shown for this method of peptide quantification (20, 22, 100–101). In spectral counting,
peptide abundances for one sample are estimated by the count of MS/MS fragmentation
spectra that were observed for each identified peptide (102). Repeated identifications of the
same peptide in the same sample are due to its presence in several proximal scans
constituting its elution profile. Good linear correlation between true and estimated relative
abundance from spectral counting have been shown (18, 103). Spectral counts are easy to
collect and do not require peak area integration like spectral peak analysis or label-based
methods.

Missing peptides are common in MS-based proteomic data. In fact, it is common to have
20–40% of all attempted intensity measures missing. Abundance measurements are missed
if, for example, a peptide was identified in some samples but not in others. This can happen
in several ways: (i) the peptide is present in low abundances, and in some samples the peak
intensities are not high enough to be detected or for the corresponding ions to be selected for
MS/MS fragmentation, (ii) competition for charge in the ionization process, by which some
ion species are liable to be dominated by others, and (iii) peptides whose chemical or
physical structure cause them to get trapped in the LC column, among others. Mechanism (i)
is essentially a censoring mechanism and appears to be responsible for the vast majority of
missing values (Figure 6(a)). This complicates intensity-based quantitation, as simple
solutions will tend to be biased. For example, analysis of only the observed intensities will
tend to overestimate abundances and underestimate variances. Simple imputation routines
like row-means or k-nearest-neighbors suffer from similar limitations. Statistical models are
needed to address these issues, as well as to handle the peptide-to-protein rollup (49, 104);
also, see Figure 6(b)). Note that a further benefit of spectral counting is that it is less
sensitive to missing values.

We note that protein identification and quantitation are complementary exercises.
Unidentified proteins cannot be quantified, and the confidence with which a protein was
identified should perhaps be incorporated into that protein’s abundance estimate. Degenerate
peptides, for example, present problems for both identification and quantitation, but
evidence for the presence of sibling peptides from one protein in high abundance can be
useful in deciding between multiple possible protein identities.
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7 Other Technologies
7.1 MALDI and Mass Fingerprinting

MALDI (matrix assisted lazed desorption ionization) is mostly used for single MS, typically
using a TOF mass analyzer. MALDI refers to the method of ionization, in which a laser is
pulsed at a crystalline matrix containing the sample (analyte) (6, 92). The analyte is mixed
with the matrix solution, spotted in a well on a MALDI plate and allowed to crystallize. The
matrix consists of small organic molecules that absorb light at the wavelength of the laser
radiation. Upon absorption, the matrix molecules transfer energy to the sample molecules to
permit ionization and desorption of even large molecules as intact gas-phase ions; the matrix
also serves to protect the analyte from being destroyed by the laser pulse. MALDI is
considered a soft ionization technique, resulting in very little analyte fragmentation.
Crystallized samples can be stored for some time before analysis or for repeated analysis.

While MALDI MS/MS instruments exist, MALDI is most commonly used for mass
fingerprinting, where spectral patterns are identified for discriminating samples from
different conditions (e.g. cancer vs. normal). Machine learning techniques such as linear
discriminant analysis, Random Forest, Support Vector Machine among others, are typically
used to build classifiers in hopes of finding tools for the early detection of a disease. Disease
biomarkers (specific m/z values) can be identified from the set of the differentially expressed
features. However, to date, the success rate for identification of true biomarkers is low, in
part due to the poor reproducibility of the experiments in time and between labs (105–106).

7.2 2D Gels
2D gel electrophoresis (2DE) is an alternative technique for protein separation (25, 107–
108), first introduced in 1975 (109–110). Here, two orthogonal separations are used:
proteins are first separated based on their isoelectric point (pI), then based on their size
(mass). The first dimension utilizes the fact that the net charge of the protein is pH-
dependent. Proteins are loaded into the pH gradient (variable pH) and subjected to high
voltage. Each protein migrates to the pH location in the gradient where its charge is zero and
becomes immobilized there. The second dimension gel contains SDS, detergent molecules
with hydrophobic tails and negatively charged heads. SDS denatures (unfolds) the proteins
and adds negative charge in proportion to the size of the protein. An electric field is applied
to move negatively charged proteins towards the positively charged electrode, smaller
proteins migrating through the gel faster than larger ones. Multiple copies of the proteins
will generally move at the same speed and will end up fixated in bulk at a certain spot on the
gel.

Protein detection is performed with staining (most common) or radio-labeling. Proteins can
then be quantified based on their spot intensity. The staining intensity is approximately a
linear function of the amount of protein present. Images of the 2D gels can be compared
between different comparison groups to study protein variations between the groups and
identify biomarkers. The following steps are generally required before quantitative and
comparative analysis can be done, not necessarily in this order: (a) denoising, (b)
background correction, (c) spot detection, (d) spot matching/gel alignment, (e) spot
quantification. Although all steps are needed, spot matching is the most important, as
proteins can shift along the axis from image to image (gel to gel) as well as exhibit a pattern
of stretching along the diagonals. Examples of programs design to perform the above steps
are Progenesis (Nonlinear Dynamics Ltd., Newcastle-upon-Tyne, UK) and PDQuest
Version 8.0 (Bio-Rad Laboratories, Hercules, CA, USA), both of which are proprietary.
Pinnacle is an open source program that performs spot detection and quantification in the
aligned gels (3).
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8 Discussion
While the field of LC-MS-based proteomics has seen rapid advancements in recent years,
there are still significant challenges in proteomic analysis. The complexity of the proteome
and the myriad of computational tasks that must be carried out to translate samples into data
can lead to poor reproducibility. Advancements in mass spectrometry and separation
technologies will surely help, but there will continue to be a crucial role for statisticians in
the design of experiments and methods specific to this setting. Careful assessments of the
capabilities of current LC-MS-based proteomics to achieve certain levels of sensitivity and
specificity, based on instrument configuration, experimental protocol, experimental design,
sample size, etc., would be extremely valuable for assisting in the establishment of best-
practices, as well as for gauging the capabilities of the technology; the National Cancer
Institute’s Clinical Proteomic Technologies for Cancer program is an example. It is likely
the case that very large studies will be required for true breakthrough findings (e.g.
biomarkers) in systems biology using proteomics.

Specific methodological areas that can use additional input from statisticians include the
development of statistical models for rolling up from peptides to proteins; determination of
protein networks; construction of confidence levels with which we identify peptides and
subsequently proteins; alignment of LC-MS runs and assurance of quality of those
alignments, i.e. assigning a p-value to a set of aligned LC-MS runs to assess “correctness” of
alignment. Furthermore, as additional dimensions of separation (as in IMS-LC-MS) are
introduced, more flexible and generalizable preprocessing, estimation, and inferential
methods will be required. In general, statisticians can play a pivotal role in LC-MS-based
proteomics (as well as other –omics technologies) by participating in interdisciplinary
research teams and assisting with the application of classical statistical concepts (111). In
particular, the statistician can contribute by ensuring that well-planned experimental designs
are employed, assumptions required for reliable inference are met, and proper interpretation
of statistical estimates and inferences are used (112–113). These contributions are arguably
more valuable than the development of additional algorithms and computational methods.
Due to the great complexity of high-throughput -omics technologies and the data that result,
careful statistical reasoning is imperative.
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Figure 1.
Overview of LC-MS-based proteomics. Proteins are extracted from biological samples, then
digested and ionized prior to introduction to the mass spectrometer. Each MS scan results in
a mass spectrum, measuring m/z values and peak intensities. Based on observed spectral
information, database searching is typically employed to identify the peptides most likely
responsible for high -abundance peaks. Finally, peptide information is rolled up to the
protein level, and protein abundance is quantified using either peak intensities or spectral
counts.
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Figure 2.
Sample preparation. Complex biological samples are first processed to extract proteins.
Proteins are typically fractionated to eliminate high-abundance proteins or other proteins
that are not of interest. The remaining proteins are then digested into peptides, which are
commonly introduced to a liquid chromatography column for separation. Upon eluting from
the LC column, peptides are ionized.
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Figure 3.
Mass spectrometry. The mass spectrometer consists of an ion source, responsible for
ionizing peptides, the mass analyzer and the detector, responsible for recording m/z values
and intensities, respectively, for each ion species. Each MS scan results in a mass spectrum,
and a single sample may be subjected to thousands of scans.
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Figure 4.
Data acquisition: (a) Scan numbers and m/z values for an example raw LC-MS dataset. Each
individual scan contains a single mass spectrum. (b) The mass spectrum for scan 5338. (c) A
zoomed -in look at the scans 5275–5400 in m/z range 753–755.5. The cluster of dots is
indicative of a single LC-MS “feature”. (d) The isotopic distribution for this feature in scan
5280. Peaks are separated by approximately 1/3, indicating a charge state of +3. The
monoisotopic mass is thus 753.36 × 3 = 2260.08 Da. (e) The elution profile at m/z 753.36.
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Figure 5.
Protein identification. Peptide and protein identification is most commonly accomplished by
matching observed spectral measurements to theoretical or previously-observed
measurements in a database. In LC-MS/MS, measurements consist of fragmentation spectra,
whereas mass and elution time alone are used in high resolution LC-MS. Once a best match
is found, one of the following methods for assessing confidence in the match is employed:
decoy databases, empirical Bayes, or “expectation values”.
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Figure 6.
Protein quantitation. The left panel shows the proportion of missing values in an example
dataset as a function of the mean of the observed intensities for each peptide. There is a
strong inverse relationship between these, suggesting that many missing intensities have
been censored. The right panel shows an example protein found to be differentially
expressed in a two-class human study. The protein had 6 peptides that were identified,
although two were filtered out due to too many missing values (peptides 1 and 2, as
indicated by the vertical shaded lines). Estimated protein abundances and confidence
intervals are constructed from the peptide-level intensities by a censored likelihood model
(Karpievitch et al (2009a)).
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