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Abstract
Cartesian tensors of various orders have been employed for either modeling the diffusivity or the
orientation distribution function in Diffusion-Weighted MRI datasets. In both cases, the estimated
tensors have to be positive-definite since they model positive-valued functions. In this paper we
present a novel unified framework for estimating positive-definite tensors of any order, in contrast
to the existing methods in literature, which are either order-specific or fail to handle the positive-
definite property. The proposed framework employs a homogeneous polynomial parametrization
that covers the full space of any order positive-definite tensors and explicitly imposes the positive-
definite constraint on the estimated tensors. We show that this parametrization leads to a linear
system that is solved using the non-negative least squares technique. The framework is
demonstrated using synthetic and real data from an excised rat hippocampus.

Index Terms
Diffusion Tensors; Symmetric High-Order Positive-Definite Tensors; Homogeneous Polynomials

1. INTRODUCTION
Symmetric positive-definite (SPD) tensors of order-2 have been used in modeling the
diffusivity function in the so called Diffusion Tensor MR Images (DT-MRI) [1]. The
diffusion tensor can be estimated from a given Diffusion-Weighted (DW) MRI dataset by
using the Stejskal-Tanner signal attenuation model:

(1)

where d(g) is the diffusivity function and S/S0 is the observed signal attenuation associated
with the diffusion sensitizing magnetic gradient orientation g and the diffusion weighting b.

Higher even-order tensors (e.g. 4th and 6th) generalize the 2nd-order tensors and have the
ability to approximate multi-lobed functions [2] such as the kurtosis of diffusion [3].
Recently several methods have been proposed for estimating 4th-order tensors with positive-
definite constraints [4,5] as well as for processing high-order tensor fields [6,7].

One of the advantages of Cartesian tensor basis over spherical harmonic basis is that the
local maxima of a higher-order tensor can be easily computed [8,9]. This property has been
used for computing the fiber orientations from a given orientation distribution function.
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Although, high-order tensors have been employed in most of the aforementioned methods
due to their simple polynomial form and their ability to model multi-lobed spherical
functions, there are no existing methods for imposing positivity constraints in tensors of any
order higher than 2 and 4. It has been shown that tensors of orders 6 and 8 can approximate
complex fiber structures such as 3-fiber crossings, by overcoming the limitations of 4th-
order tensors [2]. Furthermore, the need for positivity constraints is essential especially in
the case where the tensors approximate positive-valued physical quantities such as diffusion
or displacement probability [4].

In this paper, we present a novel method for imposing the positivity constraints on high-
order symmetric tensors. In our framework, we express any symmetric positive-definite
tensor as a sum of squares of lower-order polynomials. This parametrization can be
approximated by a convex combination of predefined homogeneous polynomials, and we
show that the accuracy of the approximation can be easily adjusted to a desired level. We
evaluate 2nd, 4th, and 6th-order tensors computed by the proposed framework using synthetic
data. Furthermore, we quantitatively compare our method with another existing technique
for estimating diffusion tensors of order-6. Finally, the proposed method is demonstrated
using real DW-MRI data from an isolated rat hippocampus.

The main contribution of the work presented here is a unified framework for estimating
symmetric positive-definite tensors of any even order. To the best of our knowledge this is
the first method in literature for imposing positivity constraints on any order symmetric
tensor. The other significant contribution of this paper is a novel parametrization of tensors,
which covers the full space of positive-definite high-order tensors.

2. DIFFUSION TENSORS OF EVEN ORDERS
The diffusivity function d(g) in Eq. 1 can be approximated by a Cartesian tensor as follows
[2]:

(2)

where gi is the ith component of the 3-dimensional unit vector g, and Di,j,···,k,l are the tensor
coefficients. The number of indices (or equivalently the number of sums in Eq. 2) is equal to
the order of the tensor. When approximating the diffusivity function, we are interested in
tensors of even orders with full symmetry. In this case, those tensor coefficients which
correspond to the same monomial  are equal to each other. For instance the
coefficients D1,1,1,2, D1,1,2,1, D1,2,1,1, D2,1,1,1 of a 4th-order symmetric tensor correspond to
the monomial  and therefore are equal to each other.

Another property of the diffusivity is that d(g) is a positive-valued function ∀g ∈ S2. There
are various ways for re-parameterizing Eq. 2, so that it explicitly represents positive-definite
tensors of orders 2 or 4. In the following sections we present a novel unified way of
parameterizing positive-definite tensors of any (even) order. The proposed method covers
the full tensor space and is not order specific.

3. PARAMETRIZATION OF POSITIVE TENSORS
Any positive-definite polynomial can be written as a sum of squares of lower order
polynomials [10,11]. In our particular case, any positive-definite Kth-order homogeneous
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polynomial in 3 variables can be written as a sum of squares of K/2th-order homogeneous
polynomials p(g1, g2, g3; c), where c is a vector that contains the polynomial coefficients.

(3)

The number of terms in the summation of Eq. 3 is bounded by the number of unique
monomials in a K/2th-order homogeneous polynomial in 3 variables, i.e. . For
instance, 2nd-order tensors can be written as a sum of M ≤ 3 squares of order-1 polynomials,
which parametrization corresponds to the rank-1 decomposition of symmetric matrices.
Similarly, 4th-order tensors can be written as a sum of M ≤ 6 squares of order-2
polynomials. This agrees with Hilbert’s theorem on ternary quartics [4] according to which
M = 3 terms are enough in Eq. 3. In the cases of 6th and 8th order tensors the upper bounds
are ≤ 10 and ≤ 15 respectively.

The parametrization in Eq. 3 covers the full space of positive-definite homogeneous
polynomials of any order. The unknown parameters are the coefficients of the polynomials

p(.) whose number is bounded by , i.e. 6, 21, and 55 coefficients for K = 2,
4, and 6 respectively.

4. TENSOR ESTIMATION FROM DW-MRI
Given a data set of DW-MRI signal attenuations Si/S0 associated with magnetic gradient
orientations gi and diffusion weighting b-values bi, i = 1, ···, N, we can estimate the co-
efficients of a Kth-order positive-definite diffusion tensor by minimizing the following
energy function with respect to the unknown polynomial coefficients

(4)

where d(g) is given by Eq. 3.

The energy in Eq. 4 can be minimized by reformulating Eq. 3 in the form of a spherical
convolution:

(5)

where λ(c) is a non-negative real function. Note that Eq. 5 is the continuous generalization
of Eq. 3, and it also covers the full space of Kth-order positive-definite tensors. By
substituting d(g) in Eq. 4 with Eq. 5, we can now estimate a diffusion tensor by minimizing
Eq. 4 with respect to the unknown function λ(c). The value of this function can be
approximated for a given set of M′ unit vectors c1, ···, cM′ by discretizing the integration over
the sphere in Eq. 5 as follows:
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(6)

where λj are non-negative real numbers. The parametrization in Eq. 6 approximates the
space of Kth-order positive-definite tensors and the approximation accuracy depends on how
well the set of vectors cj sample the space of unit vectors c. By constructing a large enough
set of well sampled vectors cj, one can achieve any desired level of accuracy.

5. IMPLEMENTATION DETAILS
5.1. High SNR case

In the case of high signal-to-noise ratio (SNR) in the acquired data, the positive-definite
tensors can be estimated by minimizing a log-linear version of Eq. 4, which can be
efficiently achieved by solving a linear system with non-negative constraints. The
constructed linear system is Px = y, where P is a N × M′ matrix with Pi,j = −bip(gi; cj)2, y is
a N-dimensional vector with yi = log(Si/S0), and x is a vector that contains the unknown
coefficients λj.

Here we should note that the size of matrix P does not depend on the order K of the
estimated tensor; however, the elements of matrix P change with K, since their value is
related to a K/2th-order homogeneous polynomial. Furthermore, the rank of P is equal to the
number of unique coefficients in a Kth-order tensor, i.e. , which is equal to 6,
15, and 28 for K = 2, 4, and 6 respectively. This is related to the fact that P can be
decomposed into the form P = GC, where G is of size N × rank(P) and contains only
monomials constructed from the elements of the vectors gi, and C is of size rank(P) × M′
and contains only monomials constructed from the elements of the vectors cj.

Due to the need for estimating non-negative λj, the above linear system can be stably solved
using NNLS (non-negative least squares) [12]. The obtained solution contains at most
rank(P) non-zero elements, which are as many as the unknown tensor coefficients. We can
easily compute the tensor coefficients by Cx, which multiplication produces a vector that
contains the unique coefficients of a Kth-order tensor.

5.2. Low SNR case
In the case of low SNR, log-linearizing Eq. 4 may lead to inaccurately estimated tensor
coefficients due to the inappropriate noise model assumed when using the logarithm of the
signal values. Instead, one should minimize Eq. 4 by employing any non-linear functional
minimization method. The function d(g) in Eq. 4 can be parametrized by either Eq. 3 or Eq.
6. In the first case, the minimization of Eq. 4 should be performed with respect to the
polynomial coefficients cj by using the Levenberg-Marquardt algorithm, as it was shown in
[4] for estimating 4th-order tensors.

If we employ the parametrization in Eq. 6, the minimization of Eq. 4 should be performed
with respect to λj. The gradient of the energy can be easily computed by ∂E/∂x =
2PTdiag(exp(Px))[exp(Px) − exp(y)], where P, x, and y are defined similarly as in Sec. 5.1,
and diag(x) denotes a square diagonal matrix whose diagonal elements are given by the
vector x. The gradient can be used by any gradient-based energy minimization method for
minimizing Eq. 4. The algorithm can be initialized by setting x to the solution of the linear
system that was discussed in Sec. 5.1. Additionally, at each iteration of the minimization
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algorithm the negative values in the solution vector x should be forced to zero in order to
guarantee that the estimated tensors are positive-definite.

5.3. Constructing sets of polynomials
In our experiments we constructed sets of polynomial coefficients cj by first creating a set of
3D unit vectors vi, i = 1, ···, L using tessellations of the icosahedron on the unit sphere. Then,
for the case of Kth-order tensors we computed the homogeneous polynomials p(g) =
Πk=1: K/2(gT vik), where ik = 1, ···, L. The coefficients of these polynomials were stacked
together in the form of a vector cj for each polynomial. In the case of K = 2, 4, and 6, this
procedure produces L, L2/2 + L/2, and L3/6 + L2/2 + L/3 unique co-efficient vectors
respectively. From our experiments we have seen that the sets of vectors constructed by this
procedure lead to parameterizations in the form of Eq. 6 that accurately approximate the
space of Kth-order positive definite tensors.

6. EXPERIMENTAL RESULTS
We constructed a dataset of positive-definite tensors by first generating random vectors in 3,
6, and 10 dimensions, and then using them in Eq. 3 as coefficients of homogeneous
polynomials. This process created 2nd, 4th and 6th-order tensors and was repeated for 1000
times for each order case.

In order to investigate how many vectors cj are necessary in Eq. 6 for our algorithm to
produce accurate tensor fitting results, we evaluated Eq. 1 for N = 81 unit vectors g1 ··· g81
using the synthetic dataset of tensors. This produced 81 samples S1/S0 ··· S81/S0 for each
tensor in the dataset. Then we reconstructed the original tensors by applying our framework
(Sec. 5.1) to the obtained set of samples using various resolutions M′. Table 1 reports the
number of polynomials that were required in Eq. 6 in order to reconstruct accurately the

tensors. The table also reports the fitting errors computed by  and the running
time per tensor using an Intel Pentium Dual CPU at 1.60 GHz and 1GB RAM. The results
demonstrate that our method estimates accurately and efficiently positive-definite tensors of
any order.

In order to demonstrate the necessity for estimating tensors with positivity constraints we
compared our method with an existing one that computes tensor without imposing the
positive definite property [2]. In this experiment we added various levels of Riccian noise to
the previously described synthetic dataset S1/S0 ··· S81/S0 that correspond to the synthesized
set of 6th-order tensors. The noisy datasets were given as input to: a) the algorithm in Sec.
5.1 (using M′ = 3000) and b) the method in [2], which is the only existing technique in
literature for estimating 6th-order tensors. In both cases, the computed 6th-order tensors were
compared to the ground truth tensors using the previously defined fitting error metric. Figure
1 shows a comparison of the fitting errors obtained for various levels of noise in the data.
The results conclusively demonstrate that those tensors that were estimated using positivity
constraints approximated the data significantly better, motivating the use of our method.

Finally, in order to illustrate the performance of our framework on real data sets, we applied
the method in Sec. 5.2 to a DW-MRI data set from an excised rat hippocampus (shown in
Fig. 2). The data set contained 46 images acquired using a pulsed gradient spin echo pulse
sequence, with 45 different diffusion gradients and approximate b value of 1250s/mm2.
Figure 2 shows the computed 6th-order diffusion tensor field. The highlighted regions of
interest demonstrate the variability of the estimated structures. At each voxel, the fiber
orientations can be estimated from the peaks of the displacement probability, which can be
computed from the diffusion tensors as it was shown in [4].

Barmpoutis and Vemuri Page 5

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2011 May 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. CONCLUSIONS
Symmetric positive-definite tensors have been used in various applications. Although there
are existing methods for imposing positivity constraints on the estimated tensors of order 2
and 4, none of these techniques can be easily extended to higher orders. In this paper we
presented a framework for estimating SPD tensors of any order and we used our technique
for approximating the diffusivity function from given DW-MR images. The formulation
leads to a linear system which can be efficiently solved. Finally, we presented evaluations of
our method using synthetic and real DW-MRI datasets.
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Fig. 1.
Comparison of the proposed method with the technique in [2] for various levels of Riccian
noise in the data.
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Fig. 2.
DW-MRI dataset from an isolated rat hippocampus. The S0 image is shown on the top left.
The 6th-order diffusion tensors estimated by the proposed method are shown as a field of
spherical functions. One of the depicted regions of interest contains tensors that model 3-
fiber structures, which can not be reconstructed by 2nd or 4th-order tensors.
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Table 1

Order of tensor vs. the number of required polynom.

Order of Tensor Polynomials Fit. error Run. Time

K=2 M′=321 0.00 0.7 ms

K=4 M′=900 0.01 12 ms

K=6 M′=3000 0.02 130 ms
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