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Abstract
We model the immune surveillance of a pathogen which passes through n immunologically
distinct stages. The biological parameters of this system induce a partial order on the stages, and
this, in turn, determines which stages will be subject to immune regulation. This corresponds to
the system's unique asymptotically stable fixed point.
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1 Introduction
Pathogens that traverse different stages during their life cycle or during an infection process
have been studied since the late nineteenth century. The most prominent genus is
Plasmodium, causer of Malaria, a pathology first described by Hippocrates in the fourth
century BC, which is still a major public health problem in many continents (Greenwood et
al. 2005). Other important examples are Trypanosoma (Tyler and Engman 2001) and
Epstein-Barr virus (EBV) which is a member of the family of herpes viruses. Indeed, it
seems likely that this entire family uses multiple stages (Thorley-Lawson et al. 2008). Our
focus is on Epstein-Barr virus, which is known to cycle through at least four different stages
during infection within the human body (Thorley-Lawson 2001). (For a quick sketch of
EBV biology, see Sect. 9). One remarkable characteristic of infections with many of such
pathogens is life-long persistent infection (Hochberg et al. 2004b; Thorley-Lawson et al.
2008; Khan et al. 1996; Greenwood et al. 2005; Tyler and Engman 2001).

Our main goal in this article is to study the properties of the immune response to such a
pathogen using mathematical modeling. Mathematical approaches to studying host–
pathogen interactions have steadily increased in the last four decades. For entry into the
corresponding body of literature, we recommend (Nowak and May 2000; Perelson and
Nelson 1999) and (Wodarz 2007). What to include in such a mathematical model depends
not only on the host and pathogen in question, but also the taste and purpose of the modeler.
Thus, models vary in scope and complexity. A simple model might include uninfected
tissue, infected tissue and an immune response. More complex models can involve such
factors as the details of T-cell activation, competing immune responses to multiple epitopes
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and the mutation, selection and consequent evolution of the pathogen. Much of this literature
is driven by the urgent need to understand the host–pathogen dynamics of HIV infection. (A
Pubmed search on the terms “HIV” and “mathematical model” produces close to 400 hits.)
Our model is motivated by the broad outlines of EBV biology which it both simplifies and
generalizes.

In the mathematical model we propose herein, the pathogen traverses a cycle of
immunologically distinct stages during infection of the host. On the pathogen side, our
model includes the natural proliferation or decay of the pathogen population at each stage,
the rate at which each stage is lost to produce (or become) the next stage and any gain factor
involved in this process. (For example, one lytically infected cell may produce ∼ 104 free
virions.) On the host side, it includes a distinct immune response to each stage, proliferation
of this response due to encounter with the pathogen, the ability of this response to kill or
disable the pathogen, and the decay of the response in the absence of the pathogen. Omitted
from this model is the supply of uninfected tissue which supports the cycle of infected
stages. This omission is only likely to be important when this supply is a limiting factor.
This could happen when the immune response is weak or non-existent, as when a naive host
is first exposed or in the case of an immunosuppressed host. As a consequence, this model
may be more realistic in describing the long-term behavior of persistent infection when this
is not tissue-limited.

We will see that when the host and pathogen stand in this relation to each other, there is a
unique stable accommodation between them. This appears in the model as the unique
biologically meaningful asymptotically stable fixed point. In particular, it determines exactly
which stages will fall under immune regulation and determines the levels of pathogen
population and host response at which this mutual accommodation occurs.

In Sect. 2 we will present the model's equations and the range of parameter values under
consideration. We will start by considering parameter values such that the pathogen must
traverse all stages in order to establish infection. In particular, no stage is capable of
proliferating and establishing infection independent of the others. In addition, we will
restrict our attention to generic values of the parameters and will exclude certain parameter
sets of measure zero.

The central topic of this article will be the analysis of the steady state behavior of our model.
To this end, we start by calculating necessary and sufficient conditions for the pathogen to
establish infection. We view this both in terms of the basic reproductive constant, R0, and in
terms of the linear stability analysis of the uninfected equilibrium at which all stages of the
pathogen as well as their corresponding immune responses become extinct.

We continue the steady state analysis by determining further fixed points of the model's
equations. As we will see, for generic parameter values, this system has exactly 2n fixed
points, (where n is the number of stages), depending on which stages are regulated by the
immune response. In general, not all of these are biologically relevant since a given pattern
of regulated and unregulated stages can give negative population levels at steady state. We
give a criterion for detecting the biologically meaningful ones.

If the pathogen is able to establish infection, (R0 > 1), the parameters induce a partial order
on the pathogen's stages. We say stage j starves stage k (in symbol j ≻ k) if immune
regulation at stage j deprives stage k of sufficient population to support immune regulation.
A stage k is called starvable if there is another stage j such that j ≻ k. If no such j exists, k is
called unstarvable. One of our main results is the fact that, generically, the system has a
unique asymptotically stable fixed point, namely, the one at which all unstarvable stages are
regulated and all starvable stages are unregulated.
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The portrait we have just drawn holds for generic values of the parameter set. It turns out
that there are highly non-generic parameter sets for which the system becomes a Lotka–
Volterra predator–prey system. While mathematically interesting, this is unlikely to occur in
nature. The condition that the parameters must obey has co-dimension n – 1. In particular,
such parameters form a set of measure zero.

Finally, we show how to generalize the previous results to the case where the pathogen has
individual stages which are capable of establishing infection independently of the remaining
stages.

This article is organized as follows: In Sect. 2, we introduce the model and discuss its
parameters. In Sect. 3, we examine the basic properties of the system's fixed points. In Sects.
4–6 we embark on the detailed analytical study of the model's equilibrium behavior. One of
the main tools used is the partial order on stages, defined in Sect. 5. In Sect. 7, we present
the highly non-generic Lotka–Volterra scenario. Finally, in Sect. 8 we consider self-
establishing stages. We close in Sect. 9 by discussing some of the model assumptions and
consequences for the characteristics of the immune response to a multi-stage pathogen. To
provide a more concrete contrast between the model and reality, we focus on EBV infection
biology.

2 Formulation of the model
We model the interaction between a host and a pathogen which traverses n ∈ ℕ, n > 1
different stages during its life-cycle. We treat these stages as immunologically distinct, that
is, the host produces a separate immune response to each of them. Our model is given by

(*)

The subscripts are taken modulo n. We use Sj and Tj for the pathogen population and
immune response1 at each stage. These are assumed non-negative. The parameters represent
the following processes:

• aj is the decay rate of stage Sj. If aj is negative, this stage proliferates.

• fj is the rate at which stage Sj is lost to become (or produce) stage Sj+1.

• rj is an amplification factor in the process by which stage Sj becomes (or produces)
stage Sj+1. For example, the loss of one lytically infected cell may produce rj ≈ 104

free virus.

• pj represents the efficacy of the immune response Tj in killing infected stage Sj.

• cj is the antigenicity of stage Sj, i.e., its efficacy in inducing proliferation of
immune response Tj.

• b is the natural death rate of the response Tj. We assume it is the same for all
stages.

We will refer collectively to a choice of values for these parameters as θ. We will assume
that with the possible exception of aj, all of these are positive. In Sects. 3 through 7, we will
assume that aj + fj > 0. Thus, while some stages may proliferate, none does this as fast as it
is consumed in producing the next stage. In Sect. 8, we will lift this assumption and

1The notation Tj is motivated by the T-cell response. However, it may equally well refer to humoral response.
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generalize our results to the case in which there are self-establishing stages. We will also
assume that the values of these parameters are generic. Accordingly, at several places we
will disregard certain sets of parameters which have measure zero (See Eqs. (3) and (4)).

The model's equations can be simplified by using the following change of coordinates

which produces the equations

(**)

We will henceforth assume our equations are in this form and omit the bars. When we refer
to a fixed point, we will mean a fixed point of system (**). The notations

 or (S*, T*) will refer to such a fixed point. We will say that a
point is biologically meaningful if its components are non-negative.

We will adopt the following notational conventions. Sets such as [j, k] and [j, k) are to be
taken cyclically. That is to say, if j < k, then [j, k] = {j,…, k}, while if j > k, [j, k] = {j,…, n –
1, 0,…, k}. We take [j, j) to be the empty set so that any product taken over [j, j) is one. We
abuse notation by taking [0, n) = {0,…,n – 1}.

3 First properties of the fixed points
The fixed points are defined by the system of polynomial equations

(1)

(2)

where j = 0,…, n – 1 and indices outside the interval [0, n – 1] are understood modulo n.

In this section, we give formulas that determine the population values at fixed points of
system (**). We will see that if stage k is unregulated,  is determined as a “follow-on”
population from the previous stage. This gives rise to “follow-on factors” (defined below)
which will play a key role in this paper. This, in turn, will lead us to the notion of generic
parameter values, and we will see that for generic parameter values, system (**) has exactly
2n fixed points.

This section is organized as a series of observations. These follow from easy computations
which we omit when they would clutter rather than clarify.

We start by defining these follow-on factors
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which we will use throughout this article. We will take Mjj to be the empty product. Given a
fixed point (S*, T*), if , we will say that j is regulated. Otherwise j is unregulated. We
define

1. If there is a j such that , then (S*, T*) = (0, 0). By (1) if , then .
By (2) if , then . Continuing in this way  for all j ∈ [0, n).

2. If j ∈ Reg(S*, T*), then .

3. If j ∈ Unreg(S*, T*), then .

4. If j + 1 ∈ Unreg(S*, T*), then . This follows quickly from (1).

5. If [j + 1, k] ⊂ Unreg(S*, T*), then . This follows by induction on the
previous observation.

6. If j ∈ Reg(S*, T*) and [j + 1, k] ⊂ Unreg(S*, T*), then .

7. If R0 ≠ 1, and (S*, T*) ≠ (0, 0), then Reg(S*, T*) ≠ ∅. To see this, notice that by
our first observation, we must have  for all j ∈ [0, n). But if Reg(S*, T*) = ∅,
we must have .

Before proceeding, two points are worth considering. The first is that we have just
introduced our first condition for a generic parameter set θ, that is,

(3)

The second is that the S population at an unregulated stage depends on follow-on
constants and the previous regulated stage. Observation 7 guarantees that at a
nontrivial fixed point, there always is such a stage. Accordingly, given k, we will
define hk to be this stage, that is, hk is the unique stage such that hk ∈ Reg(S*, T*)
and [hk + 1, k) ⊂ Unreg(S*, T*). As we will see, this notation is also useful in the
case k ∈ Reg(S*, T*).

8.
If j ∈ Reg(S*, T*), then . This follows from (1).

9. If j ∈Reg(S*, T*), then . This follows from the fact that

 and .
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10.  if and only if Mhjj > 1.

This latter will be important in Sect. 5 and leads to our second genericity requirement. We
take

(4)

This may seem overly broad since we have only used Mjk ≠ 1 for j, k ∈ Reg(S*, T*), with j =
hk. However, we wish to avoid making the genericity of θ depend on the fixed point in
question. The sets in question are all of co-dimension 1 and hence have measure 0.

We have now arrived at the place where all of the populations are determined by the
parameters and the pattern of regulation. We record these as follows:

(5)

(6)

We are now prepared to show that for generic parameters, (**) has exactly 2n fixed points.
We will show that for an arbitrary set R ⊂ [0, n), there is exactly one fixed point (S*, T*)
with Reg(S*,T*) = R. If R = ∅, we have seen that (S*, T*) = (0,0). Under the assumption
that R ≠ ∅,  and  are determined for j ∈ R by (5). Observe that if θ is generic, then the
T-values determined by (5) are non-zero, so that Reg(S*, T*) = R as required. Since the
population values for j ∉ R are now determined by (6), we see that there is exactly one fixed
point for each R ⊂ [0, n) as required.

In general, not all of these non-vanishing fixed points (defined by (5) and (6) under the
genericity assumptions) are biologically relevant, since a given pattern of regulated and
unregulated stages can give Tj < 0 for one or more values of j. We will call non-vanishing
fixed points (i.e., different from the uninfected equilibrium (0, 0)) infected equilibria.
Infected equilibria with the property  j = 0, …, n – 1 (  j = 0, …, n – 1 follows
from the assumed positivity of parameters) are called biologically meaningful infected
equilibria.

4 Establishing infection: stability of the uninfected equilibrium
We start by deriving the expression for the basic reproductive number R0 already revealed
above [see (3)]. Our first genericity assumption (3) allows us to eliminate the case R0 = l.
We will then show that the remaining dichotomy R0 < 1 or R0 > 1 determines whether the
pathogen is able to establish infection. We give two proofs here. The first uses the
interpretation of the parameters as describing the life-cycle of the pathogen. The second is
based on the analysis of eigenvalues of the Jacobian at the uninfected fixed point. These two
approaches correspond roughly to R0 and r0. For an excellent discussion of these, see
(Heffernan et al. 2005).

Given θ and an arbitrary biologically meaningful point (S, T) = (S0,…, Sn–1, T0,…, Tn–1), we
define
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Note that at a fixed point (S*, T*), M ̃j = Mj for j ∈ Unreg(S*, T*).

Proposition 1
1. The basic reproductive number of the system is R0.

2. The reproductive number at an arbitrary biologically meaningful point (S, T) is R̃.

3. The overall reproductive number of the pathogen in the presence of any (non-
negative) immune response is less than its basic reproductive number in the
absence of an immune response.

4. If R0 < 1, the pathogen fails to establish infection and the uninfected fixed point (0,
0) is a global attractor.

5. At an infected fixed point, the reproductive number is exactly 1. Thus, at an
infected fixed point we have ∏j∈[0,n) M ̃j = 1.

Proof
To see that R0 is the basic reproductive constant of this system, consider the behavior of
stage S0 when the naive host encounters one unit of this stage. The average lifespan at this
stage is 1/(a0 + f0). During the course of that lifespan, it produces r0 f0/(a0 + f0) units of
stage S1. This, in turn produces (r1 f1/(a1 + f1))(r0 f0/(a0 + f0)) units of stage S2. Continuing
in this way, we see that the original introduction of a unit of S0 results in

 units of S0.

To see that the basic reproductive number at an arbitrary point (S, T) is ∏j∈[0,n) M ̃j, observe
that in the presence of an immune response, the average lifespan of stage Sj is 1/(aj + fj +Tj).
The result now follows as before. The third and fourth statements now follow immediately,
while the final statement follows from observing that at a fixed point the pathogen exactly
reproduces itself and therefore has basic reproductive number 1.

We now examine R0 from a slightly different perspective.

Proposition 2
If R0 < 1, the eigenvalues of the Jacobian matrix of system (**) evaluated at (S, T) = (0, 0)
have negative real part and, consequently, the uninfected fixed point is asymptotically
stable. On the other hand, if R0 > 1, at least one eigenvalue of the Jacobian has positive real
part and thus, the uninfected equilibrium is unstable.

Proof
The characteristic polynomial P of J(S, T) is given by the following expression.
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where we use the notation ρj = rj fj and σj = aj + fj + Tj. (See Theorem 5 of the Appendix for
the details on how these expressions were derived.) Evaluating these at (S*, T*) = (0, 0)
gives

Thus, the eigenvalues of J (0, 0) are given by the n-fold root λ = −b and the zeros of the

polynomial . By our assumptions, all coefficients of R are

positive except for , which is positive if and only if

By Routh's criterion (reviewed in Barnett and Šiljak 1977), if R0 > 1, at least one root of R
(and therefore of the characteristic polynomial P) has positive real part. Therefore, the
equilibrium point (S, T) = (0, 0) becomes unstable for R0 > 1.

We now wish to see that if R0 < 1, all roots of P have strictly negative real part implying that
the equilibrium point (S, T) = (0, 0) is (locally) asymptotically stable.

To see this, consider the polynomials

and

Thus, R = Q + E, and we can interpret R as a perturbation of Q by E. By our assumptions,
the real parts of all roots of Q are strictly negative, in other words, Q is strictly Hurwitz2.
Here the question arises as to how big the perturbation E can be, so that R remains strictly
Hurwitz. By Corollary 4 in (Lin et al. 1989), this will occur if3

2A real polynomial is called strictly Hurwitz if the real part of each of its (complex) roots is strictly negative.
3We will see that such a maximum exists.
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where i is the imaginary unit. We have

It is now clear that this achieves its maximum, namely R0, at ω = 0. In particular, R0 < 1
implies that all eigenvalues of the Jacobian have negative real part and the uninfected fixed
point is asymptotically stable.

5 Starvation: a partial order on the stages
In this section, we introduce a relation j ≻ k which we read as j starves k. This relation
depends only on θ. We will show that this relation limits which patterns of regulation can
appear in a biologically meaningful fixed point, and will show that j ≻ k is a strict partial
order, provided R0 > 1.

Definition 1
We will say stage j starves stage k and write j ≻ k if Mjk < 1.

The following proposition explains our use of the term starves.

Proposition 3
Let the set of parameters θ be generic. Furthermore, let (S*, T*) be a biologically
meaningful infected equilibrium (in particular, Reg(S*, T*) ≠ ∅) and let j, k ∈ [0, n) such
that j ≠ k. If j ≻ k, then j ∈ Reg(S*, T*) implies k ∈ Unreg(S*, T*).

Proof
Suppose j ∈ Reg(S*, T*) and assume to the contrary that k ∈ Reg(S*, T*). Let m ∈ ℕ0 be the
number of regulated stages between j and k. That is, suppose [j + 1, k) ∩ Reg(S*, T*) = {j1,
…, jm} and suppose these are ordered so that (cyclically) j = j0 ≤ j1 ≤ j2 ≤ ⋯ ≤ jm < jm+1 = k.
Since (S*, T*) is biologically meaningful and θ is generic,  for j ∈ Reg(S*, T*). By
observation 10 of Sect. 3, we have Mjsjs+1 > 1 for s = 0, …, m. But this gives

contradicting the assumption that j ≻ k.
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This result can be biologically interpreted as follows: If j ≻ k, regulation at stage Sj starves
stage Sk of sufficient population to support regulation.

Proposition 4
Let θ be such that R0 > 1. Then ≻ is a strict partial order.

Proof
We must show that ≻ is transitive, anti-reflexive and asymmetric. Suppose j ≻ k and k ≻ ℓ.
If k ∈ [j, ℓ] then

Since each of the quantities on the left are less than one, so is their product as required. On
the other hand, if ℓ ∈ [j, k], then

Since R0 > 1,

as required.

To see that ≻ is asymmetric, note that R0 can be written as

Thus, R0 > 1 and j ≻ k imply 1 < Mk … Mj−1 contradicting k ≻ j.

Finally, to see that ≻ is anti-reflexive, note that by definition Mjj = 1.

Definition 2
We will say that Sj is unstarvable if j is ≻ -maximal. Otherwise Sj is starvable. We will refer
to the set of indices of unstarvable respectively starvable stages as Str(θ) respectively
Unstr(θ).

Remark 1
Note that if θ is such that no two stages are comparable, then ≻ is empty and every stage is
≻ -maximal, so Unstr(θ) = [0, n). In particular, Unstr(θ) ≠ ∅ ∀ θ.

6 Stability of infected equilibria
In this section, we consider biologically meaningful infected fixed points. In particular, we
can assume R0 > 1. We will show that for generic θ there is exactly one asymptotically
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stable biologically meaningful fixed point. We give two characterizations of this fixed point,
one in terms of pathogen populations and one in terms of immune response.

Definition 3
Let (S*, T*) be an infected fixed point. We will say that the pathogen populations are
moderated at (S*, T*) (or simply that (S*, T*) is moderated) if  for j ∈ Unreg(S*, T*).
We will say that the immune response is saturated at (S*, T*) (or simply that (S*, T*) is
saturated) if Reg(S*, T*) = Unstr(θ).

Remark 2

Given a fixed point (S*, T*),  for j ∈ Reg(S*, T*). Thus at a moderated fixed point, at
no stage is the pathogen population greater than the regulated population.

Proposition 5
Let the set of parameters θ be generic. Furthermore, let (S*, T*) be a biologically
meaningful infected fixed point. Then the pathogen populations are moderated at (S*, T*) if
and only if the immune response is saturated at (S*, T*).

Proof
We start by proving that saturation implies moderation. Suppose (S*, T*) is saturated, and
suppose θ is generic. If Unreg(S*, T*) = ∅, the claim holds vacuously. So suppose k ∈
Unreg(S*, T*). We then have k ∈ Str(θ). Let j be ≻-maximal such that j ≻ k. If [j + 1, k) ⊆
Unreg(S*, T *), we are done, for then . On the other hand if [j + 1, k)
∩Reg(S*, T*) ≠ ∅, choose m ∈ [j + 1, k)∩Reg(S*, T*) so that [m + 1, k) ⊂ Unreg(S*, T*).
Since Mjk = MjmMmk < 1, we must either have Mmk < 1 forcing , or we have Mjm < 1.
But the latter is impossible since m ∈ Reg(S*, T*) and hence m ∈ Unstr(θ). Hence (S*, T*)
is moderated as required.

Now we show the converse. Suppose (S*, T*) is moderated. We then have

We claim that Unreg(S*, T*) ⊆ Str(θ). If Unreg(S*, T*) = ∅, this holds vacuously. Now
assume Unreg(S*, T*) ≠ ∅ and let k ∈ Unreg(S*, T*). Choose j ∈ Reg (S*, T*) such that [j
+1, k] ⊂ Unreg(S*, T*). Then  proving j ≻ k as required.

We claim that Reg(S*, T*) ⊆ Unstr(θ). Suppose to the contrary that k ∈ Reg(S*, T*) ∩
Str(θ). Then there is j ∈ Unstr(θ) such that j ≻ k. Since Unreg(S*, T*) ⊂ Str(θ), we must
have j ∈ Reg(S*, T*). But if j ∈ Reg(S*, T*) and j ≻ k, then, by Proposition 3, k ∈ Unreg(S*,
T*) contradicting k ∈ Reg(S*, T*).

Since Unreg(S*, T*) ⊆ Str(θ) and Reg(S*, T*) ⊆ Unstr(θ) and Str(θ), Unstr(θ) as well as
Reg(S*, T*), Unreg(S*, T*) are partitions of [0, n), we have Unreg(S*, T*) = Str(θ) and
Reg(S*, T*) = Unstr(θ) proving that (S*, T*) is saturated as required.

We now justify the use of the term “saturated”.
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Theorem 1
Let the set of parameters θ be generic. Furthermore, suppose (S*, T*) is a biologically
meaningful infected fixed point and assume (S*, T*) is not saturated. Then there is a j ∈ [0,
n) so that  and for any neighborhood U of (S*, T*), there is a biologically meaningful
point x ∈ U so that Ṫj∣x > 0. In particular, (S*, T*) is unstable.

Proof
Since (S*, T*) is not saturated, by Proposition 5, it is not moderated. Furthermore, Unreg(S*,
T*) ≠ ∅. Were Unreg(S*, T*) = ∅, then the fixed point would be completely regulated
(Reg(S*, T*) = [0, n)) and such a fixed point is always saturated. To see this, assume that
(S*, T*) is not saturated. Since Unreg(S*, T*) = ∅, this assumption is equivalent to Str(θ) ≠
∅. Thus, there is a k ∈ Str(θ) which is dominated by another stage j, in other words, j ≻ k.
But j ∈ Reg(S*, T*) and therefore, by Proposition 3, k ∈ Unreg(S*, T*), a contradiction.

Summarizing, there is j ∈ Unreg(S*, T*) so that . Let eTj be the unit vector in the Tj

direction. Recall that . Thus, for any sufficiently small δ > 0, we have
Ṫj∣F+δeTj > 0. This implies that arbitrarily close to (S*, T*), there are orbits which move
away from (S*, T*).

Remark 3
One can think of (S*, T*) as a state of a “micro-ecology” in which Tj plays the role of a
species which is capable of invading.

Theorem 2
Let (S*, T*) be a biologically meaningful infected fixed point. Assume that not all Tj are
equal. If (S*, T*) is moderated then (S*, T*) is a local asymptotically stable equilibrium. In
particular, the eigenvalues of the Jacobian matrix J(S*, T*) have strictly negative real part.

Proof
For brevity, we will use the notations ℛ = Reg(S*, T*),  = Unreg(S*, T*), ρj = rjfj and

 (thus, σj = aj + fj for all j ∈ Unreg(S*, T*)). The characteristic polynomial of
J(S*, T*) is given by

By grouping the factors containing regulated resp. unregulated stages we obtain

As in Sect. 4, we consider the polynomials
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(7)

Thus, P = Q + E, and we can interpret P as a perturbation of Q by E. By our assumptions on
the parameters, by the positivity of all  for j ∈ ℛ, and by the assumption  for all j ∈

, Q is strictly Hurwitz (this is also correct in the case  = ∅). Here the question arises as
to how big the perturbation E can be, so that P remains strictly Hurwitz. By Corollary 4 in
(Lin et al. 1989), the strict Hurwitz property is preserved if max (|E(iω)/Q(iω)|) < 1. 4 We
have

Each of the functions , j ∈ ℛ has a global minimum on (0, ∞) at

 whereas the function g(ω) ≔ (aj + fj)2 + ω2 has a global minimum on [0, ∞) at
ω = 0. Therefore, we can conclude that for maxω≥0 |E(iω)/Q(iω)|, if existent, it must hold

This is also correct in the case  = ∅, in which

4It is easy to verify that |E(0)/Q(0)| = 0 and limω→∞ |E(iω)/Q(iω)| = 0. Notice that Q(iω) is non-zero on (0, ∞). Since h(ω) ≔ |
E(iω)/Q(iω)| is a non-negative continuous function on [0, ∞) (even differentiable on (0, ∞)) and obviously not constant, it must take
its maximum in the open interval (0, ∞).
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The strict inequality arises from the fact that not all  are equal (and consequently not all

 are equal) and thus, the functions hj(ω) do not achieve their minima simultaneously.
By 5. in Proposition 1, it follows maxω≥0 |E(iω)/Q(iω)| < 1 and the claim follows by
Corollary 4 in (Lin et al. 1989).

Corollary 1
Let the set of parameters θ be generic. Furthermore, let (S*, T*) be a biologically
meaningful infected fixed point. Assume that not all Tj are equal. Then (S*, T*) is locally
asymptotically stable if and only if (S*, T*) is moderated.

Proof
The claim follows immediately from Proposition 5 and Theorems 1 and 2.

The previous Corollary can be restated as follows.

Theorem 3
Let the set of parameters θ be generic. Furthermore, let (S*, T*) be a biologically
meaningful infected fixed point. Then (S*, T*) is locally asymptotically stable if and only if
(S*, T*) is saturated.

Proof
Under the assumption that θ is generic, (S*, T*) is saturated if and only if it is moderated.
Note that for a generic parameter set θ, the  are not all equal as this occurs only on a
subset of parameters of co-dimension n – 1.

Remark 4

We have introduced a third requirement for θ to be generic, namely that  are not all equal.
As we will see below, this is equivalent to the requirement that rj−1fj−1 − (aj + fj) is not
independent of j.

Definition 4
Let (S*, T*) be a fixed point. If Reg(S*, T*) = [0, n), we will say that (S*, T*) is completely
regulated.

Remark 5
If (S*, T*) is completely regulated, it follows that (S*, T*) is infected. It is also vacuously
moderated. If θ is generic and (S*, T*) biologically meaningful, it is also saturated (see the
Proof of Theorem 1). On the other hand, if θ is generic and such that no two stages are
comparable, then the completely regulated (not necessarily biologically meaningful) fixed
point is saturated (cf. Remark 1).

Corollary 2
Let (S*, T*) be the completely regulated biologically meaningful fixed point. Suppose that
the  are not all equal. Then (S*, T*) is locally asymptotically stable and the eigenvalues of
the Jacobian matrix J(S*, T*) have strictly negative real part.

Proof
Since (S*, T*) is completely regulated, (S*, T*) is moderated.
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Remark 6

Note that if we drop the assumption that not all the  are equal, we are forced into the case
 for all j ∈ [0, n) for some τ ∈ ℝ+ and consequently Unreg(S*, T*) = ∅. In this case,

and by Proposition 1, maxω≥0 |E(iω)/Q(iω)| = 1. Corollary 4 in (Lin et al. 1989) and the
continuity of the eigenvalues on the entries of a matrix let us conclude that Re(λk) ≤ 0 for all
roots λk of the characteristic polynomial P. In this very non-generic case, linearization of the
right hand side of (**) does not yield a stability statement for (S*, T*). In the next subsection
we will study this case in more detail.

7 An embedded Lotka–Volterra system
For certain highly non-generic sets of parameters, this system contains an embedded Lotka–
Volterra predator–prey system. Recall that this system is given by

where α, β ∈ ℝ+ are positive parameters and x and y are non-negative. (See, e.g., Hirsch and
Smale 1974). We will use the notation ΔS × ΔT to denote points (S0,…, Sn−1, T0,…, Tn−1)
where the values Sj and Tj are independent of j, that is, points satisfying S0 = S1 = ⋯ = Sn−1
and T0 = T1 = ⋯ = Tn−1.

Theorem 4
Suppose (S*, T*) is the completely regulated infected fixed point of (**). Then the
following are equivalent:

1.  is independent of j.

2. (S*, T*) ∈ ΔS × ΔT.

3. The expression rj−1fj−1 − (aj + fj) is positive and independent of j.

4. ΔS × ΔT is invariant and the dynamics of the system restricted to ΔS × ΔT is the
Lotka-Volterra system.

5. There is an embedded Lotka-Volterra system.

6. The Jacobian of the system has a pair of pure imaginary eigenvalues.

Proof

1. ⇒ 2.: We have  for 0 ≤ j < n, so  for 0 ≤ j < n.

2. ⇒ 3.: Recall that
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Since  for 0 ≤ j < n and  is independent of j, the result follows.

3.⇒ 4.: We take Sj = x, Tj = y on ΔS × ΔT, rj−1fj−1 − (aj + fj) = α and b = β. We then have

Since the right-hand sides are independent of j, we may replace the left-hand sides with the
derivatives of x and y giving the Lotka–Volterra equations.

4. immediately implies 5.

6. now follows from the well-known dynamics of the Lotka-Volterra equations.

It remains to prove that 6. implies 1. This follows from Corollary 2.

Remark 7
The Lotka–Volterra dynamics take place on an embedded 2-plane. Corollary 2 says that the
eigenvalues of the Jacobian have non-positive real parts.

This implies that there is no exponential departure from the fixed point orthogonal to the
Lotka-Volterra plane. We conjecture that the pure imaginary eigenvalues of the Lotka-
Volterra dynamics are the only ones with non-negative real part. If this conjecture is correct,
the Lotka-Volterra plane is an attractor in a neighborhood of the fixed point. This conjecture
is consistent with the results of numerical investigations.

8 Self-establishing stages
In this section we show how to modify Definition 1 to generalize Theorems 1, 2 and 3 in the
case where there exists a j ∈ [0, n) such that aj + fj < 0.

In previous sections, we have assumed that aj + fj > 0 for all j ∈ [0, n). The assumption that
aj > 0 says that stage j decays rather than proliferates. If aj < 0 and aj + fj > 0, then stage j
proliferates, but does so more slowly than it is lost to stage j + 1. Accordingly, no stage is
able to establish itself independently of the other stages. We now lift this assumption and
allow stages j such that aj + fj < 0. Such a stage proliferates faster than it differentiates and is
thus able to establish itself independently of the remaining stages. We call such a stage self-
establishing. Given a set of parameters θ, we will refer to the set of indices of self-
establishing stages as SE(θ).

Since fj and rj are positive for all j, a self-establishing stage also establishes infection at all
other stages. The converse is also true. Suppose a naive is infected with a small amount of Sj
> 0 where j ∉ SE(θ). Suppose also that k ∈ SE(θ) with [j + 1, k) ∩ SE(θ) = ∅. Given that Sj
> 0 for t = 0, (**) ensures that Sk > 0 for any sufficiently small t. Sk then proceeds to
proliferate.
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As our fourth and last genericity assumption, we assume aj + fj ≠ 0∀ j ∈ [0, n). We take
SE(θ) = {j ∣aj + fj < 0}. In this section, we take it as a standing assumption that SE(θ) ≠ ∅.

Proposition 6
Let θ be a set of parameters. Furthermore, let (S*, T*) be a biologically meaningful infected
fixed point. If j ∈ SE(θ), then j ∈ Reg(S*, T*).

Proof

If, on the contrary, , it follows that , contradicting the assumption that (S*, T*) is a
fixed point.

It should be clear that any self-establishing stage cannot be starved of sufficient population
to support regulation.

Definition 5
We say that j starves k and write j ≻ if Mjk < 1 and [j + 1, k] ∩ SE(θ) = ∅.

Note that this reduces to the previous definition when SE(θ) is empty.

Proposition 7
Let θ be such that R0 > 1. Then the relation ≻ is a strict partial order.

Proof
Let SE(θ) consist of j1 < j2 < ⋯ < jm. These decompose [0, n) into U1,…,Um+1 where Uℓ =
[jℓ, jℓ+1) for ℓ = 1,…, m and Um+1 = [jm, j1). We order each of these segments according to
the reverse of the order induced by the cyclic order of [0, n). That is, for ℓ = 1,…, m, Uℓ is

ordered , while Um+1 is ordered .

Notice that if j ≻ k then j and k lie in the same Uℓ and . It is easy to see that this makes
≻ a strict partial order.

We define Str(θ), Unstr(θ), saturated and moderated as before. The statement of Proposition
3 as well as the equivalence of moderation and saturation (Proposition 5) and their necessity
for stability (Theorem 1) can be proved analogously, where the result of Proposition 6 plays
an important role.

In order to prove sufficiency in the presence of self-establishing stages, we need the
following lemma.

Lemma 1
Let the set of parameters θ be generic. Furthermore, let (S*, T*) be a biologically
meaningful infected fixed point. Then

1.  for j ∈ [0, n).

2.  for j ∈ [0, n).

Proof

Since (S*, T*) is infected and biologically meaningful, there is j so that . Hence, by Eq.
(1) , which in turn requires . This requires , and
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since (S*, T*) is biologically meaningful, . This, in turn, requires
. Continuing in this way extends this to all j ∈ [0, n).

The proof of Theorem 2 depends on Eq. 7, and we now revisit this in the case of a saturated
fixed point with self-establishing stages. To see that Q(λ) is Hurwitz, we must check that its
coefficients are positive. For the product taken over regulated stages, we note that σj and 
are both positive. We turn to the product taken over unregulated stages. As we have seen, an
unregulated stage cannot be self-establishing. In particular, at any unregulated stage, aj + fj
is positive and we proceed as before. Theorem 3 and Corollary 2 now follow as before.

9 Discussion
In this paper, we have considered an ODE model (**) of the interactions between a host and
a pathogen which uses a cycle of antigenically distinct stages to establish and maintain
infection. We were able to give a simple expression for R0 which determines whether the
pathogen is able to establish infection. If R0 < 1, exposure to the pathogen, even in large
quantities, will not succeed in infecting the host since the pathogen dies faster than it can
replace itself. Indeed, the host will clear the pathogen even in the absence of an immune
response.

If R0 > 1, then the pathogen is capable of infecting the host, and in this model, an immune
response is necessary to control the infection.5 In this case, the absence of an immune
response leads to unbounded expansion of the pathogen population and presumably, the
host's death.

The question then arises, when an immunocompetent host is infected with an infectively
competent pathogen (i.e., R0 > 1), can they arrive at a stable equilibrium? If so, what are the
balancing populations for pathogen population and host response? In terms of the model,
this question translates to asking which of the model's equilibria are stable and under what
conditions. A key ingredient towards answering this question was the ability to distinguish
the different stages of the pathogen in terms of the net yield with which they are generated.
We were able to formalize this distinction using a binary relation j ≻ k, which turns out to be
a partial order if R0 > 1 (see Sect. 5).

Assuming the pathogen can establish infection, the concepts of starvable and unstarvable
stages restrict the possible patterns of regulation. The starvation relation j ≻ k is based on
comparison of the rate at which stage j produces stage k with the rate at which stage k is lost
to death and differentiation. This determines the ability of stage j to replenish the population
at stage k. When this downstream yield is smaller than the regulated population b, it is
insufficient to support regulation. In this way, if j ≻ k and j is regulated, then regulation of
stage k vanishes. In this sense, the immune regulation of unstarvable stages is sufficient to
immunologically control the starvable stages. At steady state, immune regulation is only
required against those stages that are produced with relatively higher yield and the
equilibrium becomes moderated (see Sect. 6). Accordingly, there is a unique biologically
meaningful infected equilibrium, namely, the one at which all unstarvable stages are
regulated and all starvable stages are unregulated.

If the parameters of the system allow for the existence of a biologically meaningful
completely regulated fixed point, the model predicts that this will be the (only) stable

5In models which include the supply of uninfected tissue, the rate of supply provides a limiting factor for infection in the absence of
immune response.
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equilibrium under the premise that the pathogen can establish infection (Corollary 2).
According to Eq. 5, the completely regulated fixed point satisfies  and

, j = 0, …, n − 1 The inequalities  imply that the amplification
factors rj are big enough for every stage to be replenished at a higher rate than the sum aj + fj
of its own decay and transformation rate. Our model predicts that a pathogen which
produces every stage with such an effectivity can only be immunologically controlled with a
fine tuned immune response against every stage the pathogen cycles through.

Having clarified the properties of equilibria, it is pertinent to keep in mind that these are
local properties of the model. We were unable to perform a global analysis of the dynamics
(see for instance, Prüss et al. 2008). That is, we cannot give an account of trajectories along
which the system might approach such a steady state configuration, the basins of attraction
of attracting fixed points, nor can we eliminate the possibility that the system exhibits
limiting cycles or other attractors. Our naive expectation is that the unique biologically
meaningful infected equilibrium acts as a global attractor in the case where the host
possesses an immunocompetent response to every stage.

Our methods for establishing the uniqueness and existence of the unique stable fixed point
have very distinct flavors. The arguments for uniqueness have clear biological
interpretations. In particular, the starvation relation, j ≻ k of Sect. 5 considers the maximal
rate at which stage j can produce stage k with the rate at which stage k is lost to stage k + 1
and in turn compares these to the minimum population necessary to support immune
regulation. Likewise, Theorem 1 describes the ability of an immune response to invade and
therefore alter a given equilibrium.

Our methods for establishing existence have a very different character. Here we have turned
to the eigenvalues of the system's Jacobian matrix and these have lead us to the roots of its
characteristic polynomial. These sorts of computations can offer many challenges which
have been the subject of intense study for the last five decades within the control and
systems theory community. Many of the resulting techniques focus on the sorts of
perturbations that can be applied to a strictly Hurwitz polynomial without losing the Hurwitz
property. We predict that as biological models continue to grow in complexity,
mathematical biologists will increasingly turn to these analytic tools. For entry into this
topic we recommend the bibliographies (McNamee 1993, 2002).

Having stated the general predictions that can be derived from our model, we would like to
elaborate on the model's features, properties and predictions within the biological framework
of chronic EBV infection. It was indeed human EBV pathology what inspired the basic
structure of our model. To this end, we provide a brief overview of what is known about
EBV infection in humans.

EBV is a highly successful pathogen which infects over 90% of the adult human population
(Thorley-Lawson 2001). It is horizontally transmitted via saliva (Hoagland 1955) and is
tropic to the epithelium of the oropharynx and B-cells. It infects naive B-cells and causes
them to become activated B-blasts. These enter the germinal centers of Waldeyer's ring
where they are ultimately transformed into latently infected quiescent memory B-cells.
These circulate in the peripheral blood where they rarely express viral proteins and are
therefore invisible to the immune system (Hochberg et al. 2004a). Upon return to Waldeyer's
ring, some of these are triggered to start producing virus (Laichalk and Thorley-Lawson
2005). These lytically infected B-cells ultimately burst, producing free virus which may be
transmitted horizontally or may reinfect additional naive B-cells, thus completing the cycle
(Thorley-Lawson and Gross 2004). The epithelium of the oropharynx appears to play a role
in amplifying virus for transmission (Hadinoto et al. 2009). The host mounts T-cell

Delgado-Eckert and Shapiro Page 19

J Math Biol. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



responses against the blast, germinal center and lytic stages, and an antibody response
against the free virus. The normal course of acute infectious mononucleosis involves an
acute phase during which latently infected memory B-cells can become as much as 50% of
the memory B-cells in the peripheral circulation (Hochberg et al. 2004b). Immune response
is also high during the acute phase. This resolves to a chronic phase of persistent low-level
infection (Hochberg et al. 2004b; Khan et al. 1996).

This suggests that a mathematical model of EBV infection might include the following
infected populations: activated B-blasts, infected germinal center B-cells, quiescent infected
memory B-cells and lytically infected B-cells. These latter can be subdivided into stages
exhibiting distinct antigenic profiles, namely immediate early, early and late antigens. Due
to its short life span one might choose to omit free virus from such a model. In short, it is not
at all obvious what would be the “right” number of stages to include in an EBV model, and
this has motivated our choice to study a model which is entirely general as to the number of
stages.

We have chosen to omit the supply of uninfected tissue from our model for the sake of
symmetry. We would argue that this does not affect the validity of the model unless a
significant fraction of the uninfected tissue is lost to infection. To see this, consider a
modification of the model to take this into account. Let us use Sn to model uninfected tissue,
let us take Sn−1 to model free virus6, and let the rate of new infection be proportional to their
product. We then have

(Compare Eq. 3.1 of Nowak and May 2000). If Sn is relatively constant, then Sn can be
eliminated from the model and we can take fn−1 = βSn and rn−1 fn−1 = rnβSn.

While acute phase EBV infection shows infected cells occupying a large portion of
peripheral memory, it seems unlikely that it consumes a large portion of the uninfected naive
B-cells supplied to Waldeyer's ring (Hochberg et al. 2004a; Souza et al. 2005). Accordingly,
it seems unlikely that this will be an obstruction to application of this model.

Our primary purpose in developing this model is to cast light on the long-term persistence of
EBV infection. Here we can surely treat the supply of uninfected tissue as nearly constant.

Biologists will be interested in solutions to (*) rather than (**). The follow-on factors are
unchanged. The analogs of Eqs. 5 and 6 are

The starvation relation is now j ≻ k if .

6In this case Tn−1 is humoral response.
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People show different patterns of infection and immune response to EBV. Under 10% of the
adult population is EBV negative. Given that over 90% of the adult population is EBV
positive (Thorley-Lawson 2001; Rickinson and Kieff 2001), it is clear that most of the EBV
negative population has had repeated exposure to EBV. Since these people show no EBV-
specific antibodies (Henle and Henle 1979), it seems clear that they are negative due to the
virus's inability to establish infection rather than the immune system's ability to clear it. This
shows that R0 is a host–pathogen property, not simply a property of the pathogen.

Chronically infected people show very stable levels of infected memory B-cells in the
peripheral blood (Khan et al. 1996). This is an indication that we are dealing with a stable
fixed point of the host–pathogen system. However, the level of infected memory B-cells
varies from person to person (Khan et al. 1996) as does the pattern of immune response. To
the best of our knowledge, there is always a humoral response to the free virus. Beyond that,
we have seen the individuals who exhibit T-cell responses to both the blast and germinal
center stages and to the lytic stages and individuals who only exhibit detectable T-cell
response to the lytic stages (Thomas Greenough, 2009, personal communication). The latter
patterns could arise from a gap in the available T-cell repertory. We think it is at least as
likely that the starvation relationship varies due to population variation in θ. Empirical
determination of these parameters is work in progress.

It is instructive to consider the variation levels of latently infected memory B-cells. To the
best of our knowledge, this compartment is never regulated (Hochberg et al. 2004b). Due to
the very low levels of viral protein expression, this stage has a very low overall antigenicity
as compared to any other stage. Taking Slatent to be latently infected memory B-cells, we see
that a low value for clatent compared to other stages implies starvability since we then have

.

The expression , shows that the size of regulated populations depends on factors
governing immune response, not on the flow of cells into that population. In particular, we
can expect the size of the lytically infected B-cell population to show little or no correlation
with the size of the latently infected memory B-cell population, while it might well be a
correlate with immune factors such as HLA types.

The question arises whether to expect a correlation between  and . Here the picture
is not clear as the model's predictions depend on the reasons for the variation in . If
high values of  are due to a high rate flow into this compartment from the infected
germinal center population, then we would expect a positive correlation between  and

. If, on the other hand, high values of  are due to low rate of flow from the
latently infected memory B-cell compartment into the lytically infected population, then we
would expect a negative correlation between  and .

In a different vein, from the point of view of the treatment of chronic infections, the
characteristics of the immune response revealed by our model, in particular, the possibility
of unregulated stages, give rise to speculation on the possible targets of such a treatment.
Which stages would be most suitable drug targets, regulated or unregulated ones?

Finally, we would like to say a few words about some mathematical questions raised by this
model. Our stability results are all local. We would conjecture that the unique asymptotically
stable biologically meaningful infected fixed point is a global attractor for the positive
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orthant. This would follow from the existence of an appropriate Lyapunov function.
However, we have not yet managed to find one.

We also conjecture that in the Lotka–Volterra case, the 2-plane that carries the Lotka–
Volterra dynamics is an attractor, at least in a neighborhood of the fixed point. Our
numerical investigations to date support this conjecture.

There are a number of generalizations of this model which deserve investigation. These
include the supply of uninfected tissue, and immune cross-reactivity in which an immune
response might target multiple stages.

One interesting generalization concerns the situation in which each stage may be regulated
by an immune response to more than one epitope and in which each of these epitopes occurs
in multiple variants. This question is addressed for single-stage pathogens in (Nowak et al.
1995). Indeed Nowak suggested (Martin A. Nowak, 2009, personal communication) that we
examine this question for multi-stage pathogens and we have preliminary results in the case
where only one stage exhibits this phenotype.
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Appendix
Derivation of an expression for the characteristic polynomial of J (S, J)

Theorem 5
The characteristic polynomial of the Jacobian J (S, T) of system (**) is given by

Proof
The partial derivatives of the system are given by

Thus, we have
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where A, B, C and D are the following n × n matrices

using the notation ρj = rj fj and σj = aj + fj + Tj. It is well known that a similarity transform
does not modify the eigenvalues of a matrix. The similarity transform we use consists of the
following operations: The first n columns of J (S, T) are transformed to

The resulting matrix

undergoes the following row transformation

The resulting matrix
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then undergoes the following column permutations

followed by row permutations

The similar matrix obtained satisfies

Now we look at the eigenvalue equations of the transformed matrix

where I is the 2n × 2n unity matrix. If we assume λ ≠ −b, the matrix
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is invertible and we can use a well known formula for the determinant of block-partitioned
matrices

Laplace's theorem applied to the last column of the matrix yields for λ ∈ ℂ\{−b}

Summarizing, we have obtained an expression Q(λ) that is equal to the characteristic
polynomial P(λ) of J(S, T) for all λ ∈ ℂ\{−b}. If we drop the requirement λ ∈ ℂ\{−b}, Q is a
polynomial on ℂ and thus a holomorphic function on ℂ. As a consequence, we have two
holomorphic functions Q : ℂ → ℂ and P : ℂ → ℂ that are identical on the connected open
subset ℂ\{−b}. By the well-known identity theorem for holomorphic functions, Q = P must
hold.

References
Barnett S, Šiljak DD. Routh's algorithm: a centennial survey. SIAM Rev. 1977; 19(3):472–489.
Greenwood, BM.; Bojang, K.; Whitty, CJ.; Targett, GA. Malaria; The Lancet. 2005. p.

1487-1498.http://www.sciencedirect.com/science/article/
B6T1B-4G10642-12/2/2e8c1b2c5ea13407881eb54198fd5979

Hadinoto V, Shapiro M, Sun CC, Thorley-Lawson DA. The dynamics of ebv shedding implicate a
central role for epithelial cells in amplifying viral output. PLoS Pathog. 2009; 5(7):e1000496.
[PubMed: 19578433]

Heffernan JM, Smith RJ, Wahl LM. Perspectives on the basic reproductive ratio. J R Soc Interface.
2005; 2:281–293. [PubMed: 16849186]

Henle, W.; Henle, G. Seroepidemiology of the virus. Springer; Berlin: 1979. The Epstien-Barr virus; p.
61-78.

Hirsch, MW.; Smale, S. Differential equations, dynamical systems, and linear algebra. Academic
Press; New York: 1974.

Hoagland RJ. The transmission of infectious mononucleosis. Am J Med Sci. 1955; 229:262–272.
[PubMed: 14349955]

Hochberg D, Middeldorp JM, Catalina M, Sullivan JL, Luzuriaga K, Thorley-Lawson DA.
Demonstration of the burkitt's lymphoma epstein-barr virus phenotype in dividing latently infected
memory cells in vivo. Proc Natl Acad Sci USA. 2004a; 101(1):239–244. [PubMed: 14688409]

Hochberg D, Souza T, Catalina M, Sullivan JL, Luzuriaga K, Thorley-Lawson DA. Acute infection
with epstein-barr virus targets and overwhelms the peripheral memory b-cell compartment with
resting, latently infected cells. J Virol. 2004b; 78(10):5194–5204. [PubMed: 15113901]

Delgado-Eckert and Shapiro Page 25

J Math Biol. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.sciencedirect.com/science/article/B6T1B-4G10642-12/2/2e8c1b2c5ea13407881eb54198fd5979
http://www.sciencedirect.com/science/article/B6T1B-4G10642-12/2/2e8c1b2c5ea13407881eb54198fd5979


Khan G, Miyashita EM, Yang B, Babcock GJ, Thorley-Lawson DA. Is ebv persistence in vivo a model
for b cell homeostasis? Immunity. 1996; 5(2):173–179. [PubMed: 8769480]

Laichalk LL, Thorley-Lawson DA. Terminal differentiation into plasma cells initiates the replicative
cycle of epstein-barr virus in vivo. J Virol. 2005; 79(2):1296–1307. [PubMed: 15613356]

Lin, SH.; Fong, IK.; Juang, YT.; Kuo, TS.; Hsu, CF. Stability of perturbed polynomials based on the
argument principle and Nyquist criterion; Int J Control. 1989. p.
55-63.http://www.informaworld.com/10.1080/00207178908953345

McNamee, JM. A bibliography on roots of polynomials; J Comput Appl Math. 1993. p.
391-394.http://dx.doi.org/10.1016/0377-0427(93)90064-I

McNamee JM. A 2002 update of the supplementary bibliography on roots of polynomials. J Comput
Appl Math. 2002; 142(2):433–434.

Nowak, MA.; May, RM. Virus dynamics, mathematical principles of immunology and virology.
Oxford University Press; Oxford: 2000.

Nowak MA, May RM, Sigmund K. Immune responses against multiple epitopes. J Theor Biol. 1995;
175:325–353. [PubMed: 7475080]

Perelson A, Nelson P. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 1999; 41(1):3–
44.

Prüss, J.; Zacher, R.; Schnaubelt, R. Global asymptotic stability of equilibria in models for virus
dynamics; Math Model Nat Phenom. 2008. p. 126-142.http://dx.doi.org/10.1051/mmnp:2008045

Rickinson, AB.; Kieff, E. Epstein-barr virus. In: Knipe, D.; Howley, P., editors. Virology. 4th. Vol. 2.
Lippincott Williams and Wilkins; New York: 2001. p. 2575-2628.

Souza TA, Stollar BC, Sullivan JL, Luzuriaga K, Thorley-Lawson DA. Peripheral b cells latently
infected with epstein-barr virus display molecular hallmarks of classical antigen-selected memory
b cell. Proc Natl Acad Sci, USA. 2005; 102(50):18093–18098. [PubMed: 16330748]

Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. 2001;
1(1):75–82. [PubMed: 11905817]

Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated
lymphomas. New Engl J Med. 2004; 350(13):1328–1337. [PubMed: 15044644]

Thorley-Lawson, DA.; Duca, KA.; Shapiro, M. Epstein-barr virus: a paradigm for persistent infection
—for real and in virtual reality; Trends Immunol. 2008. p.
195-201.http://www.sciencedirect.com/science/article/
B6W7H-4S0HC1V-4/2/716a5707f4083eeed1b25d50caa7b434

Tyler, KM.; Engman, DM. The life cycle of trypanosoma cruzi revisited; Int J Parasitol. 2001. p.
472-480.http://www.sciencedirect.com/science/article/
B6T7F-42WX3BM-8/2/71efc3e671127f26a8ce080c13404975

Wodarz, D. Killer cell dynamics: mathematical and computational approaches to immunology.
Springer; Berlin: 2007.

Delgado-Eckert and Shapiro Page 26

J Math Biol. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.informaworld.com/10.1080/00207178908953345
http://dx.doi.org/10.1016/0377-0427(93)90064-I
http://dx.doi.org/10.1051/mmnp:2008045
http://www.sciencedirect.com/science/article/B6W7H-4S0HC1V-4/2/716a5707f4083eeed1b25d50caa7b434
http://www.sciencedirect.com/science/article/B6W7H-4S0HC1V-4/2/716a5707f4083eeed1b25d50caa7b434
http://www.sciencedirect.com/science/article/B6T7F-42WX3BM-8/2/71efc3e671127f26a8ce080c13404975
http://www.sciencedirect.com/science/article/B6T7F-42WX3BM-8/2/71efc3e671127f26a8ce080c13404975

