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Abstract
Our studies in the mRen2.Lewis female rat, an angiotensin II- and estrogen-dependent model of
hypertension, revealed that chronic activation of estrogen receptor GPR30 markedly reduces blood
pressure in ovariectomized females. The present studies measured acute vasodilation to the
selective GPR30 agonist G-1 and 17-β-estradiol (10-9 to 10-5.5 M) in isolated aortic rings and
mesenteric arteries from intact mRen2.Lewis females. Maximal relaxation was greater in
mesenteric vessels versus the aorta for both G-1 (47 ± 8% vs. 80 ± 5% of phenylephrine
preconstriction, P < 0.001) and estradiol (42 ± 7% vs. 83 ± 4% of phenylephrine preconstriction, P
< 0.001). The GPR30 antagonist G15 attenuated the response to both estradiol and G-1. Removal
of the endothelium or pretreatment with L-NAME partially attenuated vasorelaxation. Responses
were not altered in mesenteric vessels from ovariectomized females. Immunohistochemical
analysis revealed GPR30 expression in mesenteric endothelial and smooth muscle cells, and
smooth muscle expression was confirmed in cultured cells. We conclude that estradiol-induced
relaxation in conduit and resistance vessels from mRen2.Lewis females may be mediated by the
novel estrogen receptor GPR30. The direct vasodilatory response of G-1 in resistance vessels
presents one mechanism for the reduction in blood pressure induced by chronic G-1
administration.
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INTRODUCTION
Sublingual estradiol decreases peripheral resistance in menopausal women; however the
receptor(s) which mediate this immediate vasodilatory response are not known (1,2). Studies
using arterial rings from ERα and ERβ knockout mice show that while these classic steroid
receptors alter nitric oxide production, their blockade or genetic deletion does not
completely inhibit estradiol-induced vasorelaxation (3-6). In fact, aortic rings from ERβ
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knockout mice exhibit greater relaxation in response to estradiol (7). In addition, the ERα/β
antagonist ICI 182,780 (ICI) does not completely attenuate vascular estrogenic effects and
induces agonist-like vasodilation when administered alone (7,8). The dependence on GTP-
binding for estradiol-induced signaling in endothelial, smooth muscle, neural, and cancer
cells clearly suggests that some estrogenic effects are mediated by a G protein-coupled
receptor (9-11). The recent identification of the estrogen receptor GPR30 and its localization
in human arteries and veins presents the possibility that this receptor may mediate the acute
vasorelaxant effects of estradiol (12).

Ongoing studies in our laboratory have focused on the role of endogenous estradiol to
modulate various components of the renin-angiotensin system (RAS) in regards to blood
pressure regulation and target organ damage (13-16). In the female hypertensive
mRen2.Lewis strain, removal of circulating estrogen via ovariectomy markedly exacerbates
blood pressure and is associated with increased circulating levels of angiotensin II (Ang II)
but a reduction in Ang-(1-7) (17,18). Moreover, chronic estradiol replacement completely
attenuates the increase in blood pressure to the same extent as the AT1 receptor antagonist
olmesartan (18). We recently provided evidence that GPR30 influences blood pressure and
the vascular RAS in estrogen-depleted mRen2.Lewis rats. Chronic administration of the
selective GPR30 agonist G-1, which binds at a similar affinity as estradiol (Kd ≈ 10 nM) but
essentially shows no binding at ERα or ERβ, reduces blood pressure to the same level as the
intact hypertensive female, as well as suppresses vascular expression of the AT1 receptor
and angiotensin converting enzyme (ACE) and increases ACE2 (19). Our previous studies
also demonstrate that G-1 induces vasorelaxation in isolated aortic rings of the
ovariectomized mRen2.Lewis; however, we did not compare the vascular actions of G-1 to
estradiol nor assess relaxation in a resistance bed (19,20). To establish whether GPR30
mediates the direct vasorelaxant actions of estrogen, the current study compared G-1 and
estradiol-induced vasorelaxation in conduit and resistance vessels of the hypertensive
mRen2.Lewis female, as well as assessed the inhibitory actions of the GPR30 antagonist
G15.

METHODS
Animals

Heterozygous mRen2.Lewis females were obtained from the Hypertension Center
transgenic breeding colony. Rats were housed in the Wake Forest University Animal
Resources Facility, an AALAC-approved facility in a temperature-controlled room (22 ±
2°C) with a 12h light/dark cycle, free access to food and water, and daily monitoring by
veterinary staff. Ovariectomy (OVX) was performed by bilateral flank incisions under
sterile conditions on four week-old animals anesthetized with 4% isoflurane as previously
described (18). All methods were approved by the institutional ACUC.

Vascular reactivity
At 15 weeks of age, animals were decapitated and the aorta and mesenteric arcade removed.
Vessels were carefully dissected to remove surrounding fat and cut into 2 mm segments.
Aortic rings were suspended from isometric force transducers (Grass Technologies, West
Warwick, RI) in Radnoti glass organ chambers (Monrovia, CA) and passive tension was set
to 2 g, as previously described (19). Second order mesenteric vessels (<200 μm) were
mounted in a DMT wire myograph and the internal circumference was normalized to
0.9·IC100, where IC100 is the internal circumference at a transmural pressure of 100 mmHg
(21). Chambers were filled with Kreb's solution (in mM): 118 NaCl, 25 NaHCO3, 4.8 KCl,
2.5 CaCl2, 1.2 MgSO4, 1.2 KH2PO4, 0.03 EDTA, and 5.5 glucose, at pH 7.4 bubbled
continuously with 95% O2 and 5% CO2 and maintained at 37°C. Vessels were stimulated
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with phenylephrine (PE; aorta: 1 μM, mesentery: 10 μM) and 1 μM acetylcholine (both from
Sigma, St. Louis, MO) and rings with >50% relaxation considered endothelium intact. Some
vessels were pretreated with 100 μM L-NAME (Sigma) or 1 μM G15 (22). The responses to
increasing concentrations (10-9 to 10-5.5) of G-1 (Cayman Chemical, Ann Arbor, MI) and
estradiol (E2; Sigma) were measured in PE-preconstricted vessels. Drugs were added at five
minute increments so that the total concentration response curve was completed within a
reasonable time frame for vessel viability (~45 min). G-1 was dissolved in DMSO at 10 mM
and subsequently diluted in Kreb's. Control vessels were treated with a corresponding
concentration of DMSO at each agonist concentration. Responses were recorded using Chart
5 (AD Instruments, Colorado Springs, CO) and are expressed as the percentage (%) of PE
contraction.

Immunohistochemistry
During mesenteric vessel isolation, some segments were formalin-fixed overnight and
paraffin-embedded. Tissue sections (5 μm) were blocked with 0.1% Tween, 1% BSA, and
5% normal donkey serum. Anti-GPR30 (1:200; MBL #A4272, Woburn, MA) and
biotinylated goat anti-rabbit (1:400) were diluted in the blocking buffer. Antibody binding
was detected using the Vectastain Elite kit (VectorLabs, Burlingame, CA) and 0.1%
diaminobenzene (Sigma, St. Louis, MO). For a negative control, the primary antibody was
pre-incubated with the blocking peptide for 1 h at 25°C and centrifuged before being applied
to tissue sections. Slides were counterstained with hematoxylin (Sigma). Van Gieson's
Solution (Rowley Biochemical, Danvers, MA) was used according to the manufacturer's
directions.

Cell Studies
Mesenteric smooth muscle cells were isolated from a 12-week old intact mRen2.Lewis
female by enzymatic digestion as previously described, and the smooth muscle phenotype
was confirmed by positive immunofluorescent staining for α-actin (23). Cells were
maintained in DMEM-F12 containing 10% FBS. For immunocytochemistry, first passage
cells were seeded onto glass chamber slides, fixed with 2% paraformaldehyde,
permeabilized with 0.2% Triton X-100, and blocked with 3% BSA. Slides were incubated
with a primary antibody directed against α-actin (1:200, Sigma) or GPR30 (1:100; MBL
#A4272, Woburn, MA) and secondary AlexaFluor 488 (1:200; Invitrogen, Carlsbad, CA).
Coverslips were mounted using ProLong mounting media with DAPI (Invitrogen). For
immunoblotting, 50 μg of total cell lysate was probed for GPR30 as previously described
(19).

Statistics
Data were analyzed using GraphPad Prism version 5.01 (GraphPad Software, San Diego,
CA) and expressed as the mean ± SEM. Two-way ANOVA with Bonferroni post-test was
used to analyze concentration response data with P < 0.05 considered significant.

RESULTS
In isolated aortic rings from intact mRen2.Lewis females, the GPR30 agonist G-1 induced
vasodilation that was not significantly different from estradiol (Figure 1). Pretreatment with
the GPR30 antagonist G15 (1 μM) significantly attenuated both the G-1 and estradiol
response. The antagonist alone induced a slight but significant vasoconstrictor response in
the aorta. In mesenteric vessels, G-1 and estradiol again achieved similar levels of
vasorelaxation (Figure 2). Vasorelaxation in the mesentery reached significance at a much
lower concentration (10 nM) in comparison to the aorta (3 μM). In addition, maximal
relaxation was greater in mesenteric vessels versus the aorta for both G-1 (47 ± 8% vs. 80 ±
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5% of phenylephrine preconstriction, P < 0.001) and estradiol (42 ± 7% vs. 83 ± 4% of
phenylephrine preconstriction, P < 0.001). G15 pretreatment abolished both G-1 and
estradiol responses up to 1 uM; however, the antagonist only partially blocked the highest
concentration of estradiol and G-1 (3 μM). In contrast to the aorta, the same concentration of
G15 did not induce constriction in mesenteric vessels (Figure 2).

We previously reported that endothelial denuding attenuated the G-1 response in aortic rings
(19). In mesenteric resistance vessels, mechanical denuding partially attenuated the
responses to both G-1 and estradiol (Figure 3). Pretreatment of intact vessels with the nitric
oxide synthase inhibitor L-NAME (100 μM) inhibited vasorelaxation to the same extent as
endothelial denuding (Figure 3).

We next assessed whether ovariectomy (OVX) altered the response to either of these
estrogen receptor agonists. As previously reported, systolic blood pressure was significantly
higher in OVX females (184 ± 5 mmHg) versus intact females (137 ± 7 mmHg; P < 0.001)
(18,19). G-1 and estradiol induced concentration-dependent vasorelaxation that was
significant in the nanomolar range (Figure 4). Neither G-1 nor estradiol vasodilation was
significantly different in OVX versus intact vessels (P > 0.05). As demonstrated in intact
vessels, denudation or L-NAME inhibited the G-1 response by ~50%.

As shown in Figure 5A, immunohistochemical analysis of GPR30 revealed predominant
staining in both endothelial and smooth muscle cells in mesenteric vessels. The
preabsorption of the GPR30 antibody with the immunogenic peptide attenuated the staining
signal throughout the mesenteric tissue (Figure 5B). A serial section stained by the Van
Gieson method confirms the location of medial and adventitial layers (Figure 5C). To
confirm GPR30 expression in smooth muscle cells, mesenteric vessels from an intact
mRen2.Lewis female were enzymatically digested and cultured to obtain an enriched
population of cells. Figure 6A shows smooth muscle-specific α-actin expression in all cells,
confirming the purity of the smooth muscle cell population. Mesenteric smooth muscle cells
also displayed positive immunostaining for GPR30 (Figure 6B). Western blot of mesenteric
smooth muscle cell lysate using the same antibody showed a single band for GPR30 at ~50
kDa.

DISCUSSION
In the present study, we report that acute activation of the novel estrogen receptor GPR30
induced vasodilation in both conduit and resistance vessels to a similar extent as
nonselective activation of estrogen receptors with estradiol. Using isolated vessels from the
estrogen-sensitive mRen2.Lewis congenic rat, we found that estradiol and G-1 elicited
responses that were significantly greater in mesenteric resistance vessels than aortic rings.
Moreover, the responses to G-1 and estradiol in both vessel preparations were significantly
attenuated by the GPR30 selective antagonist G15. We also found that vasorelaxation in
response to G-1 and estradiol in mesenteric arteries was comprised of both endothelium-
dependent and endothelium-independent components, which may reflect the localization of
GPR30 in both endothelial and smooth muscle cells. Finally, we show comparable effects of
G-1 and estradiol in mesenteric vessels from OVX mRen2.Lewis females, suggesting that
the exacerbation of pressure in these animals may, in part, result from the loss of GPR30-
mediated estrogenic signaling in the vasculature.

GPR30 is a membrane-bound estrogen receptor, and its presence in the vasculature portends
for a novel pathway by which estradiol may influence vascular tone. We and others have
recently shown that activation of GPR30 lowers blood pressure in vivo and exhibits
vasodilatory actions ex vivo (19,24). The present study is the first to compare vasodilation

Lindsey et al. Page 4

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



due to nonselective estrogen receptor activation with estradiol to the GPR30 response using
the selective agonist G-1 and the selective antagonist G15. Competitive binding studies
show that the affinity of these compounds for GPR30 is in the 5-20 nM range, which is
comparable to estradiol (20,22). However, G-1 and G15 display no binding to ERα or ERβ,
even when tested at higher concentrations of 1-10 μM. The GPR30 antagonist G15
attenuated both G-1 and estradiol-induced dilation, suggesting that the acute estradiol
response is mediated by GPR30. G15 was unable to completely inhibit vasodilation at
higher concentrations of the agonist (>1 uM); however, this is likely due to the lower
competing concentration of the antagonist (1 uM) and that both compounds exhibit similar
affinities for GPR30 (20,22). In aortic rings, G15 (1 uM) induced vasoconstriction that was
potentiated by G-1. It is plausible that estradiol was still present in the ex vivo preparation
and contributes to endogenous tone in this vessel. Both vascular endothelial and smooth
muscle cells express the enzymes necessary for formation of estradiol, suggesting that
intracellular production of this hormone may modulate local concentrations and influence
vascular responses (25-27). However, the vasoconstrictor response to G15 was not evident
in mesenteric vessels, perhaps reflecting a lower level of estradiol synthesis in these vessels.
Nonetheless, the similarities between estradiol- and G-1-induced vasodilation and the ability
of G15 to attenuate both responses implicate GPR30 as the primary mediator of estrogenic
relaxation in the hypertensive mRen2.Lewis female.

Acute administration of estradiol in vivo reduces systemic vascular resistance in women and
in animal models (2,28-30). However, while estradiol circulates at nanomolar
concentrations, the concentrations required to achieve vasodilation ex vivo are much higher,
typically in the micromolar range (8,31-34). In the present study, vessels from hemizygous
mRen2.Lewis females exhibited significant relaxation to both estradiol and G-1 at
nanomolar concentrations. The maximal response and the IC50 were comparable between
these two agonists in both conduit and resistance vessels, suggesting that selective GPR30
activation is equally effective as estradiol-induced vasodilation. While the shape of the
concentration response curves from mesenteric vessels suggested a biphasic response,
attempts to fit the data to a two-site model were not statistically significant in comparison to
a one-site fit. However, our data may be suggestive of a high affinity site which is
completely blocked by endothelial denuding or L-NAME and a lower affinity endothelium-
independent site.

Estrogen depletion markedly exacerbates hypertension in the female mRen2.Lewis and is
reversed by chronic estradiol or G-1 treatment (18,19). However, G-1 does not decrease
blood pressure in male mRen2.Lewis rats, implicating sex differences in vascular GPR30
expression. We show here that G-1 and estradiol induce vasorelaxation that is not different
in OVX versus intact females, suggesting that vascular GPR30 expression is not altered by
estrogen status. These studies are particularly important because of the recent evolution of
the “timing hypothesis”, which suggests that the absence of endogenous estrogens between
menopause and initiation of hormone therapy may alter estrogen receptor expression and
downstream cardiovascular outcomes (35). The fact that both G-1 and estradiol maintain
relaxant effects in isolated vessels from estrogen-depleted mRen2.Lewis suggests that the
loss of the GPR30 ligand rather than altered receptor expression or downstream effector
pathways such as nitric oxide likely contribute to exacerbated pressure in this hypertensive
stain. We previously showed that estradiol replacement reduces renal and circulating
angiotensin II and ACE in ovariectomized mRen2.Lewis rats (18). Similarly, G-1
administration in these animals decreases vascular ACE and AT1 expression but increases
ACE2 (19). Therefore, it is plausible that the actions of GPR30 encompass both direct
vasodilatory effects and long-term genomic modulation of the RAS to produce a sustained
overall reduction in blood pressure. Additional studies are required to distinguish the
influential actions of GPR30 on blood pressure in the hypertensive mRen2.Lewis female.
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We and others have previously shown GPR30 immunostaining in both the intima and media
of rat aorta and carotid, although G-1 vasorelaxation was completely endothelium-dependent
in these vessels (19,36). In the mesenteric vasculature, GPR30 was also expressed in both
endothelial and smooth muscle cells; however, endothelial denuding only inhibited the G-1
response by ~50%. Moreover, addition of the nitric oxide synthase inhibitor L-NAME
attenuated the effects of G-1 to a similar extent. These data clearly suggest that at least part
of the vasorelaxant actions of GPR30 are linked to the release of nitric oxide. However, the
residual vasorelaxation in denuded vessels suggests a potential role for direct signaling on
vascular smooth muscle cells in the microcirculation. Indeed, immunofluorescence staining
and immunoblotting confirmed GPR30 expression in mesenteric smooth muscle cells from
the intact mRen2.Lewis female. Others have reported endothelium-independent
vasorelaxation in response to estradiol, which may result from activation of plasma
membrane ion channels in vascular smooth muscle (8,37-39). The identification of a nitric
oxide-independent pathway in mesenteric vessels will require additional studies in the
mRen2.Lewis, as well as the background Lewis strain. At this point, it is not known whether
GPR30-dependent signaling pathways are similar in mesenteric vessels from normotensive
and hypertensive rats.

CONCLUSION
The current study distinguished the vasodilatory effects mediated by GPR30 from the
nonselective response to estradiol. We demonstrate that GPR30 plays a predominant role in
estrogen-induced vasodilation ex vivo, and in light of our previous results showing the in
vivo antihypertensive effects of G-1, we propose that GPR30 mediates estrogenic
vasodilation in the female hypertensive mRen2.Lewis. Due to the existence of multiple
receptor estrogen subtypes, the selective activation or inactivation of estrogen receptors may
prove to be more beneficial in treating estrogen-dependent diseases, as evidenced by the
clinical success of selective estrogen receptor modulators. The assessment and development
of new modulators that exploit GPR30 signaling may potentially advance the treatment for
postmenopausal cardiovascular disease (40-42).
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Figure 1.
Aortic relaxation in response to the GPR30 agonist G-1 and estradiol (E2). *P < 0.05 vs.
Vehicle.
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Figure 2.
Mesenteric relaxation in response to the GPR30 agonist G-1 and estradiol (E2). *P < 0.05
vs. Vehicle, #P < 0.05 vs. G-1 or E2.
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Figure 3.
Role of the endothelium and nitric oxide in mesenteric G-1 and estradiol (E2) vasorelaxation
*P < 0.05 vs. Vehicle, #P < 0.05 vs. G-1 or E2.
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Figure 4.
Mesenteric relaxation in response to the GPR30 agonist G-1 and estradiol (E2) in
ovariectomized (OVX) females. *P < 0.05 vs. OVX Vehicle.
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Figure 5.
GPR30 expression in a second-order mesenteric artery from an intact mRen2.Lewis female.
A, GPR30 immunostaining in endothelial cells (closed arrows) and smooth muscle cells
(open arrows). B, Negative control incubated with pre-adsorbed primary antibody. C, Van
Gieson's stain differentiates the intima (I), media (M), and adventitia (A).
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Figure 6.
GPR30 expression in cultured mesenteric smooth muscle cells (MSMC) from an intact
mRen2.Lewis female. A, Smooth muscle-specific α-actin (green); DAPI (blue). B, GPR30
(green); DAPI (blue). C, GPR30 immunoblot of brain and MSMC total lysate.

Lindsey et al. Page 15

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


