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Abstract
Modern approaches for technology-based blended education utilize a variety of recently developed
novel pedagogical, computational and network resources. Such attempts employ technology to
deliver integrated, dynamically-linked, interactive-content and heterogeneous learning
environments, which may improve student comprehension and information retention. In this
paper, we describe one such innovative effort of using technological tools to expose students in
probability and statistics courses to the theory, practice and usability of the Law of Large Numbers
(LLN). We base our approach on integrating pedagogical instruments with the computational
libraries developed by the Statistics Online Computational Resource (www.SOCR.ucla.edu). To
achieve this merger we designed a new interactive Java applet and a corresponding demonstration
activity that illustrate the concept and the applications of the LLN. The LLN applet and activity
have common goals – to provide graphical representation of the LLN principle, build lasting
student intuition and present the common misconceptions about the law of large numbers. Both
the SOCR LLN applet and activity are freely available online to the community to test, validate
and extend (Applet: http://socr.ucla.edu/htmls/exp/Coin_Toss_LLN_Experiment.html, and
Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_LLN).
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1. Introduction
1.1 Technology-based Education

Contemporary Information Technology (IT) based educational tools are much more than
simply collections of static lecture notes, homework assignments posted on one course-
specific Internet site and web-based applets. Over the past five years, a number of
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technologies have emerged that provide dynamic, linked and interactive learning content
with heterogeneous points-of-access to educational materials (Dinov, 2006c). Examples of
these new IT resources include common web-places for course materials (BlackBoard,
2006; MOODLE, 2006), complete online courses (UCLAX, 2006), Wikis (SOCRWiki,
2006), interactive video streams (ClickTV, 2006; IVTWeb, 2006; LetsTalk, 2006), audio-
visual classrooms, real-time educational blogs (Brescia & Miller, 2006; PBSBlog, 2006),
web-based resources for blended instruction (WikiBooks, 2006), virtual office hours with
instructors (UCLAVOH, 2006), collaborative learning environments (SAKAI), test-banks
and exam-building tools (TCEXAM) and resources for monitoring and assessment of
learning (ARTIST, 2006; WebWork).

This explosion of tools and means of integrating science, education and technology has
fueled an unprecedented variety of novel methods for learning and communication. Many
recent attempts (Blasi & Alfonso, 2006; Dinov, Christou, & Sanchez, 2008; Dinov, 2006c;
Mishra & Koehler, 2006) have demonstrated the power of this new paradigm of technology-
based blended instruction. In particular, in statistics education, there are a number of
excellent examples where fusing new pedagogical approaches with technological
infrastructure has allowed instructors and students to improve motivation and enhance the
learning process (Forster, 2006; Lunsford, Holmes-Rowell, & Goodson-Espy, 2006;
Symanzik & Vukasinovic, 2006). In this manuscript, we build on these and other similar
efforts and introduce a general, functional and dynamic law-of-large-numbers (LLN) applet
along with a corresponding hands-on activity.

1.2 The Law of Large Numbers
Suppose we conduct independently the same experiment over and over again. And assume
we are interested in the relative frequency of occurrence of one event whose probability to
be observed at each experiment is p. Then the ratio of the observed sample frequency of that
event to the total number of repetitions converges towards p as the number of (identical and
independent) experiments increases. This is an informal statement of the LLN.

Consider another example where we study the average height of a class of 100 students.
Compared to the average height of 3 randomly chosen students from this class, the average
height of 10 randomly chosen students is most likely closer to the real average height of all
100 students. This is true because the sample of 10 is a larger number than the sample of
only 3 and better represents the entire class. At one extreme, a sample of 99 of the 100
students will produce a sample average height almost exactly the same as the average height
for all 100 students. On the other extreme, sampling a single student will be an extremely
variant estimate of the overall class average height.

The two most commonly used symbolic versions of the LLN include the weak and strong
laws of large numbers.

The statement of the weak law of large numbers implies that the average of a random
sample converges in probability towards the expected value as the sample size increases.
Symbolically,

For a given ε > 0, this convergence in probability is defined by
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In essence, the weak LLN says that the average of many observations will eventually be
within any margin of error of the population mean, provided we can increase the sample
size.

As the name suggests, the strong law of large numbers implies the weak LLN as it relies on
almost sure (a.s.) convergence of the sample averages to the population mean. Symbolically,

The strong LLN explains the connection between the population mean (or expected value)
and the sample average of independent observations. Motivations and proofs of the weak
and strong LLN may be found in (Durrett, 1995; Judd, 1985).

It is generally necessary to draw the parallels between the formal LLN statements (in terms
of sample averages and convergence types) and the frequent interpretations of the LLN (in
terms of probabilities of various events). The (strong) LLN implies that the sample
proportion converges to the true proportion almost surely. One practical interpretation of this
convergence in terms of the SOCR LLN applet is the following: If we repeat the applet
simulation a fixed, albeit large, number of times, we will almost surely observe a sequence
that does not appear to converge. However, almost all sequences will appear to converge –
and this behavior would normally be observed when the applet simulation is run. Of course,
the probability of observing a non-convergent behavior is trivial when running the applet in
continuous mode, without a limit on the sample size.

Suppose we observe the same process independently multiple times. Assume a binarized
(dichotomous) function of the outcome of each trial is of interest. For example, failure may
denote the event that the continuous voltage measure < 0.5V, and the complement, success,
that voltage ≥ 0.5V. This is the situation in electronic chips, which perform arithmetic
operations by binarizing electric currents to 0 or 1. Researchers are often interested in the
event of observing a success at a given trial or the number of successes in an experiment
consisting of multiple trials. Let's denote p=P(success) at each trial. Then, the ratio of the
total number of successes in the sample to the number of trials (n) is the average

represents the outcome of the ith trial. Thus, the sample average equals the sample

proportion . The sample proportion (ratio of the observed frequency of that event to
the total number of repetitions) estimates the true p=P(success). Therefore,  converges
towards p as the number of (identical and independent) trials increases.

1.3 Other Similar Efforts
There are several attempts to provide interactive aids for LLN instruction and motivation.
Among these are the fair-coin applet experiment developed by Sam Baker and the
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University of South Carolina (http://hspm.sph.sc.edu/COURSES/J716/a01/stat.html); and
the applet introduced by Philip Stark at University of California, Berkeley, which allows
user control over the probability of success and the number of trials a coin is tossed
(http://stat-www.berkeley.edu/~stark/Java/Html/lln.htm). Many other LLN tutorials, applets,
activities and demos may be discovered at the CAUSEweb site
(http://www.causeweb.org/cwis/SPT--QuickSearch.php?ss=law+of+large).

1.4 LLN Instructional Challenges
There are two distinct challenges in teaching the LLN and these are related to the theory and
practice of these laws. The theoretical difficulties arise because complete understanding of
the LLN fundamentals may require learners' familiarity with different types of limits and
convergence. The practical utilization barriers are centered around the two main LLN
empirical misconceptions (Garfield, 1995; Tversky & Kahneman, 1971): (1) In a fair-coin
toss experiment, if we observe a long streak of consecutive heads (or tails), then the next flip
has a better than 50% probability of landing tails (or heads); (2) In a large number of coin
tosses, the number of heads and number of tails become more and more equal.

These challenges may be addressed by employing modern IT-based technologies, like
computer applets and interactive activities. Such resources provide ample empirical
evidence by allowing multiple repetitions and arbitrary sample sizes. Applets and activities
also expose the scope and the limitations of theoretical concepts by enabling the user to
explore the effects of parameter settings (e.g., varying the values of p= P(Head)) and to
study the resulting summary statistics (e.g., graphical or tabular outcomes). Interactive
graphical applets also address conceptual challenges by enabling hands-on demonstrations
of process limiting behavior and various types of convergence.

1.5 The SOCR Resource
The UCLA Statistics Online Computational Resource (SOCR) is a national center for
statistical education and computing. The SOCR goals are to develop, engineer, test, validate
and disseminate new interactive tools and educational materials. Specifically, SOCR designs
and implements Java demonstration applets, web-based course materials and interactive aids
for IT-based instruction and statistical computing (Dinov, 2006b; Leslie, 2003). SOCR
resources may be utilized by instructors, students and researchers. The SOCR Motto, “It's
Online, Therefore It Exists!”, implies that all of these resources are freely available on the
Internet (www.SOCR.ucla.edu).

There are four major components within the SOCR resources: computational libraries,
interactive applets, hands-on activities and instructional plans. The SOCR libraries are
typically used for statistical computing by external programs (Dinov, 2006a; Dinov et al.,
2008). The interactive SOCR applets (top of http://socr.ucla.edu/) are subdivided into
Distributions, Functors, Experiments, Analyses, Games, Modeler, Charts and Applications.
The hands-on activities are dynamic Wiki pages (SOCRWiki, 2006) that include a variety of
specific instances of demonstrations of the SOCR applets. The SOCR instructional plans
include lecture notes, documentations, tutorials, screencasts and guidelines about statistics
education.

1.6 Goals of the SOCR LLN Activity
The goals of this activity are:

• To illustrate the theoretical meaning and practical implications of the LLN;

• To present the LLN in varieties of situations;
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• To provide empirical evidence in support of the LLN-convergence and dispel the
common LLN misconceptions.

2. Design and Methods
2.1 SOCR LLN Applet

The SOCR LLN applet is designed as a meta-experiment (integrating functionality from
SOCR Experiments and Distributions). In this applet, we provide the flexibility for choosing
the number of trials and altering the probability of the event (in the meta-experiment of
observing the frequencies of occurrence of the event in repeated independent trials). Figure
1 illustrates the main components of the applet interface. This applet may be accessed
directly online at http://socr.ucla.edu/htmls/exp/Coin_Toss_LLN_Experiment.html (or from
the main SOCR Experiments page: http://socr.ucla.edu/htmls/exp). There are tool-tips
included for every widget in this applet. The tool-tips are pop-up information fields which
describe interface features, and are activated by bringing the mouse over a component
within the applet window. The control-toolbar of this applet, top of Figure 1, is included
here as an insert

. This toolbar contains the following experiment action control-buttons (left-to-right):
running a single-step trial, running a multi-trial experiment, stopping of a multi-trial
experiment, experiment resetting, frequency of updating the results table, number of trials to
run (n), and an information dialog about the LLN experiment. Note that in the applet, the
probability of a Head (p) and the number of experiments (n) are selected by the Probability-
of-heads slider (defaulted to p=0.5) and the Sample-size/Stop-frequency drop-down list
(defaulted to “Stop 10”), respectively.

In addition to other SOCR libraries, this applet utilizes ideas, designs and functionality from
the Rice Virtual Laboratory of Statistics (RVLS) and the University of Alabama Virtual
Laboratories in Probability and Statistics (VirtualLabs).

2.2 SOCR LLN Activity
The SOCR LLN activity is available online
(http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_LLN) and
accessible from any Internet connected computer with Java-enabled web browser. The
activity includes dynamic links to web resources on the LLN, interactive LLN
demonstrations and relevant SOCR resources.

2.2.1 The first LLN experiment—illustrates the statement and validity of the LLN in the
situation of tossing (biased or fair) coins repeatedly, Figure 2. The arrows in Figure 2 point
to the applet URL, and the main experimental controls – action-buttons (top), LLN
experiment selection from the drop-down list (left), probability of a Head slider and graph-
line (middle), and the headings of the results table (bottom). If H and T denote Heads and
Tails, the probabilities of observing a Head or a Tail at each trial are 0 ≤ p ≤ 1 and 0 ≤ 1 – p
≤ 1, respectfully. The sample space of this experiment consists of sequences of H's and T's.
For instance, an outcome may be {H,H,T,H,H,T,T,T,….}. If we toss a coin n times, the size
of the sample-space is 2n, as the coin tosses are independent. The probability of observing 0
≤ k ≤ n Heads in the n trials is governed by the Binomial Distribution and can be easily
evaluated by the binomial density at k (e.g.,
http://socr.ucla.edu/htmls/SOCR_Distributions.html). In this experiment, we are interested
in two random variables associated with this process. The first variable will be the
proportion of Heads and the second will be the difference between the number of Heads and
Tails in the n trials. Indeed, these two variables are chosen as they directly relate to the two
most common LLN misconceptions (see section 1.4).
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To start the SOCR LLN Experiment go to
http://socr.ucla.edu/htmls/exp/Coin_Toss_LLN_Experiment.html (note that the Coin Toss
LLN Experiment is automatically selected in the drop-down list of experiments on the top-
left). Now, select number of trials n=100 (Stop 100) and p=0.5 (fair-coin). Each time the
user runs the applet, the random samples will be different, and the figures and results will
generally vary. Using the Step ( ) or Run ( ) buttons will perform the experiment one or
many times. The proportion of heads in the sample of n trials, and the difference between
the number of Heads and Tails will evolve over time as shown on the graph and in the
results table below. The statement of the LLN in this experiment reduces to the fact that as
the number of experiments increases, the sample proportion of Heads (red curve) will
approach the user-preset theoretical (horizontal blue line) value of p (in this case p=0.5).
Changing the value of p and running the experiment interactively several times provides
evidence that the LLN is invariant with respect to p.

In the SOCR LLN activity, the learner is encouraged to explore deeper the LLN properties
by fixing a value of p and determining the sample-size needed to ensure that the sample-
proportion stays within certain limits. One may also study the behavior of the curve
representing the difference between the number of Heads and Tails (red curve) for various n
and p values, or examine the convergence of the sample-proportion to the (preset)
theoretical proportion. This is a demonstration of how the applet may be used to show
theoretical concepts like convergence type and limiting behavior. The second misconception
of the LLN (section 1.4) may be empirically dispelled by exploring the graph of the second
variable of interest (the difference between the number of Heads and Tails). For all integers
n, the independence of the (n+1)st outcome from the results of the first n trials is also
evident by the random behavior of the outcomes and the unpredictable and noisy shape of
the graph of the normalized difference between the number of Heads and Tails. In fact, the
number of Heads minus Tails difference is so chaotic, unstable and divergent that it can not
be even plotted on the same scale as the plot of the Heads-to-Tails ratio.

We have defined an interesting normalization of the raw differences between the number of
Heads and Tails to demonstrate the stochastic shape of this unstable variable. The
normalized difference between the number of Heads and Tails in the graph is defined as
follows: First, we let Hk and Tk represent the number of Heads and Tails, up to the current
trial (k), respectively. Then we define the normalized difference

where the maximum raw difference between the number of Heads and Tails in the first k
trials is defined by

Since E((1 − p) Hk − pTk) = 0, the expectation of the numerator is trivial, we know that the
normalized difference will oscillate around p. Here, the denominator is introduced to scale
the normalized difference and dampen the variance of this divergent process, which
improves its graphical display. The normalized differences oscillate around the chosen p (the
preset LLN limit of the proportion of Heads) and they are mostly visible within the graphing
window alongside the graph of the Head-to-Tail proportion variable. However, the
normalized difference does not have a well-defined finite expectation (Siegel, Romano, &
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Siegel, 1986). Figure 3 illustrates the symmetric, yet explosive and unstable nature of the
variable representing the normalized difference between the number of Heads and Tails,

. Note the increase in the scale on the vertical line on the right hand side, as we
increase from 100 (top panel) to 10,000 (bottom panel) experiments.

2.2.2 The second LLN experiment—uses the Binomial coin applet to demonstrate that
the (one-parameter) empirical and theoretical distributions of a random variable become
more and more similar as the sample-size increases. Figure 4 shows the Binomial coin
experiment (http://socr.ucla.edu/htmls/exp/Binomial_Coin_Experiment.html). Again, arrows
and highlight-boxes identify the applet URL and main components (top to bottom): action
control buttons, variable selection list, graph comparison between the model and empirical
distributions, quantitative results table, and quantitative comparison between the theoretical
and sample empirical distributions.

The user may select the number of coins (e.g., n=3) and probability of heads (e.g., p=0.5).
Then, the right panel shows in blue color the model distribution (Binomial) of the Number of
Heads (X). By varying the probability (p) and/or the number of coins (n), we see how these
parameters affect the shape of the model distribution. As p increases, the distribution moves
to the right and becomes concentrated at the right end (i.e., left-skewed). As the probability
of a Head decreases, the distribution becomes right-skewed and centered in the left end of
the range of X (0 ≤ X ≤ n). The LLN implies that if we were to increase the number of
experiments (N), say from 10 to 100, and then to 1,000, we will get a better fit between the
theoretical (Binomial) and empirical distributions. In particular, we get as a better estimate
of the probability of a Head (p) by the sampling proportion of Heads , cf. section 1.2. And
this convergence is guaranteed for each p and each n (number of trials within a single
experiment). Note that in this applet, the Binomial distribution parameters (n, p) are
controlled by Number-of-coins (n) and Probability-of-heads (p) sliders, and the number of
experiments we perform is selected by the Stop-frequency drop-down list in the control-
button toolbar. Figure 5 illustrates this improved match of the theoretical (blue) and
empirical (red) distribution graphs as the number of experiment (N) increases.

Similar improvements in the match of the theoretical and empirical distributions may be
observed for many other processes modeled by one-parameter distributions using the other
SOCR Experiments. For instance, in the Ball and Urn Experiment, where one may study the
distribution of Y, the number of red balls in a sample of n balls (with or without
replacement), we see similar LLN effects as the number of experiments (Stop-frequency
selection) increases.

Another LLN illustration is based on the SOCR Poker experiment where one may be
interested in how many trials are needed (on average) until a single pair of cards (same
denomination) is observed. We can demonstrate the LLN by running the Poker experiment
100 times and recording the number of trials (5-card hands) containing a single pair
(indicated by a value of V=1). Dividing this number by the total number of trials (100) we
get a sample proportion of single-pair trials ( ), which will approximate p, the theoretical
probability of observing a single pair. The same experiment can be repeated with stopping
criterion being set to V=1, instead of a specific (fixed) number of trials. Then, the
(theoretical) expectation of the number of trials (n) needed to observe the first success
(single-pair hand) is 1/p, as this is a Geometric process. This expectation can be
approximated by the (empirical) number of trials ( ) to observe the first single-pair hand. In
this case, the LLN implies that the more experiments we perform, the closer the estimates of

 and  to the theoretical values of their counterparts, p and n.
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2.3 Applications
There are a number of applications of the LLN (DeHon, 2004; Rabin, 2002; Uhlig, 1996).
The following two LLN applications demonstrate estimation of transcendental numbers for
the two most popular transcendental numbers — π and e.

There are a number of equivalent definitions for the natural number e
(http://en.wikipedia.org/wiki/E_(mathematical_constant)). One of these is

Using simulation, the number e may be estimated by random sampling from a continuous
Uniform distribution on (0, 1). Suppose X1,X2, …,Xk are drawn from a uniform distribution
on (0, 1) and define

It turns out that the expected value E(U)=e ≈ 2.7182, (Russell, 1991). Therefore, by the
LLN, taking averages of U1, U2, U3, …, Un, where each Ui is computed from a random
sample

as described above, will provide a more accurate estimate of the natural number e (as n
→∞). The SOCR E-Estimate Experiment
(http://wiki.stat.ucla.edu/socr/index.php/
SOCR_EduMaterials_Activities_Uniform_E_EstimateExperiment) provides an activity with
the complete details of this simulation and the corresponding Uniform E-Estimate
Experiment applet http://socr.ucla.edu/htmls/exp/Uniform_E-Estimate_Experiment.html.
The experiment illustrates hands-on this stochastic approximation of e by random sampling.
Figure 6 shows the graphical user interface behind this simulation. The arrows in Figure 6
point to the applet selection from the drop-down list of applets (left), the results table
containing the outcome of 10 simulations (middle) and the (theoretical and empirical)
estimate of the bias and precision (MSE) of the approximation of e by random sampling
(right). The graph panel in the middle shows the values of the Uniform(0,1) sample, X1,X2,
…,Xk, used to compute the values of U. For instance, if you set n=1, the graph will typically
show 2 or 3 Uniform random variables (the smallest number of variables whose sum
exceeds 1). For higher n, the applet shows the sample frequencies and computes the
averages of the smallest numbers, for all collections of variables whose sum exceeds 1. And
this average is used to estimate e. Notice how the quality of the estimate increases (bias goes
to zero) as n increases. In Figure 6, n=933 and the bias is −0.018. One can also rapidly
increase the estimator accuracy by repeating the experiment 100 or 1,000 times (by
repeating the experiment 100 or 1,000 times (by setting “Stop 1,000” in the control bar).

The SOCR Buffon's Needle Experiment provides a similar approximation to π, which
represents the ratio of the circumference of a circle to its diameter, or equivalently, the ratio
of a circle's area to the square of its radius in 2D Euclidean space. The LLN provides a
foundation for an approximation of π using repeated independent virtual drops of needles on
a tiled surface by observing if the needle crosses a tile grid-line. For a tile grid of size 1, the
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odds of a needle-line intersection are , (Schroeder, 1974). In practice, to
estimate π from a number of needle drops (N), we take the reciprocal of the sample odds-of-
intersection. The complete details of this application are also available online at
http://wiki.stat.ucla.edu/socr/index.php/SOCR
EduMaterials_Activities_BuffonNeedleExperiment and
http://socr.ucla.edu/htmls/SOCR_Experiments.html.

3. Discussion and Utilization
3.1 How to use the pair of SOCR LLN applets and activities in the classroom

There is no single best way to use of these resources in the classroom. An instructor must
always fine-tune these materials to their specific course curriculum. There are a number of
ways that we have experimented with these materials in the past. One may begin either with
more illustrative empirical demonstrations that build students' intuition for the subsequent
symbolic mathematical formulation of the experimentally observed properties. Instructors
may also choose to explain the LLN mathematical formalism first, and then provide
supporting empirical evidence using the SOCR LLN simulations to solidify students'
comprehension of the LLN. Open discussions with learners, involving the applet usage,
LLN properties, examples and counterexamples, provoke significantly higher participation
and demonstrate a marked increase of students' interest in the subject. Instructors may build
complexity in these demonstrations based on students' responses, attentiveness and
comprehension. A homework assignment that reinforces these LLN principles is appropriate
in many cases and may improve knowledge retention.

One specific approach for teaching the concept of the LLN in various classes is to follow the
SOCR LLN activity step-by-step. Instructors would typically begin by presenting one or two
motivational examples. Then, as appropriate, the instructor may discuss the formal
statement(s) of the LLN, and perform several simulations using the LLN applet. Students
may then be given 5–10 minutes to explore the hands-on section of the LLN Wiki activity
on their own by following the directions and answering the questions. Instructors must
follow up with a question-and-answer period to ensure all students understand the
mechanics, purpose and applications included in the LLN activities. Finally, it is appropriate
to encourage an open classroom discussion, utilizing the LLN applet, explaining the two
LLN misconceptions.

3.2 What is unique about the SOCR LLN Activity?
There are two aspects of the SOCR LLN activity and applets that we believe are of most use
to instructors and learners alike. The first one is the broad spectrum of experiments
employed in the demonstration of the theoretical and empirical properties, as well as
applications of the LLN. These materials demonstrate the law of large numbers in terms of
proportions and averages, for a variety of processes modeled by different distributions and
point out the main misunderstandings of the LLN. The second beneficial aspect of these
resources is the interactive nature and full user control over parameter choices, which
facilitates intuition building, empirical motivation and result validation of the LLN for
novice learners (e.g., disproving empirically impossible probabilities like P(Head)=0.1 for a
repeated fair coin toss experiment).

3.3 Other SOCR Activities
The SOCR resource has continuously been developing other similar hands-on activities.
These are paired with one or more SOCR applets and typically illustrate one possible
approach for demonstrating a probability or statistics property via a SOCR distribution,
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experiment, analysis, graphing or modeling applet. Most of the general topics covered in
lower and upper division probability theory or statistical inference courses already have
available one or several SOCR Wiki activities
(http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials). There are many other
instances of SOCR activities covering the distribution, analyses, experiments, graphs and
modeler applets. Finally, there are also some SOCR applets and activities, which may be
used in more advanced undergraduate and graduate level classes, e.g., central limit theorem,
mixture modeling, expectation maximization, Fourier and wavelet signal representation, etc.
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Figure 1.
SOCR LLN APplet interface.
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Figure 2.
SOCR LLN Activity: Snapshot of the first experiment.
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Figure 3.
Interactive applet demonstration of the two common LLN misconceptions. First, the
outcome of each experiment is independent of the previous outcomes. Second, the variable
representing the raw difference between the number of Heads and Tails is divergent,
unstable and unpredictable. The top panel shows a simulation with only 100 trials. The
bottom panel shows an outcome with 10,000 simulations. Notice the rapid convergence of
the red curve (proportions), the expansion of the vertical scale on the right side and the
vertical graph compression of the  variable that follows with such a large increase
in the number of trials.
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Figure 4.
SOCR LLN Activity: Snapshot of the second (Binomial coin) experiment.
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Figure 5.
Demonstration of the LLN using the Binomial coin experiment. As we increase the number
of experiments (N) from 10 (top) to 100 (middle) and then to 1,000 (bottom), we observe a
better match between the theoretical distribution (blue graph) and the empirical distribution
(red graph). In this case, we used number of coin-tosses n=27 and p=P(H)=0.7. According
to the LLN, the same behavior can be demonstrated for any choice of these Binomial
parameters.
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Figure 6.
SOCR Uniform E-Estimate applet illustrating the stochastic approximation of e by random
sampling from Uniform(0,1) distribution.
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