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Abstract

Variable selection for multivariate nonparametric regression is an important, yet challenging,
problem due, in part, to the infinite dimensionality of the function space. An ideal selection
procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In
particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently
selects the correct subset of predictors and at the same time estimates the smooth surface at the
optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model
selection procedure for nonparametric models, and explore the conditions under which the new
method enjoys the aforementioned properties. Developed in the framework of smoothing spline
ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive
penalty on the sum of functional component norms. Theoretical properties of the new estimator
are established. Additionally, numerous simulated and real examples further demonstrate that the
new approach substantially outperforms other existing methods in the finite sample setting.

Keywords
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1 Introduction

In this paper, we consider the multiple predictor nonparametric regression model y; = f (x;) +
&, 1=1, ..., n, where f is the unknown regression function, Xj = (Xyj,-.., Xp,i) is a p-
dimen5|onal vector of predictors, and the &;’s are independent noise terms with mean 0 and

variances cr?. Many approaches to this problem have been proposed, such as kernel
regression (Nadaraya 1964 and others) and locally weighted polynomial regression
(LOESS), (Cleveland 1979). See Schimek (2000) for a detailed list of references. When
there are multiple predictors, these procedures suffer from the well known curse of
dimensionality. Additive models (GAM’s) (Hastie & Tibshirani 1990) avoid some of the
problems with high dimensionality and have been shown to be quite useful in cases when
the true surface is nearly additive. A generalization of additive modeling is the Smoothing
Spline ANOVA (SS-ANOVA) approach (Wahba 1990, Stone, Buja & Hastie 1994, Wahba,
Wang, Gu, Klein & Klein 1995, Lin 2000, and Gu 2002). In SS-ANOVA, the function f is
decomposed into several orthogonal functional components.

We are interested in the variable selection problem in the context of multiple predictor
nonparametric regression. For example, it might be thought that the function f only depends
on a subset of the p predictors. Traditionally this problem has been solved in a stepwise or
best subset type model selection approach. The MARS procedure (Friedman 1991) and
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variations thereof (Stone, Hansen, Kooperberg & Truong 1997) build an estimate of f by
adding and deleting individual basis functions in a stepwise manner so that the omission of
entire variables occurs as a side effect. However, stepwise variable selection is known to be
unstable due to its inherent discreteness (Breiman 1995). COmponent Selection Shrinkage
Operator (COSSO; Lin & Zhang 2006) performs variable selection via continuous shrinkage
in SS-ANOVA models by penalizing the sum of norms of the functional components. Since
each of the components are continuously shrunk towards zero, the resulting estimate is more
stable than in subset or stepwise regression.

What are the desired properties of a variable selection procedure? For the parametric linear
model Fan & Li (2001) discuss the oracle property. A method is said to possess the oracle
property if it selects the correct subset of predictors with probability tending to one and
estimates the non-zero parameters as efficiently as could be possible if we knew which
variables were uninformative ahead of time. Parametric models with the oracle property
include Fan & Li (2001) and Zou (2006). In the context of nonparametric regression, we
extend the notion of the oracle property. We say a nonparametric regression estimator has
the nonparametric (np)-oracle property if it selects the correct subset of predictors with
probability tending to one and estimates the regression surface f at the optimal
nonparametric rate.

None of the aforementioned nonparametric regression methods have been demonstrated to
possess the np-oracle property. In particular, COSSO has a tendency to over-smooth the
nonzero functional components in order to set the unimportant functional components to
zero. In this paper we propose the adaptive COSSO (ACOSSO) to alleviate this major
stumbling block. The intuition behind the ACOSSO is to penalize each component
differently so that more flexibility is given to estimate functional components with more
trend and/or curvature, while penalizing unimportant components more heavily. Hence it is
easier to shrink uninformative components to zero without much degradation to the overall
model fit. This is motivated by the adaptive LASSO procedure for linear models of Zou
(2006). We explore a special case under which the ACOSSO possesses the np-oracle
property. This is the first result of this type for a nonparametric regression estimator. The
practical benefit of possessing this property is demonstrated on several real and simulated
data examples where the ACOSSO substantially outperforms other existing methods.

In Section 2 we review the necessary literature on smoothing spline ANOVA. The ACOSSO
is introduced in Section 3 and its asymptotic properties are presented in Section 4. In Section
5 we discuss the computational details of the estimate. Its superior performance to the
COSSO and MARS is demonstrated on simulated data in Section 6 and real data in Section
7. Section 8 concludes. Proofs are given in an appendix.

2 Smoothing Splines and the COSSO

In this section we review only the necessary concepts of SS-ANOVA needed for
development. For a more detailed overview of Smoothing Splines and SS-ANOVA see
Wahba (1990), Wahba et al. (1995), Schimek (2000), Gu (2002), and Berlinet & Thomas-
Agnan (2004).

In the smoothing spline literature it is typically assumed that f € & where & is a
reproducing kernel Hilbert space (RKHS). Denote the reproducing kernel (r.k.), inner
product, and norm of &7 as K, (-, ) and Il - ll  respectively. Often <7 is chosen to contain
only functions with a certain degree of smoothness. For example, functions of one variable
are often assumed to belong to the second order Sobolev space, .72 = {g : g, ¢’ are absolutely
continuous and g” € &£.2[0, 1]}.
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Smoothing spline models are usually assumed without loss of generality to be over x € X =
[0, 1]P. In what is known as smoothing spline (SS)-ANOVA, the space < is constructed by
first taking a tensor product of p one dimensional RKHS’s. For example, let j{j be a RKHS
on [0, 1] such that J{J {1} & }ZJ where {1} is the RKHS consisting of only the constant
functions and 371 is the RKHS consisting of functions fj € J{J such that < fj, 1>;{ 0. The
space < can be taken to be the tensor product of the %, j j»J=1,..., pwhich can be written as

7= ® jf;:{l}@{é%j}ea{@(%i@%k)}ea
j=1 j=1 j<k )

The right side of the above equation has decomposed & into the constant space, the main
effect spaces, the two-way interaction spaces, etc. which gives rise to the name SS-ANOVA.
Typically (1) is truncated so that & includes only lower order interactions for better
estimation and ease of interpretation. Regardless of the order of the interactions involved,
we see that the space & can be written in general as

f:{l}ea{@f }
j=1 (2)

where {1},c#1...c7q is an orthogonal decomposition of the space and each of the <7 is itself
a RKHS. In this presentation we will focus on two special cases, the additive model
R p .
f (w):b+z i=1/14%i) and the two-way interaction model
L P P .
f@)=be Y Fio)+ ) e, where b € {13, f; € Zjand fiy € 4; ®

A traditional smoothing spline type estimate, f, is given by the function f € < that minimizes

1< , < T
= > vi— f@)) +0 ) —I P'f 7,
l’l; ;Oj 7

where Pl f is the orthogonal projection of f onto #j, = 1,..., g which form an orthogonal
partition of the space as in (2). We will use the conventlon 0/0 0 so that when 0; = 0 the
minimizer satisfies IIP fll z = 0.

The COSSO (Lin & Zhang 2006) penalizes on the sum of the norms instead of the squared
norms as in (3) and hence achieves sparse solutions (i.e. some of the functional components
are estimated to be exactly zero). Specifically, the COSSO estimate, f, is given by the
function f € & that minimizes

1y ,
=2 i f@) Y | Pf 5
i=1 Jj=1 (4)

In Lin & Zhang (2006), # was formed using .72 with squared norm

17 1P=( f(r)dv)2+( /) f’(v)clr)2+ b (70 dx
07V 0 : 0 (5)
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for each of the J{j of (1). The reproducing kernel can be found in Wahba (1990).

3 An Adaptive Proposal

Although the COSSO is a significant improvement over classical stepwise procedures, it
tends to oversmooth functional components. This seemingly prevents COSSO from
achieving a nonparametric version of the oracle property (defined in Section 4). To alleviate
this problem, we propose an adaptive approach. The proposed adaptive COSSO uses
individually weighted norms to smooth each of the components. Specifically we select as
our estimate the function f € & that minimizes

1 n R q )
=) i=f@))+1) wil P'f |z
Zl ; AP Is o

where the 0 < w; < oo are weights that can depend on an initial estimate of f which we
denote f. For example we could initially estimate f via the traditional smoothing spline of (3)
with all 9; = 1 and A chosen by the generalized cross validation (GCV) criterion (Craven &
Wahba 1979). Note that there is only one tuning parameter, 1, in (6). The w;’s are not tuning
parameters like the 0;’s in (3), rather they are weights to be estimated from the data in a
manner described below.

3.1 Choosing the Adaptive Weights, w;

Given an initial estimate f, we wish to construct w;’s so that the prominent functional
components enjoy the benefit of a smaller penalty relative to less important functional
components. In contrast to the linear model, there is no single coefficient, or set of
coefficients, to measure importance of a variable. One possible scheme would be to make
use of the L, norm of P f given by IIP} f|||_2 (Sx(P) f(x))zdx)l’2 For a reasonable initial

estimator, this quantity will be a consistent estimate of Il P/f IIZ2 which is often used to
quantify the importance of functional components. This would suggest using

wi=ll PIF I o

In Section 4, the use of these weights results in favorable theoretical properties.

There are other reasonable possibilities one could consider for the w; ’s. In fact at first
glance, as an extension of the adaptive LASSO for linear models, it may seem more natural
to make use of an estimate of the RKHS norm used in the COSSO penalty and set

wi=l P'f ||:,@‘V . However, the use of these weights is not recommended because they do not
provide an estimator with sound theoretical properties. Consider for example building an
additive model using RKHS’s with norm given by (5). Then this w; is essentially requiring

estimation of the functionals f(l)(f;(xj))ztlxy which is known to be a harder problem

(requiring more smoothness assumptions) than estimating f éf;‘(x)dx (Efromovich &

Samarov 2000). In fact, using w;=|| P/ f ug instead of (7) would at the very least require
stronger smoothness assumptions about the underlying function f in Section 4 to achieve
asymptotically correct variable selection. Because of this and the results of preliminary
empirical studies we recommend the use of the weights in (7) instead.
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4 Asymptotic Properties

In this section we demonstrate the desirable asymptotic properties of the ACOSSO. In
particular, we show that the ACOSSO possesses a nonparametric analog of the oracle
property. This result is the first of its type for nonparametric surface estimation.

Throughout this section we assume the true regression model is y; = fg (Xj) + &, i =1,..., n.
The regression function fy € o7 is additive in the predictors so that 7 = {1} ® #1 ®--® 7
where each «7; is a space of functions corresponding to x;j . We assume that ¢; are
independent with Eg; = 0 and are uniformly sub-Gaussian. Following van de Geer (2000),
we define a sequence of random variables to be uniformly sub-Gaussian if there exists some
K >0and C > 0 such that

sup‘n]lax [exp(af/l()] <C. ®
n i=l..n 8

Let.72 denote the RKHS of second order Sobolev space endowed with the norm in (5) with
2= {1} @ ¥2. Also, define the squared norm of a function at the design points as

2 n 2
Il f1=1/n Zi:]f“(wf). Let U be the set of indexes for all uninformative functional
P i . .
components in the model f0=b+zjzlpjf0v J=L...P ThatisU = {j: P fp = 0}.

Theorem 1 below states the convergence rate of ACOSSO when used to estimate an additive
model. Corollary 1 following Theorem 1 states that the weights given by (7) lead to an
estimator with optimal convergence rate of n=2/>, We sometimes write wj and X as wj , and
\n respectively to explicitly denote the dependence on n. We also use the notation X, ~ Y, to
mean Xp/Yp = Op(1) and Yp/Xp = Op(1) for some sequences X, and Yp,. The proofs of
Theorem 1 and the other results in this section are deferred to the appendix.

Theorem 1. (Convergence Rate)

—2 —2 —2
Assume that fo € Z={1}& .7, ®---©.7, where ./ ; is the space & corresponding to the j
input variable, x;. Also assume that ¢; are independent and satisfy (8). Consider the

ACOSSO estimate, f, defined in (6). Suppose that n",f,11=0p(1) for j=1,..., p and further that
Wjn = Op(1) for j € UC. Also assume that 1,'=0,(n*”). If

I Pify#0for somej, thenl| £ — fo ll,=0,(2"/2w?) where w o = min {wy p,... Wy n}-
- pify=0forallj then|| f— fy l,=0,(max{n™"/2, n=22 2713w 13,

Corollary 1. (Optimal Convergence of ACOSSO)—Assume that
foe F={l}o | ®---&.7, and that ¢; are independent and satisfy (8). Consider the

ACOSSO estimate, f, with weights, W n=Il P’ f HZ, for f given by the traditional smoothing
spline (3) with = 1, and Agn ~ =45, If y > 3/4 and A, ~ n™#5, then IIf —foll, = Op(n~2/5) if
Pl fo # 0 for some j and IIf - foll, = Op(n~2/2) otherwise.

We now turn to discuss the attractive properties of the ACOSSO in terms of model
selection. In Theorem 2 and Corollary 2 we will consider functions in the second order

—2
Sobolev space of periodic functions denoted fpze,. where szes{l} ® 7 per. We also assume
that the observations come from a tensor product design. That is, the design points are
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s ym p .
i X255 X wp}i,:lj:l where xj = k/m, k=1,...,m, j=1,..., p. Therefore the total

sample size is n = mP. These assumptions were also used by Lin & Zhang (2006) to examine
the model selection properties of the COSSO.

Theorem 2. (Selection Consistency)

Assume a tensor product design and

—2 —2 —2 —2
fo € FHY O S ) @+ ® Sy, Where S, jis the space /. corresponding to the ji
input variable, x;. Also assume that ¢; are independent and satisfy (8). The ACOSSO estimate
f will be such that P! f = 0 for all j €U with probability tending to one if and only if

2 2 P .
nw, A, = casn— forallj€U.

We will say a nonparametric regression estimator, f, has the nonparametric (np)-oracle
property if Iif — foll, — O at the optimal rate while also setting P f = 0 for all j € U with
probability tending to one. This means that the error associated with surface estimation has
the same order as that for any other optimal estimator. One could also define a strong np-
oracle property which would require asymptotically correct variable selection and the error
being asymptotically the same as an oracle estimator (an estimator where the correct
variables were known in advance). That is, to possess the strong np-oracle property, the
proposed estimator must match the constant as well as the rate of an oracle estimator. The
strong np-oracle definition is slightly ambiguous however, as one must specify what
estimator should be used as the oracle estimator for comparison (e.g., smoothing spline with
one %, smoothing spline with differing 2;’s, etc.). The weaker version of the np-oracle
property, which was stated first, avoids this dilemma. The corollary below states that the
ACOSSO with weights given by (7) has the np-oracle property.

Corollary 2. (Nonparametric Oracle Property)—Assume a tensor product design and
—2 —2
fo € # where #={l}® ., ®---®.7,, ,and that ¢; are independent and satisfy (8).

Define weights, wi»=ll P/ 7 I, for  given by the traditional smoothing spline with A ~
n~#5 and y > 3/4. If also A, ~ =45, then the ACOSSO estimator has the np-oracle property.

Remark 1: The derivation of the variable selection properties of adaptive COSSO requires
detailed investigation on the eigen-properties of the reproducing kernel, which is generally
intractable. However, Theorem 2 and the Corollary 2 assume that f belongs to the class of
periodic functions while x is a tensor product design. This makes the derivation more
tractable, since the eigenfunctions and eigenvalues of the associated reproducing kernel have
a particularly simple form. Results for this specific design are often instructive for general
cases, as suggested in Wahba (1990). We conjecture that the selection consistency of the
adaptive COSSO also holds more generally, and this is also supported by numerical results
in Section 6. The derivation of variable selection properties in the general case is a
technically difficult problem which is worthy of future investigation. Neither the tensor
product design nor the periodic functions assumptions are required for establishing the MSE
consistency of the adaptive COSSO estimator in Theorem 1 and Corollary 1.

Remark 2: The COSSO (which is the ACOSSO with w;, = 1 for all j and n) does not
appear to enjoy the np-oracle property. Notice that by Theorem 2, A,, must go to zero slower
than n~2/2 in order to achieve asymptotically correct variable selection. However, even if A,
is as small as A, = N2, Theorem 1 implies that the convergence rate is Op(n~/4) which is
not optimal. These results are not surprising given that the linear model can be obtained as a
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special case of ACOSSO by using j‘Z={f?f=/30+2§;lﬁj("f/ —1/2)} For this < the COSSO
reduces to the LASSO which is known to be unable to achieve the oracle property (Knight
& Fu 2000, Zou 2006). In contrast, the ACOSSO reduces to the adaptive LASSO (Zou
2006) which is well known to achieve the oracle property.

Remark 3: The distribution of the error terms ¢; in Theorems 1 and 2 need only be

independent with sub-Gaussian tails (8). The common assumption that g, ““ (0, o%)
satisfies (8). But, the distributions need not be Gaussian and further need not even be the
same for each of the ;. In particular, this allows for heteroskedastic errors.

Remark 4: Theorems 1 and 2 are assuming an additive model, in which case functional
component selection is equivalent to variable selection. In higher order interaction models,
the main effect for xj and all of the interaction functional components involving xj must be
set to zero in order to eliminate xj from the model and achieve true variable selection. Thus,
in some other areas of the paper, when interactions are involved, we use the term variable
selection to refer to functional component selection.

5 Computation

Since the ACOSSO in (6) may be viewed as the COSSO in (4) with an “adaptive” RKHS,
the computation proceeds in a similar manner as that for the COSSO. We first present an
equivalent formulation of the ACOSSO, then describe how to minimize this equivalent
formulation for a fixed value of the tuning parameter. Discussion of tuning parameter
selection is delayed until Section 5.3.

5.1 Equivalent Formulation

Consider the problem of finding 0 = (05,..., 63)" and f € &# to minimize

1 2 O 291 pjg 2 z 9 .
;Z[‘vi — f(x)] 'HOZHJ' le ) pif [l}"‘/hZ“'jai’ subject to §; > 0V,

J=1 J=1 (9)

where 0 <9 <2, 4y > 0 is a fixed constant, and A1 > 0 is a smoothing parameter. The
following Lemma says that the above optimization problem is equivalent to (6). This has
important implications for computation since (9) is easier to solve.

Lemma 1—Set xl_xZ/(4xo) (i) 1 f minimizes (6), set 6;=2°2;"*w!™ | Pifliz.j=
g, then the pair (@, f) minimizes (9). (ii) On the other hand, |fapa|r(0 f) minimizes (9) then
f minimizes (6).

5.2 Computational Algorithm

The equivalent form in (9) gives a class of equivalent problems for ¢ € [0, 2]. For simplicity
we will consider the case ¢ = 0 since the ACOSSO can be then viewed as having the same
equivalent form as the COSSO with an adaptive RKHS. For a given value of 6 = (0y,..., 0q)’,

the minimizer of (9) is the smoothing spline of (3) with 0; replaced by \“}29‘;. Hence it is
known (Wahba 1990 for example) that the solution has the form / (93)=b+z,.:] ciKw.o(x, x;)

q 2,
where c €R", b € R and Kwﬂ:zjzl(gj/wj)K@f, with <7 corresponding to the
decomposition in (2).
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Let K be the n x n matrix {K.7; (. @)}, and let 1, be the column vector consisting of n
9 2
ones. Then write the vector f = (f(xy)....,f(x,))’ as f=b1n+(zj:1 O /WK, v = (yq,....Vn)

and define ll v [=1/n Zi:,vlg for a vector v of length nand y = (yy,..., Yn)". Now, for fixed
0, minimizing (9) is equivalent to

"
1 NPITESRRE o
nl}.LCn {Z” Yy - 171,1 — ZQJMJ_KJC ” +/l()219ju’j'c’KjC

J=1 no 7 (10)

which is just the traditional smoothing spline problem in Wahba (1990). On the other hand if
b and c were fixed, the 0 that minimizes (9) is the same as the solution to

q
mgin {Il z— GO ]],2,+n/1120<}, subject to 6; > 0V,

=1 (11)

where gj=w;2ch,, G is the n x p matrix with the j column being gjandz=y—bl,—(n/
2)MgC. Notice that (11) is equivalent to

q
min|| 2~ GO [} subject to6; > 0V;and Y 6 < M,
J=1 (12)

for some M > 0. The formulation in (12) is a quadratic programming problem with linear
constraints for which there exists many algorithms to find the solution (see Goldfarb &
Idnani 1982 for example). A reasonable scheme is then to iterate between (10) and (12). In
each iteration (9) is decreased. We have observed that after the second iteration the change
between iterations is small and decreases slowly.

5.3 Selecting the Tuning Parameter

In (9) there is really only one tuning parameter, A4 or equivalently M of (12). Changing the
value of Ag will only scale shift the value of M being used so Aq can be fixed at any positive
value. Therefore, we choose to initially fix @ = 14 and find A to minimize the GCV score of
the smoothing spline problem in (10). This has the effect of placing the 0;’s on a scale so
that M roughly translates into the number of non-zero components. Hence, it seems
reasonable to tune M on [0, 2q] for example.

We will use 5-fold cross validation (5CV) in the examples of the subsequent sections to tune
M. However, we also found that the BIC criterion (Schwarz 1978) was quite useful for
selecting M. We approximate the effective degrees of freedom, v, by v = tr(S) where S is the
weight matrix corresponding to the smoothing spline fit with @ = 8. This type of
approximation gives an under-estimate of the actual df, but has been demonstrated to be
useful (Tibshirani 1996). We have found that the ACOSSO with 5CV tends to over select
non-zero components just as Zou, Hastie & Tibshirani (2007) found that AIC-type criteria
over select non-zero coefficients in the LASSO. They recommend using BIC with the
LASSO when the goal is variable selection as do we for the ACOSSO.
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6 Simulated Data Results

In this section we study the empirical performance of the ACOSSO estimate and compare it
to several other existing methods. We display the results of four different versions of the
ACOSSO. All versions use weights w; given by (7) with y = 2 since we found thaty =2 _
produced the best overall results among y € {1.0, 1.5, 2.0, 2.5, 3.0}. The initial estimate, f, is
either the traditional smoothing spline or the COSSO with A selected by GCV. We also use
either 5CV or BIC to tune M. Hence the four versions of ACOSSO are ACOSSO-5CV-T,
ACOSSO-5CV-C, ACOSSO-BIC-T, and ACOSSO-BIC-C where (—T) and (—C) stand for
using the traditional smoothing spline and COSSO respectively for the initial estimate.

We include the methods COSSO, MARS, stepwise GAM, Random Forest (Breiman 2001),
and the Gradient Boosting Method (GBM) (Friedman 2001). The tuning parameter for
COSSO is chosen via 5CV. To fit MARS models we have used the "polymars’ procedure in
the R-package "polspline’. Stepwise GAM, Random Forest, and GBM fits were obtained
using the R-packages 'gam’, "randomForest’, and *gbm’ respectively. All input parameters
for these methods such as gcv for MARS, n.trees for GBM, etc. were appropriately set to
give the best results on these examples.

Note that Random Forest and GBM are both black box prediction machines. That is they
produce function estimates that are difficult to interpret and they are not intended for
variable selection. They are however well known for making accurate predictions. Thus,
they are included here to demonstrate the utility of the ACOSSO even in situations where
prediction is the only goal.

We also include the results of the traditional smoothing spline of (3) when fit with only the
informative variables. That is, we set 0; = 0 if P f = 0 and 0; = 1 otherwise, then choose g
by GCV. This will be referred to as the ORACLE estimator. Notice that the ORACLE
estimator is only available in simulations where we know ahead of time which variables are
informative. Though the ORACLE cannot be used in practice, it is useful to display its
results here because it gives us a baseline for the best estimation risk we could hope to
achieve with the other methods.

Performance is measured in terms of estimation risk and model selection. Specifically, the
variables defined in Table 1 will be used to compare the different methods. We first present
a very simple example to highlight the benefit of using the ACOSSO. We then repeat the
same examples used in the COSSO paper to offer a direct comparison on examples where
the COSSO is known to perform well. The only difference is that we have increased the
noise level to make these problems a bit more challenging.

Example 1. The following four functions on [0, 1] are used as building blocks of regression
functions in the following simulations:

. n sin(27nt)
1)=t, »(H=2t - 1)~; f)=————
a0=t 0=C1-1% g0=3—25
24(H=0.1 sin(271)+0.2 cos(27t)+0.3 sin>(271)+0.4 cos’ (271)+0.5 sin>(271). (13)

In this example, we let X € R19, We observe n = 100 observations from the model y = f (X)
+ ¢ where the underlying regression function is additive,
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f(@)=5g1(x1)+382(x2)+483(x3)+6g4(x4)

and ¢ A4(0,3.03). Therefore Xs,...,X1g are uninformative. We first consider the case
where X is uniform in [0, 1] in which case the signal to noise ratio (SNR) is 3:1 (here we
have adopted the variance definition for signal to noise ratio, SNR = [Var( f(X))]/c?). For
comparison, the variances of the functional components are Var{5g1(X;)} = 2.08,

Var{3g,(X5)} = 0.80, Var{4gs(X3)} = 3.30 and Var{6g4(X4)} = 9.45.

For the purposes of estimation in the methods ACOSSO, COSSO, MARS, and GBM, we
restrict f to be a strictly additive function. The Random Forest function however does not
have an option for this. Hence there are 10 functional components that are considered for
inclusion in the ACOSSO model. Figure 1 gives plots of y versus the the first four variables
X1,..., X4 along with the true PJ f component curves for a realization from Example 1. The
true component curves, j = 1,...,4, along with the estimates given by ACOSSO-5CV-T and
COSSO are then shown in Figure 2 without the data for added clarity. Notice that the
ACOSSO captures more of the features of the P3 f component and particularly the P# f
component since the reduced penalty on these components allows it more curvature. In
addition, since the weights more easily allow for curvature on components that need it, M
does not need to be large (relatively) to allow a good fit to components like P3 f and P* f.
This has the effect that that components with less curvature, like the straight line P1 f, can
also estimated more accurately by ACOSSO than by COSSO, as seen in Figure 2.

Figure 6 shows how the magnitudes of the estimated components change with the tuning
parameter M for both the COSSO and ACOSSO for the above realization. The magnitudes
of the estimated components are measured by their L, norm 1P ﬂILZ. Dashed lines are drawn
at the true values of IIP! fll , for reference. Notice that estimated functional component
norms given by ACOSSO are closer to the true values than those given by the COSSO in
general. Also, the uninformative components are more heavily penalized in the ACOSSO
making it harder for them to enter the model.

Incidentally using GCV or 5CV for tuning parameter selection for the ACOSSO on the
above realization gives M = 3.81 and M = 4.54 respectively, both resulting in a model of 5
functional components for this run. The BIC method however gives M = 2.97, which results
in the correct model of 4 functional components. This is a typical occurrence for realizations
from this example as can be seen in Table 2.

In Table 2 we can compare the risk and variable selection capability of the ACOSSO to the
COSSO and the other methods on Example 1 with X uniform on [0, 1]1°. Notice that all four
of the ACOSSO methods are significantly better than COSSO and the other methods in
terms of risk. COSSO, MARS, GAM, Random Forest and GBM have 131%, 180%, 150%,
349%, and 167% the risk of the ORACLE respectively, while the ACOSSO methods all
have risk less than 108% that of the ORACLE. In terms of variable selection, the two
ACOSSO-5CV methods again have a much higher average type | error rate than the two
ACOSSO-BIC methods and MARS. In fact, ACOSSO-5CV-T has a = .25 which is quite
high. Both ACOSSO-BIC methods however, have @ < 0.03 and have an average model size
of close to 4.0, the correct number of components.

Although the ACOSSO-5CV methods have higher @, they have better power than the other
methods as can be seen in the 1 — B column of. Table 2. In this example, it turns out that 1 —
B is almost completely determined by how well the methods do at including the second
variable (component P2 f). The components P1 f, P3 f, and P# f were included in the model
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nearly 100% for all of the methods. The percentage of the realizations that included P2 f was
65% for the ACOSSO-BIC methods, 75% for the COSSO and only 40% and 23% for
MARS and GAM respectively. The percentage of the realizations that included P2 f is close
to 90% for the ACOSSO-5CV methods but as mentioned, the price paid is a higher type |
error rate.

Example 2. This is a large p example with X € R0, We observe n = 500 observations from
y = f(X) + ¢. The regression function is additive in the predictors,

where g4,..., ga are given in (13). The noise variance is set to 62 = 2.40 yielding a SNR of
3:1 in the uniform case. Notice that X13,...,Xgg are uninformative. In this example, we
consider the same two distributional families for the input vector X as in Lin & Zhang
(2006).

Compound Symmetry

For an input X = (Xg,...,Xp), let Xj = (Wj+tU)/(1+1), j = 1,...,p, where Wy,...,W, and U are
iid from Unif(0, 1). Thus, Corr(X;, X) = t2/(1 + t2) for j # k. The uniform distribution design
corresponds to the case t = 0. (trimmed) AR(1): Let Wy,...,Wq be iid .4/(0, 1), and let X1 =
W1, Xj = pXj—1 + (1 = pP)Y2Wj, j = 2,...,p. Then trim X; in [-2.5, 2.5] and scale to [0, 1].

Table 3 shows the results of estimation risk (standard error in parentheses) on six different
cases which correspond to different distributions for the predictors. Again the ACOSSO
methods have estimation risk much closer to ORACLE than the other methods. COSSO and
GAM have very similar performance in this example and generally have the best risk among
the methods other than ACOSSO. One notable exception is the extremely high correlation
case (Compound Symmetry, t = 3, where Corr(X;, Xy) = .9 for j # k). Here the ACOSSO-
BIC-T and ACOSSO-5CV-T seem to struggle a bit as they have risk near or above the risk
of COSSO and GAM. GBM actually has the best risk in this particular case. However, the
ACOSSO variants are substantially better overall than any of the other methods. A similar
trend was also noticed (table not presented) for these six different cases on the test function
from Example 1.

Example 3. Here we consider a regression model with 10 predictors and several two way
interactions. The regression function is

f(@®)=g1(x1)+g2(x2)+g3(x3)+ga(x4)+g3(x1x2)+g2((x1+x3)/2)+g1(x3x4)

so that xs,..., 10 are uninformative. The noise variance is set at o2 = 0.44098 to give a SNR
of 3:1. Here, we consider only the uniform distribution on the predictors and evaluate
performance at various sample sizes, n = 100, n = 250, and n = 500.

A summary of the estimation risk on 100 realizations can be found in Table 4. When n =100
we see that COSSO seems to struggle a bit as all of the other methods except Random Forest
have substantially better risk. However, the ACOSSO methods have risk comparable or
better than the other methods and less than half that of COSSO. The estimation risk for all
methods improves as the sample size increases. However, stepwise GAM does not improve
from n = 250 to n = 500 probably because of its inability to model the interactions in this
example. Also notice that the ACOSSO methods maintain close to 50% the risk of COSSO
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for all sample sizes. In fact, for n = 500 the ACOSSO methods have risk nearly the same as
that of the ORACLE and roughly half that of the next best methods (COSSO and GBM).

Computation Time—Table 5 gives the computation times (in seconds) for the various
methods on the three sample size cases in Example 3. Recall that in Example 3 the number
of predictors is p = 10, but the total number of functional components including interactions
is g = 55. The times given are the average over the 100 realizations and include the time
required for tuning parameter selection.

For larger sample sizes, ACOSSO and COSSO take significantly longer than the other
methods. Considering the performance in the simulation examples and the computation
times, the best overall ACOSSO variant seems to be ACOSSO-BIC-T. It is important to
point out that the other methods (besides ACOSSO or COSSO) are computed via more
polished R-packages that take advantage of the speed of compiled languages such as C or
Fortran. The computing time of ACOSSO (and COSSO) could also be decreased
substantially by introducing more efficient approximations and by taking advantage of a
compiled language.

7 Application to Real Data

In this section we apply the ACOSSO to three real datasets. We only report the results of the
two ACOSSO-BIC methods since they performed much better overall than the
ACOSSO-5CV methods in our simulations. The first two data sets are the popular Ozone
data and the Tecator data which were also used by Lin & Zhang (2006). Both data sets are
available from the datasets archive of StatLib at http://lib.stat.cmu.edu/datasets/. The Ozone
data was also used in Breiman & Friedman (1995), Buja, Hastie & Tibshirani (1989), and
Breiman (1995). This data set contains the daily maximum one-hour-average ozone reading
and 8 meteorological variables recorded in the Los Angeles basin for 330 days of 1976.

The Tecator data was recorded on a Tecator Infratec Food and Feed Analyzer. Each sample
contains finely chopped pure meat with different moisture, fat and protein contents. The
input vector consists of a 100 channel spectrum of absorbances. The absorbance is — logyg of
the transmittance measured by the spectrometer. As in Lin & Zhang (2006), we use the first
13 principal components to predict fat content. The total sample size is 215.

The third data set comes from a computer model for two phase fluid flow (Vaughn, Bean,
Helton, Lord, MacKinnon & Schreiber 2000). Uncertainty/sensitivity analysis of this model
was carried out as part of the 1996 compliance certification application for the Waste
Isolation Pilot Plant (WIPP) (Helton & Marietta, editors 2000). There were 31 uncertain
variables that were inputs into the two-phase fluid flow analysis; see Storlie & Helton
(2008) for a full description. Here we consider only a specific scenario which was part of the
overall analysis. The variable BRN-REPTC10K is used as the response. This variable
corresponds to cumulative brine flow in m3 into the waste repository at 10,000 years
assuming there was a drilling intrusion at 1000 years. The sample size is n = 300. This data
set is available at http://www.stat.unm.edu/~storlie/acosso/.

We apply each of the methods on these three data sets and estimate the prediction risk, E[Y
— (X)]4, by ten-fold cross validation. We select the tuning parameter using only data within
the training set (i.e., a new value of the tuning parameter is selected for each of the 10
training sets without using any data from the test sets). The estimate obtained is then
evaluated on the test set. We repeat this ten-fold cross validation 50 times and average. The
resulting prediction risk estimates along with standard errors are displayed in Table 6. The
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interaction model is presented for all of the methods (except GAM) since it had better
prediction accuracy on all three data sets than the additive model.

For the Ozone data set, the ACOSSO is comparable to MARS but better than COSSO, GAM
and Random Forest. GBM seems to be the best method for prediction accuracy on this data
set though. For the Tecator data, both the COSSO and ACOSSO are much better than all of
the other methods. There are several significant interactions which is why GAM performs so
poorly relative to the other methods here. Interestly, COSSO is better than ACOSSO here
which shows that the adaptive weights aren’t always an advantage. The reason that COSSO
performs better in this case is likely due to the fact that 12 out of the 13 variables are
selected for inclusion into the model and around 62 out of the 91 total functional
components are estimated to be non-zero, so this is not a very sparse model. Hence using all
weights equal to 1 (the COSSO) should work quite well here. In cases like this, it may be
that using adaptive weights in the ACOSSO can detract from the COSSO fit by adding more
noise to the estimation process. In contrast, the WIPP data set has only about 8 informative
input variables of the 31 inputs. Hence the ACOSSO significantly outperforms the COSSO
and is comparable to GBM for prediction accuracy.

8 Conclusions & Further Work

Appendix
A Proofs

In this article, we have developed the ACOSSO, a new regularization method for
simultaneous model fitting and variable selection in the context of nonparametric regression.
The relationship between the ACOSSO and the COSSO is analogous to that between the
adaptive LASSO and the LASSO. We have explored a special case under which the
ACOSSO has a nonparametric version of the oracle property, which the COSSO does not
appear to possess. This is the first result of this type for a nonparametric regression
estimator. In addition we have demonstrated that the ACOSSOoutperforms COSSO, MARS,
and stepwise GAMs for variable selection and prediction on all simulated examples and all
but one of the real data examples. The ACOSSO also has very competitive performance for
prediction when compared with other well known prediction methods Random Forest and
GBM. R code to fit ACOSSO models is available at
http://www.stat.unm.edu/~storlie/acosso/.

It remains to show that ACOSSO has the np-oracle property under more general conditions
such as random designs. It may also be possible to yet improve the performance of the
ACOSSO by using a different weighting scheme. The Tecator example in Section 7,
suggests that using a weight power, y = 2 is not always ideal. Perhaps it would be better to
cross validate on a few different choices of y so that it could be chosen smaller in cases
(such as the Tecator example) where the weights are not as helpful. In addition, there are
certainly a number of other ways to use the initial estimate, f, in the creation of the penalty
term. These are topics for further research.

A.1 Equivalent Form

Proof of Lemma 1—Denote the functional in (6) by A(f) and the functional in (9) by B(®,
f). Since a+b > 2 Vab for a, b > 0, with equality if and only if a = b, we have for each j = 1,
. (

—1. 2-80 pjg 2 9 1/2,1/2. i o i
,zoej Wi || P/f ”jz‘l'/l]“’ljgj 222,74, will P'fllg=awjll P'f |l £,
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forany 6; > 0 and any f € #. Hence B(0, f) > A(f) with equality only when

1/24-1/2_ 1-9 i 7
0= 07w\ P/f || 7 and the result follows.

A.2 Convergence Rate

The proof of Theorem 1 uses Lemma 2 below which is a generalization of Theorem 10.2 of
van de Geer (2000). Consider the regression model y; = go(Xj)+;j, i = 1,..., n where gq is
known to lie in a class of functions ¥ x;’s are given covariates in [0, 1]P, and ¢;’s are
independent and sub-Gaussian as in (8). Let I, : ¥— [0,00) be a pseudonorm on ¢ Define

8n=arg mingcy 1/n Z,-:u (vi = 8@))*+7;1,(2), Let Hoo (5, % be the 5-entropy of the function
class Zunder the supremum norm liglles = supy [g(x)| (see van de Geer 2000 page 17).

Lemma 2—Suppose there exists I such that 1«(g) < I,(g) for all g € 4 n > 1. Also assume
that there exists constants A >0 and 0 < o < 2 such that

He (5, {&:g €, I*(g)+l*(g0)>0}) <AG

1.(8)+1.(g0) (A1)

for all >0 and n > 1. Then if Ix(gg) > 0 and 7, '=0,, (n"/®*®) I3/ “+29(41), we have

I1'gn — g0l :0,,(7,,)1,5/2(g0). Moreover, if 1,(gg) = 0 for all n > 1 then
180 = g0 | =0, (/G- 2/,

Proof. This follows the same logic as the proof of Theorem 10.2 of van de Geer (2000), so
we have intentionally made the following argument somewhat terse. Notice that

— 2 —
120 — g0 l+72 (@) < 2(8,8n — 80)n+Taln(20)- (A2)

Also, condition (Al) along with Lemma 8.4 in van de Geer (2000) guarantees that

|(8~§n — 80),l _
— 1—a/2 /2 :0]7("1 1/2)
2€911'gn — 8o Iy (I.(g)+1.(g0)""* (A3)

Case (i) Suppose that I«(gp) > 1x(gg). Then by (A2) and (A3) we have

—~ 2 _ —~ 1-a/2 ya/2

12— g0 I+720,@) < 0, )8 —go I} “/51;’/7@)+r?,1,,(go>
_ N\~ 1-a/2 2 3 )

< 0,21 g0 — g0 1212 @)+ 721 (0).

The rest of the argument is identical to that on page 170 of van de Geer (2000). Case (ii)
Suppose that Ix(gp) < 1x(gg) and Ix(gg) > 0. By (A2) and (A3) we have

— 2 _ — 1-a/2 ya/2
18— g0 lI2 < 0,7 )% — g0 121 (g0)+721,(20)
—1/2 11—~ 1-a/2 2 \ 2
< 0, )1 g0 — g0 I 217 (g0)+ 721 (g0).

The remainder of this case is identical to that on page 170 of van de Geer (2000).
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Proof of Theorem 1. The conditions of Lemma 2 do not hold directly for the & and

p .
In(f)=zj:1"".isn” P'f 7 of Theorem 1. The following orthogonality argument used in van
de Geer (2000) and Lin & Zhang (2006) works to remedy this problem though. For any f €

o we can write f(x) = b + g(x) = b + f1(xq) +-+ f5(x,), such that le.ﬁ(.’fj,i):(), J=1...,p.
Similarly write f(x) =b + g(x) and fo(x) = bg+go(x). Then Z:.?:I(g(xz‘) — &o0(x))=0, and we

can write (6) as

, 2 n 1 n 14 )
(bo — b)“+;(b0 - b)Z£i+;lZ(go(l’i) = 8@+ ) wiall Pg 5.
i=1 i=1 j=1

2 n - N
Therefore b must minimize (bo — b)"+2/n(bo — b) Zi:‘ei so that b=bo+1/n Zisi. Hence (b
— bg)? = Op(n™1). On the other hand, ¢ must minimize

1 n P )
=D (so(@) = g@))+As ) wiall Pg Il 7
i=1 j=1 (A4)

over all g € Ywhere

Y={g e F:g@)=fi(x))+- - +fp(xp), ij(x,;,-):o, Jj=1,...,p}.
i=1 (A5)

Now rewrite (A4) as

1 LS ,
=D (s0(@) = 8@+ 1 ) jall Plg Il 5.
i=1 =1 (A6)
where Xn = MWy, W = min {wy p,...,Wp n}, and V\7j’n = Wj n/Ws .
The problem is now reduced to showing that the conditions of Lemma 2 hold for
2 0~ P i - -
7,=4, and In(g)=Zj:1W.i~n” P'g Il.7. However, notice that min {wy ,..., Wy} = 1 for all n.

p .
This implies that /(&) = 1*(5’):Zj:1|| P’g 117 for all g € Zand n > 1. Also notice that the
entropy bound in (A1) holds whenever

Ho(6,{ge¥:1.(g) <1}) <A5Y, (A7)
since 1«(g — gg) < Ix(g) + 1+(gg) so that the set in brackets in (A7) contains that in (A1). And

(A7) holds by Lemma 4 in the COSSO paper with a. = 1/2. We complete the proof by
treating the cases UC not empty and U empty separately.

Case (i) Suppose that P! f # 0 for some j. Then Ix(gg) > 0. Also, »1;,‘,:0,,(1) and wjn = Op (1)
for j € UC by assumption. This implies that wj , = Op(1), for j € U so that 15(go) = Op(1).

Also ;' =0,(1)A;'=0,(n*®). The result now follows from Lemma 2.
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Case (ii) Suppose now that P f = 0 for all j. Then I, (gg) = 0 for all n and the result follows
from Lemma 2.

Proof of Corollary 1. For the traditional smoothing spline with Ao ~ n~45 it is known (Lin
2000) that IP) f — Pl foll_, = Op(n~25). This implies [IP! fll_, — IPJ foll,, | < Op(n~2/5). Hence

\1';,17=0p(1) forj=1,..., pand wj, = Op(1) for j € US, which also implies wx , = Op(1). The
conditions of Theorem 1 are now satisfied and we have lIf — Il = O,(n=2/5) if Pif # 0 for
p

some j. On the other hand, also notice that \1’;,l=0,,(11‘2)'/5) for j € U. Hence w;},zop(n‘zﬂs)

whenever PI f = 0 for all j so that n=>/> 4, '?w;}/*=0,(n™"/?) for y > 3/4 and the result
follows.

A.3 Oracle Property

Proof of Theorem 2. Define Z={K(x1, -rl.j)}fj:l, the m x m marginal Gram matrix
—2
corresponding to the reproducing kernel for ... Also let Kj stand for the n x n Gram

—;2
matrix corresponding to the reproducing kernel for the reproducing kernel for - on
variable xj, j = 1,..., p. Let 1, be a vector of m ones. Assuming the observations are
permuted appropriately, we can write

K =200,1,)® --&1,l1,)
K, =1,1,)0%X® --®(1,l,)

VA m

K, 1,1,)® - ®1,1,) L,

where ® here stands for the Kronecker product between two matrices.

Straightforward calculation shows that £1,, = 1/(720m3)1,,. So write the eigen-vectors of £
as {vy = 1y, va,..., v} and let T be the m x m matrix with these eigenvectors as its
columns. The corresponding eigenvalues are {m¢1, Méo,...,Mmm}, Where ¢1 = 1/(720m?) and
b2 = g3 = -+ = ¢pp. It is known (Uteras 1983) that ¢; ~ i~ for i > 2. Notice {vy, vy,..., om}

are also the eigenvectors of (1m1;n) with eigenvalues {m, 0,..., 0} Writte O=TQ®T® - ®
T and let & be the it column of O, i = 1,..., n. It is easy to verify that {&;,..., &} form an
eigensystem for each of Ky,...,K.

Let {Cyj,---, &n,j} be the collection of vectors {&;,..., &y} sorted so that those corresponding
to nonzero eigenvalues for Kj are listed first. Specifically, let

qi.l =Ul'®1m®"’®1m,
Sz =1,0U;® --®1,,

gi.p :1m®1m®"'®lf,', (A8)

fori=1,...,m. Notice that each §;j, i = 1,....m, j = 1,..., p corresponds to a distinct &, for
some k € {1,..., n}. So let the first m elements of the collection {Cq j,..., &m j, Em+1jr--- Cn,jt
be given by (A8) and the remaining n — m be given by the remaining &; in any order. The
corresponding eigenvalues are then
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__ | ngi fori=l,..., m
= o fori=m+1,...,n "’

Itis clear that {&;,..., &n} is also an orthonormal basis in R" with respect to the inner
product

(u,v),=1/n Zuiui.

i (A9)

Let f = (f(x1),..., f(Xy))". Denote a = (1/n)O’ fand z = (1/n)Q'y. That is, z; = {y, &n, aj = {f,
Eidn, 8i = (&, &) and we have that z; = a; + &;. With some abuse of notation, also let

Zi,j‘_‘<ys S‘i,j),lq ai,j=<f’ S‘i,j)n, 5i,j=<3w S‘i,j)n-

Now, using ¥ = 2 in (9), the ACOSSO estimate is the minimizer of

1 P
~(y — Kgc - bl,) (y — Kgc — bl,)+¢ Kge+, ane)j,
n
J=1 (A10)

P
where K!?:Zj:lg./Kj. Lets=0O'cand D; = (1/n2)O’KjO is a diagonal matrix with diagonal
elements ¢;. Then (A10) is equivalent to

14
(2= Dps = (b,0,...0Y) (== Dys = (b,0,...0))+s' Dys+1; Y w30,
= (A11)

r
where D‘?:ZHG/D/. Straightforward calculation shows that this minimization problem is
equivalent to

m p

Us,00=) > (2 - 4ifjs)* +ZZ¢,9, ,j+/112w§0j,
i=1 j=1

izl =1 =y (A12)

where sij=¢;c,i=1,...,m, j=1,...,p are distinct elements of s.

Now, we first condition on @ and minimize over s. Given 0, £(s, 0) is a convex function of s
and is minimized at SO)={5;0)},"_,, where 5ij(6;) = zi(1 — ¢;8;). Inserting §(6) into (A12)
gives

5 ¢’ J*”J

(316).0) ZZ(H@ ye ZZ(HM) +2 ]Zu 0,

1]/} tlj Jj=1

—ZZW, 4 Zw »

i=1 j=1

(A13)
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Notice that £(s(0), 0) is continuous in 0;,

PUE0),0) I G0
=2 >0 for each j

o iz (1+9i6;) (A14)

and 92 ((5 (0), 0)/36;96y = 0 for j # k. Therefore £(s, 8) is convex and has a unique
minimum, 0.

Clearly, P f = 0 if and only if §; = 0. So it suffices to consider 6;. As such, since we must
have that 0; > 0, the minimizer, éj =0ifand only if

0 ,
6—9/5(3(9), 6) >0,

Bj=0
which is equivalent to

m
2 2
T:nZ(ﬁizij < nwj, A
i=1 (A15)

If we assume that PJ f = 0, then we have Zjj = 9jj. In the following, we will obtain bounds for
E(T) and Var(T) to demonstrate that T is bounded in probability when P! f = 0. To this end,

we first obtain bounds for E(6}) and Var(57). Recall that §;=(1/n)s ;& and that the individual
elements of ¢ are independent with E(e) = 0. For notational convenience, let & = §;; which is
some column of the O matrix. Also, recall that the vector & is orthonormal with respect to
the inner product in (A9). Now,

E©}) =LE[E8)]

:nle Zn:i EalbEatp)

a=1b=1

n
_1 2 2
- ,T:Zfa E(ga)
a=1
n

< ,,%Zf?,Ml

M a=1
M
~n (A16)

where M,=max, E(s) Which is bounded because of the sub-Gaussian condition (8).

. 2.
The variance of 6 is

=
N

Var(5:'j ) =Var .Eu {:b Eu€h )

= EabpécEaCovieaey, Ec€q).
a=1b=1c=1d=1 (A17)
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But &;’s are independent, so Cov(eaep, £c&q) 7 0 only in the three mutually exclusive cases
(la=b=c=d,(ii)a=candb=dwitha#b, or (iii) a=d and b = c witha # b. Thus,
(A17) becomes,

n n n

{f Cov(s},, 8‘2‘)+ZZZ §5§§COV(susb, ausb)]
1

2y L
Var() = I
a=1b#a

a=
n n

2 2 &2
< fZqufbVar(sugb)
a=1b=1
w2
2M, 2
< —f(z,fu]
a=1

n
_2M
s (A18)

=

where My = max, p{Var(eaep)} which is bounded because of the sub-Gaussian condition in
(8). Notice that the derivations of the bounds in (A16) and (A18) do not depend on i or j
(i.e., they do not depend on which column of O that & comes from). Thus, the bounds in
(A16) and (A18) are uniform for all i.

Using (A16) we can write E(T) as

m

E(T)=n) $:E[57] < My ) ¢ ~ M.
i=1 i=1 (A19)

Further, we can use (A18) to write Var(T) as

Var(T)= n*Var [Zd);o}j)
i=1

=n? ZZgﬁk@Cov(di )

k=11=1

< 2Mzii¢k¢/

k=1 I=1

=2M, [i(/)k]—
=1

~2M>. (A20)

Finally, as n increases, (A19) and (A20) guarantee that the left-hand side of (A15) is

bounded in probability when Pi f = 0. Assuming that nw’i,,/l,z, % wor equivalently that

2

inAln 4 oo by Lemma 1, the right-hand side of (A15) increases to ©o in probability.
Therefore, if P} f = 0 then éj = 0 with probability tending to one. If on the other hand

nw

2

nW_,;,,/lf:Op(l), then the probability that T>nw'f;n/11,n converges to a positive constant. Hence
the probability that éj > 0 converges to a positive constant.

Proof of Corollary 2. It is straightforward to to show that Theorem 1 still holds with Jf’pzer in
place of .#2. Also recall from the proof of Corollary 1 that these weights satisfy the

2

. . — —2y . p .
conditions of Theorem 1. Also, since wj,,,l?=0p(n 1) for j € U we have nw;, A5 — oo for j €
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U whenever y > 3/4. The conditions of Theorem 2 are now satisfied. Lastly, in light of
Theorem 1, we also know that if P! f # 0, the probability that P! f # 0 also tends to one as the
sample size increases due to the consistency. Corollary 2 follows.
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Figure 1. )
Plot of the true functional components, P! f, j = 1,..., 4 along with the data for a realization
from Example 1.
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Figure 2.
Plot of PI f, j = 1,..., 4 along with their estimates given by ACOSSO, COSSO, and MARS

for a realization from Example 1.
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captionPlot of 1P} fll, along with 1IP! fll, by M for both ACOSSO and COSSO on a
realization from Example 1.
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Definitions of the variables R, @, 1 — B, and model size used to summarize the results of the simulations.

R

1-B

model size

is a monte carlo estimate of the estimation risk, R(f) = E{f(X) —

f(X)}2. Specifically, let the integrated squared error for a fixed estimate
f be given by ISE = Ex{f(X) — f(X)}2. The ISE is calculated for each
realization via a monte carlo integration with 1000 points. The quantity
R is then the average of the ISE values over the N = 100 realizations.

is a monte carlo estimate of the type | error rate averaged over all of the
uninformative functional components. Specifically, let &j be the proportion
of realizations that Pif #0, j=1,..., . Thena = U|U|Sjey &

where U = {j : Pl f = 0} and |U] is the number of elements in U.

is a monte carlo estimate of the variable selection power averaged over
all of the informative functional components. Specifically, let BJ- be

the proportion of realizations that Pif=0,j=1,...,q. Then f =
U|US|Zjeuc Bj where U is the complement of U.

is the number of functional components included in the model averged
over the N = 100 realizations.
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Results of 100 Realizations from Example 1 in the Uniform Case. The standard error for each of the summary

statistics is given in parantheses.

Table 2

=3 a 1-B model size

ACOSSO-5CV-T  1.204(0.042) 0.252(0.034) 0.972(0.008) 5.4 (0.21)
ACOSSO-5CV-C  1.186 (0.048) 0.117 (0.017) 0.978 (0.007) 4.6 (0.11)
ACOSSO-BIC-T  1.257 (0.048) 0.032 (0.008) 0.912 (0.012) 3.8 (0.08)
ACOSSO-BIC-C  1.246 (0.064) 0.018 (0.006) 0.908 (0.014) 3.7 (0.07)
COSSO 1.523 (0.058) 0.095 (0.023) 0.935(0.012)  4.3(0.15)
MARS 2.057 (0.064)  0.050 (0.010) 0.848 (0.013) 3.7 (0.08)
GAM 1743 (0.053) 0.197 (0.019) 0.805 (0.011) 4.4 (0.13)
Random Forest ~ 4.050 (0.062) NA NA 10.0 (0.00)
GBM 1.935(0.039) NA NA 10.0 (0.00)
ORACLE 1.160 (0.034)  0.000 (0.000) 1.000 (0.000) 4.0 (0.00)
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Estimation Risk based on 100 realizations from Example 3 with n = 100, 250, and 500; standard error given in

Table 4
parantheses.
n =100 n =250 n =500
ACOSSO-5CV-T  0.139 (0.017) ~ 0.055(0.001)  0.034 (0.001)
ACOSSO-5CV-C  0.120 (0.011)  0.055 (0.001)  0.036 (0.001)
ACOSSO-BIC-T  0.200 (0.027)  0.054 (0.001)  0.034 (0.001)
ACOSSO-BIC-C  0.138 (0.016)  0.050 (0.001) ~ 0.034 (0.001)
COSSO 0.290 (0.016) ~ 0.093 (0.002)  0.057 (0.001)
MARS 0.245(0.021)  0.149 (0.009)  0.110 (0.008)
GAM 0.149 (0.005)  0.137(0.001)  0.136 (0.001)
Random Forest ~ 0.297 (0.006) ~ 0.190 (0.002) ~ 0.148 (0.001)
GBM 0.126 (0.003)  0.084 (0.001)  0.065 (0.001)
ORACLE 0.071(0.003)  0.042 (0.001)  0.029 (0.000)
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Table 5

Average CPU time (in seconds) for each method to compute a model fit (including tuning parameter selection)
for the various sample size simulations of Example 3.

n=100 n=250 n=500

1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

ACOSSO-5CV-T 8.7 47.2 155.2
ACOSSO-5CV-C 10.5 49.7 163.6
ACOSSO-BIC-T 3.0 11.9 89.0
ACOSSO-BIC-C 39 26.6 118.4
COSSO 75 43.4 150.1
MARS 9.2 11.2 13.6
GAM 5.7 79 113
Random Forest 0.3 6.4 153
GBM 4.2 9.1 17.0
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Estimated Prediction Risk for Real Data Examples; standard error given in parantheses. Risk for

Table 6

BRNREPTC10K for the WIPP data is in units of 100m®

Ozone Tecator WIPP
ACOSSO-BIC-T  15.07 (0.07)  1.44(0.02)  1.04 (0.00)
ACOSSO-BIC-C  14.81(0.08)  1.38(0.02)  1.05(0.01)
COSSO 15.99 (0.06)  0.88(0.02)  1.30(0.01)
MARS 14.24(0.12)  3.01(0.17)  1.12(0.01)
GAM 15.91 (0.12) 592.52 (4.26) 1.83 (0.01)
Random Forest ~ 18.11(0.07)  14.35(0.10)  1.29 (0.01)
GBM 10.69 (0.00)  3.35(0.00)  0.97 (0.00)
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