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To the Editor
We read with interest the paper by Kuo and Feingold (henceforth K&F) “What's the best
statistic for a simple test of genetic association in a case-control study” [Kuo and Feingold,
2010], in which the authors compared the power of three logistic regression models to detect
genetic effects, concluded that “the most commonly used approach to handle covariates—
modeling covariate main effects but not interaction—is almost never a good idea,” and
recommended modeling only the genetic factors without covariate adjustment in genome-
scanning. We feel that the issue of covariate adjustment in logistic regression models was
oversimplified and the conclusion was unjustified. In this letter, we attempt to explain the
observations found by K&F using established results in the statistical literature, to confirm
the theoretical results in the genetic association study scenario by mimicking and extending
the simulation study performed by K&F, and to discuss their implication on covariate
adjustment in genome-scanning.

The impact of covariate adjustment on the precision of regression coefficient estimators in
classic linear models depends on multiple correlations between variables; however,
adjusting for covariates in logistic regression models always leads to a loss of precision.
Denote by Y a quantitative trait, by G a genotype, and by E a covariate, e.g. an
environmental factor. Suppose we fit to data two linear regression models E(Y∣G) = α+β1G
and E(Y∣G, E) = α′ + β′1 G + β′2 E. The asymptotic relative precision (ARP) of the estimator
β̂′1 to β̂1 can be derived as

(1)

where ρGE is the correlation coefficient between G and E, and ρYE∣G is the partial correlation
coefficient between Y and E given G. Thus, whether ARP (β̂′1 to β̂1) is greater or smaller
than one depends on both the correlations—between G and E, and between Y and E
[Robinson and Jewell, 1991]. On the other hand, adjusting for covariates in logistic
regression models leads to increased variances of coefficient estimators regardless of
correlations between variables. Denote by Dε{0,1} affection status. Suppose we fit to data
the two logistic regression models (a): logit P(D = 1∣G) = α+β1G and (b): logit P(D = 1∣G,
E) = α′ + β′1G + β′2E. It can be shown that ARP (β̂′1 to β̂1 ≤ 1, i.e. formula (1), established
in classic linear regression models, breaks down in logistic regression models; moreover, the
larger the magnitude of β̂′2, the poorer the precision of the estimator β̂′1 [Wickramaratne and
Holford, 1990; Robinson and Jewell, 1991]. The increase in variance of β̂′1 over that of β̂1
can lead to a power loss in testing the null hypothesis of no genetic effect when β̂′1 is
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asymptotically equal to β̂1, which explains the results of model 1—genetic effect only—in
K&F, i.e. model (a) is more powerful than model (b).

Now when model (b) underlies the disease susceptibility and G and E are independent,
omitting the environmental factor leads to a downward bias in estimating effect sizes of the
genetic factor, i.e., |β̂1| < |β ̂′1| [Gail et al., 1984; Neuhaus and Jewell, 1993]. Noting that Var
(β̂1) < Var (β̂′1), it is of interest to investigate which model, (a) or (b), is more powerful in
testing the null hypothesis of no genetic effect. It has been shown that the asymptotic
relative efficiency (ARE) of the two hypothesis tests meets the inequality ARE (β̂′1 to β̂1 at
β1 = 0) ≥ 1 [Robinson and Jewell, 1991; Neuhaus, 1998]. Therefore, in testing the null
hypothesis of no genetic effect, omitting disease risk/preventive factors that are independent
of genetic factors always leads to efficiency loss, which explains the results of model 2—
genetic and environmental marginal effects only—in K&F, i.e. model (b) is more powerful
than model (a). Note that K&F did not clearly state which model was more powerful, though
their figures showed it was model (b), which we confirmed by mimicking their simulation
study as presented below. Furthermore, the magnitude of the loss increases with the strength
of the association between the omitted covariate and the disease [Neuhaus, 1998].

We first simulated case-control data with a single-locus disease model and a covariate using
the method by K&F. For simplicity, we only simulated an additive genetic model with the
penetrance functions summarized in Table I, in which models 1, 2a, 3a, and 3b are identical
to the models 1, 2, 3, and 4, respectively, in Supplemental Table 1 of K&F. Model 1
contains a genetic effect only. Models 2a–2c have genetic and environmental marginal
effects only. From models 2a to 2c, the effect size of the environmental factor increases.
Models 3a and 3b include both marginal and interaction effects of genetic and
environmental factors. From models 3a to 3b, the interaction effect size decreases. In all the
models, we set the minor allele frequency equal to 0.3, probability of exposure equal to 0.5,
and the genetic and environmental factors are independent in the general population. Under
each model, we simulated 10,000 replicates with 300 cases and 300 controls in each data set.
We analyzed each data set by both the models (a) and (b), and compared the coefficient
estimates, their standard errors, and power to detect the genetic effect (Table II). As
predicted by ARP (β̂′1 to β̂1) ≤ 1 in logistic regression models, the standard error of β̂1 was
smaller than that of β̂′1 in all the six genetic models. For model 1, although there was no
statistical difference between the estimates β̂′1 and β̂1, the analysis model (b) was slightly
less powerful than model (a) owing to a decreased precision of β̂′1 compared with β̂1. For
models 2a–2c, both the magnitude and standard error of β̂1 were smaller than those of β̂′1,
and the power of model (b) was greater than that of model (a) in testing for the genetic
effect; all the differences became more significant as the environmental effects increased
from models 2a to 2c. There has been no theoretical study investigating the estimation bias
and efficiency with omitted covariates and interaction terms when the underlying true model
includes both marginal and interaction effects, and we speculate the results depend on the
relative magnitude and direction of both effects. In models 3a and 3b, the marginal and
interaction effects were in the same direction, and the magnitude of β̂1 was greater than that
of β̂′1. An intuitive explanation is that a larger proportion of the interaction effect is
absorbed into the estimated marginal effect β̂1 than into β̂′1 resulting in β̂1 > β̂′1. The greater
coefficient estimate, together with a smaller standard error, led to the greater power of
model (a) than model (b) in testing the genetic effect.

We then carried out simulations under the logistic regression model to examine the
magnitude of power loss due to omitting predictive covariates that are independent of the
genetic effect. Assuming the true disease model was (b), in which α′ was chosen such that
the disease prevalence equaled to 0.15, and β′1 was chosen such that the odds ratio (OR) of
per copy of disease-disposing allele equaled to 1.2, we simulated a diallelic marker with the
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minor allele frequency equal to 0.3, and a binary covariate independent of the genetic
variant with the OR ε{1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0} and the exposure frequency ε{0.2,0.5}.
The parameter settings mimicked those of a typical complex trait suggested by results of
genome-wide association studies. Under each scenario 10,000 replicates with 1,000 cases
and 1,000 controls in each data set were simulated. We analyzed each data set by both
models (a) and (b), and compared their power to detect the genetic effect (Table III).
Omitting the covariate always led to power loss, and the magnitude of the loss increased
with the effect size of the covariate. When the OR was less than 3.0, the power loss was
trivial; however, the loss can be substantial when the OR increased to 5.0. For example, if
there were disparity of disease prevalence between males and females, omitting the
covariate sex would result in considerable power loss.

A conventional wisdom in classic linear regression is that adjusting for covariates associated
with the response variable can improve the precision of estimates by reducing the residual
variance [Fisher, 1932]; however, covariate adjustment in logistic regression models always
leads to a loss of precision. Nonetheless, this loss of precision does not always result in a
loss of power. When the genetic and risk/preventive environmental factors are independent
and do not have interaction effects on the disease, it is always more efficient to adjust for the
predictive covariates. Note that this conclusion holds not only in logistic regression models
but also in the class of generalized linear models [Neuhaus, 1998]. A person's genetic
background is determined from birth, thus in most cases it is not unreasonable to assume it is
independent of his/her subsequent environmental exposure, which has been a key
assumption in some study designs to investigate gene-environmental interaction [Piegorsch
et al., 1994; Chatterjee and Carroll, 2005]. If we assume that only a small proportion of
genetic variants interact with the known environmental factors on disease susceptibility,
then, contrary to the conclusion by K&F, we recommend adjusting for predictive covariates
at the genome-scanning stage.
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TABLE III
Impact of omitting a predictive covariate on the power to detect the genetic effect by
logistic regression modelsa

Odds ratio

Exposure frequency

0.2 0.5

1.5 0.0005 0.0007

2.0 0.0028 0.0072

2.5 0.0084 0.0083

3.0 0.0155 0.0146

3.5 0.0189 0.0206

4.0 0.0215 0.0282

4.5 0.0332 0.0381

5.0 0.0419 0.0476

a
The empirical power of model (b): logit P(D = 1∣G, E) = α′ + β′1G + β′2E minus that of model (a): logit P(D = 1∣G) = α+β1G at the significance

level of 0.05 is reported. The results are based on 10,000 replicates of 1,000 cases and 1,000 controls. The disease prevalence equals 0.15, the
frequency of the disease-disposing allele equals 0.3, and its odds ratio equals 1.2.
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