
The Use and Implications of the Harmonic Mean Model on
Mixtures for Basic Research and Drug Discovery

Radleigh G. Santos†, Marc A. Giulianotti†, Colette T. Dooley†, Clemencia Pinilla‡, Jon R.
Appel‡, and Richard A. Houghten†

† Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL
‡ Torrey Pines Institute for Molecular Studies, San Diego, CA

Abstract
The use of the harmonic mean model for predicting the activities of a given mixture and its
constituents has not previously been explored in the context of combinatorial libraries and drug
discovery. Herein, the analyses of historical data confirm the harmonic mean as an accurate
predictor of mixture activity. The implications of these results are discussed.

Introduction
The use of mixtures is not a new concept in drug discovery; for example, approximately a
1,000 extracts derived from plants and used for the treatment of ailments are written about
on tablets dating back to 2600 BC1. In modern drug discovery efforts mixtures are still being
assessed in order to identify active compounds. These mixture samples include natural
product extracts as well as systematically arranged mixtures of many compounds (such as
mixture-based libraries2–3) and mixtures of few compounds such as cassette dosing and
pooling4–6. In all these methods there is the need to distinguish the activity of one mixture
sample from another. The activity of a mixture is of course driven by the individual
components comprising the mixture. To this extent it is critical to understand how the
individual components of a mixture contribute to the overall activity of the mixture sample.
The predictive capabilities of averaging models on such mixtures are examined here using
36 case studies from eight different publications.

Methods
The use of the harmonic mean as a method of modeling the activity of a mixture, given the
activity of that mixture’s constituents, is not new7–11. As first described by Finney7, the use
of the harmonic mean as an averaging method is most mathematically suitable to model
conditions based on the assumption of simple independent action. In fact, previous
studies10–11 have used the harmonic mean as a metric for determining the extent to which
simple independent action is present in a mixture. Its usefulness when applied to modeling
the behavior of mixture-based combinatorial libraries associated specifically with drug
discovery, however, is worthy of study. In particular, the effect of the mathematical
properties of the harmonic mean on the efficacy of the use of mixture-based combinatorial
libraries in drug discovery merits explicit exploration. This study therefore begins with a
comparison of how the harmonic mean differs from other classical averaging methods, and
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these methods’ relative accuracies when applied to biological data where the assumption of
simple independent action is appropriate.

The classical methods of averaging compared herein are the arithmetic mean, the geometric
mean, and the harmonic mean. The arithmetic mean is defined by the equation:

where fi is the proportion of the ith mixture constituent with dosing point Xi. N is the total
number of mixture constituents; if constituents are present in equal numbers, then fi = 1/N
for all i. Similarly, the geometric mean is given by:

and the harmonic mean by:

Arithmetic meaning has been applied to simulated combinatorial libraries12. The geometric
mean was calculated as an additional point of comparison, since it represents the use of the
arithmetic mean on, for example, log10(IC50) values. In this study, because of the synthetic
methods used to prepare the mixtures13–14, we assume that mixture constituents are present
in equal proportions.

To demonstrate the relative effectiveness of the three above addition models, we use
historical data which utilized the iterative process of deconvolution of mixture based
libraries13–20 reported by our laboratories and other groups. These data are ideal to compare
the performances of each averaging method as a model for the activity of mixtures, because
both the IC50 value of each of the mixtures and all of the constituent submixtures (or
individual compounds) in most cases were determined and have been reported. In total, 36
different mixtures, each consisting of 4 to 20 constituents, were analyzed. The number of
compounds in the constituents of the mixtures studied ranged from 20 to 8,000. In most
cases, the measured IC50 value was reported and was used for this analysis. For those
constituents whose IC50 is large and is only published as a lower bound, we use this lower
bound as that constituent’s IC50 if it is greater than the best IC50 of the previous iterative
step. For example, in Houghten et. al.13 the mixture Ac-DVPAXX-NH2 is reported as
having an IC50 value “>1,400 μM,” and Ac-DVPXXX-NH2 has a reported IC50 value of 41
μM, which is less than 1,400 μM, so the mixture Ac-DVPAXX-NH2 was assigned a value of
1,400 μM. In contrast, in Davis et. al.19 (egCB)(dG)XXT has a reported IC50 of “>10 μM”
and (egCB)XXXT has a reported IC50 value of 40 μM, which is greater than 10. Data such
as this is discarded since no averaging method could return an accurate result; if the
constituents were assigned values which made them all more active than the mixture itself,
the average would necessarily have to be as well. For those constituents whose IC50 was too
large to have any published data, we assign to them the IC50 of the least active measured
compound. For example, in Dooley et. al.14 the IC50 value of Ac-rfgxxx-NH2 is reported as
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“ND” since it was inactive at the highest dose tested. It is thus assigned a value of 69,000
nM, that of the least active measured constituent.

Results
For each mixture, the constituents of that mixture were added using each of the three
addition models, and the results were compared to actual experimentally obtained mixture
value. An example of these data, along with the outputs of each of the three addition models,
is provided in Table 1. A summary of the results from all sources is presented in Table 2.
The data in its entirety is in Table S1a–h in the supplementary section. Data points which
were altered to have assigned values (as described above) are shown in italics.

Because the data is taken across mixtures with varying complexities and activities, the
numerical scale for each data point varies widely. If the error in a model-predicted value
were simply the difference between the prediction and the experimental value, they would
not be numerically comparable. Therefore, the error was scaled by the experimental value,
so that

Thus, the scaled error is as a fraction of the experimental value. The scaled error for each
prediction is also included in Table 1 and 2. The average scaled error for the arithmetic
mean model is 101.10, the average scaled error for the geometric mean model is 42.82, and
the average error for the harmonic mean model is 0.62. Thus the harmonic mean was the
only addition model that consistently was capable of capturing to within an order of
magnitude the IC50 value of the resultant mixture given the IC50 value of that mixture’s
constituents. The maximum harmonic mean scaled error was only 3.82, as compared to
maximum scaled errors of 970.81 for the geometric mean and 2104.59 for the arithmetic
mean. The harmonic mean has lower scaled errors than both other methods for all but five of
the analyzed mixtures; in those five cases, the scaled error is below 0.60 for the harmonic
mean as well, meaning both other methods gave reasonably good approximations.

To compare the ability of each of the three averaging models to predict the experimental
mixture IC50 value, a least-squares linear regression was performed. Least-squares linear
regression allows each model to be evaluated as a whole, rather than looking at individual
predictions. Because of the large difference in scale amongst the data points, the regression
was performed on the logarithms of the IC50 values. The functional form of the fit curves
was therefore

Clearly, for a perfect model log(Experimental IC50) = log(Model IC50), and so a measure of
how well the addition model is predicting the mixture IC50 is how close a1 is to one and a0 is
to zero. Additionally, each fit also includes an R2 value. The R2 value is a measure of the
goodness-of-fit, and represents the percentage of variance in the data that is explained by the
model. For the arithmetic mean model, a1 = 0.7490, a0 = −0.2278, and R2 = 0.8466. For the
geometric mean model, a1 = 0.7888, a0 = −0.1549, and R2 = 0.8699. For the harmonic mean
model, a1 = 0.9777, a0 = −0.0390, and R2 = 0.9795. Plots of each of the addition model’s
predictions against the experimental values, along with the least-squares linear regression
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best fit line, are in Figure 1. The harmonic mean model both provides a better fit to the data
given its superior R2 value, and also provides a slope and intercept very close to ideal.

The Implications of a Harmonic Mean Model
The above analyses strongly suggest that the theory7, 9–10 which predicts the harmonic mean
as the averaging methodology for mixtures under the assumption of simple independent
action is valid in the data analyzed above. It should be noted that in the data surveyed above
the complexity of both the parent mixture and its constituents varies drastically from case to
case. See Table 3: this variation does not affect the accuracy of the harmonic mean, which
yielded significantly more accurate results than the other two standard averaging
methodologies studied. In most cases the harmonic mean predicted the experimental results
with high precision. This fact strongly suggests that the harmonic mean is an appropriate
way of modeling the behavior of many of the mixture-based combinatorial libraries used in
basic research and drug discovery12–21. The ability to predict the outcomes of combinatorial
mixture-based experiments is useful for a variety of practical dosing and experimental
design applications, such as deviation from the harmonic mean as a metric for determining
the existence of synergy or antagonism10–11. In the context of positional scanning, where
each position is a different arrangement of the same constituents, the harmonic mean of the
IC50 values at each position ought to equal one another. For example, Dooley and
Houghten[21] presents positional scanning data for six positions, which has been reproduced
in Table S2. Each position consists of eighteen mixtures, each of which contains 1,889,568
individual compounds. The harmonic means of the IC50s of these mixtures at each position
are 340, 271, 168, 248, 263, and 211. Thus it can be seen that the maximal scaled error in
this set is only 1.02, and that most pair-wise comparisons have significantly smaller scaled
errors.

In addition to the above, the mathematical properties of the various averaging methods can
help validate the usage of combinatorial mixture libraries in basic research and drug
discovery and explain the impressive successes the process has already achieved2–6, 13–21.
The harmonic mean model differs from the other models primarily in its treatment of
extreme numerical ranges within the data. Here the range of the data is defined to be the
ratio of the highest constituent IC50 value to the lowest. A log-log plot of this value versus
the scaled error for each of the three addition models is shown in Figure 2. This plot shows
how the harmonic mean is able to outperform the other addition models: while at low ranges
(with a ratio of most to least active less than 100) all three methods perform similarly, the
scaled error of the arithmetic and geometric models rises steadily as the range increases,
while the harmonic mean maintains a similar level of scaled error throughout. In particular,
the harmonic mean is more influenced by active compounds having smaller IC50 values than
the other addition methods; that the experimental data is well-predicted by the harmonic
mean indicates that the experimental behavior of mixture based combinatorial libraries
behaves similarly, with active compounds driving the activity rather than inactive
compounds diluting it.

To further elucidate this point, we consider the hypothetical situation in which we define an
active compound to have a fixed IC50 value of α and an inactive compound to have a fixed
IC50 value of β. Then the IC50 of a mixture containing Nα active compounds and Nβ inactive
compounds is given by
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for the arithmetic mean model,

for the geometric mean model, and

for the harmonic mean model. From these equations, one can evaluate the ability to detect
active compounds in a mixture governed by the harmonic mean model, and compare it to the
abilities of the arithmetic and geometric mean models.

For example, if a single highly active compound with an IC50 of 10 nM (α=10 and Nα=1)
were in a mixture with a number of inactive compounds with IC50s of 10,000 nM
(β=10,000), the aforementioned equations would yield a predicted value for the IC50 of the
resultant mixture. Figure 3 is a plot of the number of inactive compounds versus the
resulting activity of the mixture, given each of the averaging models. As is clear from the
graph, the IC50 of the resultant mixture increases much more slowly for the harmonic mean
than for the other two methodologies; therefore, mixtures that are modeled by harmonic
mean averaging are projected to be significantly more active than if the arithmetic or
geometric mean were used. A mixture comprised solely of poorly active compounds (all
having an IC50 of 10,000nM) would have an IC50 of 10,000 nM in this scenario, so in order
for the active compound to be detected the resulting mixture must have an IC50 value small
enough to distinguish itself from the 10,000 nM mixture inclusive of experimental error. For
example, if the experimental error is approximately 20%, then in order to ensure the mixture
containing the active compound is more active than the 10,000 nM mixture when tested, it
must have a true IC50 value of 6,600 nM or below. The arithmetic mean model would
predict that only three 10,000 nM compounds would be needed to make the mixture with the
10 nM compound have an IC50 greater than 6,600 nM. Similarly, the geometric mean model
would predict that only seventeen 10,000 nM compounds would be needed. In contrast, the
harmonic mean model indicates that 1,939 compounds, each having an activity of 10,000
nM, would be needed. Since these numbers are independent of scale, these results may be
restated: Under the arithmetic mean model, a mixture containing less than 25.0% active
compounds would not be detected. Under the geometric mean model, a mixture containing
less than 5.5% active compounds would not be detected. But under the harmonic mean
model, a mixture containing 0.052% of active compounds would still be detectable. It
should be noted that this observation can be applied to mixtures in which the constituents
comprising the mixture are not present in the same concentration as in the case of natural
product extracts. In other words as long as 0.052% of the total composition of the mixture
contains an “active component” that mixture will be distinguishable from a totally inactive
mixture sample.

It is also possible to use the above arguments in a reversed fashion. If we continue with the
above example in which an inactive compound has an IC50 of 10,000 nM, and we assume
the validity of the harmonic mean, then given a mixture activity it is possible to
mathematically derive a range of activity percentages associated with different activity
levels of individual compounds. Such relationships are plotted in Figure 4 for differing
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mixture activity values. A mixture with an IC50 of 1000 nM, for example, may contain 1%
of individual compounds with IC50s of 10 nM, or 0.1% of individual compounds with IC50s
of 1 nM. The maximal IC50 in order to guarantee detectability in this example is again 6600
nM, and so we can see such a mixture may contain 0.5% of individual compounds with
IC50s of 100 nM, 0.05% of individual compounds with IC50s of 10 nM, or 0.005% of
individual compounds with IC50s of 1 nM. Conversely, a mixture that is indistinguishable
from inactive because its IC50 exceeds 6600 nM cannot even contain 0.5% of individual
compounds with IC50 values of 100 nM, justifying the exclusion of such a mixture in further
testing.

Discussion
The analyses presented here have significant implications on how mixtures can be used in
drug discovery and, in part, explains the previous successes of research efforts where
mixtures have been used, such as natural product extracts and systematically arranged
mixtures2–3, 13–23. The active compounds isolated in various natural product studies24–27 are
often a very small percentage of the original material, and yet are still detectable. A clear
distinction in the activity of mixtures containing highly active compounds and those that do
not has been observed even in cases where the mixtures contained thousands of separate
components. In the past, one of the reasons for this distinction has been posited as an
abundance of similarly active compounds in a given mixture28. While this can a valid
statement in systematically arranged mixtures, it is surely not necessarily true in natural
products, and to a large degree the reason for this distinction can rather be attributed to the
harmonic meaning of the individual components. Indeed, the reactions occurring in living
organisms mirror qualitatively this behavior, with only trace amounts of specific substances
playing vital biological roles29.

There are several additional applications of the harmonic mean currently being explored for
future studies. As discussed above, in synthetic libraries arrayed in positional scanning
format, the harmonic mean of the IC50 values at each position ought to equal one another;
therefore, the integrity of the synthesis of a positional scanning library may be determined
by comparing the harmonic means at each position and looking for significant deviation. A
similar usage for the harmonic mean may be applied to pooling strategies. Algorithms could
be developed for determining how to pool compounds in a given library in such a way as to
identify large deviations from predicted harmonic means. Such deviations may indicate
possible problems coming from pipetting errors or aggregation, and so these samples could
be flagged for retesting. Finally, the harmonic mean could be used to determine if multiple
compounds act in a simple competitive manner when tested in a given assay. If constituent
compounds of known concentration are mixed, a substantial deviation of this mixture’s
activity from the expected harmonic mean could provide insights into possible synergy,
antagonism, or multiple paths of action.

Although in this report the analysis was restricted to biological assays where a simple
independent action is assumed, theory7, 9–10 suggests that, qualitatively, the harmonic
mean’s tendency to weight active compounds heavily is more widely applicable. The
implications of other mathematical models, such as those for situations which are synergistic
or anti-synergistic in nature, on the behavior of mixture-based combinatorial libraries
associated with basic research and drug discovery are also currently being explored.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Table 1

An example of data used in this study.14

Mixture IC50 nM

Ac-rfwinx-NH2 110

Constituent Compounds IC50 nM

Ac-rfwink-NH2 18

Ac-rfwinr-NH2 27

Ac-rfwina-NH2 37

Ac-rfwins-NH2 130

Ac-rfwinp-NH2 130

Ac-rfwinn-NH2 130

Ac-rfwinq-NH2 140

Ac-rfwing-NH2 170

Ac-rfwinm-NH2 180

Ac-rfwinh-NH2 200

Ac-rfwint-NH2 230

Ac-rfwihy-NH2 460

Ac-rfwinl-NH2 680

Ac-rfwinc-NH2 720

Ac-rfwinf-NH2 770

Ac-rfwinw-NH2 790

Ac-rfwine-NH2 960

Ac-rfwind-NH2 1,100

Ac-rfwinv-NH2 1,300

Ac-rfwini-NH2 5,600

Predicted Value Scale Error

Arithmetic Mean 689 5.26

Geometric Mean 279 1.54

Harmonic Mean 110 0.00
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