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Abstract The liver plays a central role in whole-body

lipid metabolism by governing the synthesis, oxidization,

transport and excretion of lipids. The unfolded protein

response (UPR) was identified as a signal transduction

system that is activated by ER stress. Recent studies

revealed a critical role of the UPR in hepatic lipid

metabolism. The IRE1/XBP1 branch of the UPR is acti-

vated by high dietary carbohydrates and controls the

expression of genes involved in fatty acid and cholesterol

biosynthesis. PERK mediated eIF2a phosphorylation is

also required for the expression of lipogenic genes and

the development of hepatic steatosis, likely by activating

C/EBP and PPARc transcription factors. Further studies to

define the molecular pathways that lead to the activation of

the UPR by nutritional cues in the liver, and their contri-

bution to human metabolic disorders such as hepatic

steatosis, atherosclerosis and type 2 diabetes that are

associated with dysregulation of lipid homeostasis, are

warranted.
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Introduction

In mammals, the liver plays a crucial role in the control of

whole body energy homeostasis. Carbohydrates in the diet

are partly consumed for normal bodily functions and

metabolized to glycogen or fatty acids in the liver, if in

excess [1]. Fatty acids are esterified to triacylglyceride

(TG) and then transported to adipose tissue for long-term

energy storage. Conversion of carbohydrates to TG

involves two steps; glycolysis which generates acetyl CoA

from glucose, and lipogenesis which converts acetyl CoA

to fatty acids (Fig. 1). Enzymes involved in glycolytic and

lipogenic pathways are dynamically regulated at both

transcriptional and post-translational levels by various

factors such as substrate concentrations and hormones.

Pancreatic hormones, insulin and glucagon, play critical

roles in the transcriptional regulation of these enzymes. For

example, insulin activates the sterol regulatory element

binding protein-1c (SREBP-1c) transcription factor which

governs the expression of lipogenic genes including fatty

acid synthase (FASN) (reviewed in [2, 3]). During fasting,

glucagon activates the protein kinase A (PKA), which

phosphorylates carbohydrate response element-binding

protein (ChREBP), preventing its translocation to the

nucleus and the subsequent activation of its target genes

involved in glycolysis and lipogenesis (reviewed in [4, 5]).

The unfolded protein response (UPR) is a signaling

system emanating from the endoplasmic reticulum (ER)

that is activated when ER protein folding is disturbed

[6, 7]. In normal animal physiology, the UPR is critically

required for the development and/or secretory function of

highly secretory cells in exocrine and endocrine glands.

Recent studies revealed novel diverse functions of the

mammalian UPR including its role in hepatic lipid

metabolism [8–11]. The UPR plays essential roles in
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hepatic lipogenesis by controlling the expression of genes

in the lipogenic pathway. UPR activation has been

observed in fatty liver diseases, suggesting the induction of

ER stress in these pathological conditions (reviewed in

[12]). This review summarizes the physiological functions

of the UPR, focusing on studies analyzing the phenotype of

mice mutant in each of the critical UPR regulatory genes. It

also addresses recent findings regarding the role of the

UPR in hepatic lipogenesis and fatty liver diseases

(Table 1).

Transcriptional regulation of hepatic lipogenesis

Ingestion of dietary carbohydrates not only increases the

plasma glucose concentration but also promotes the secre-

tion of insulin from pancreatic b cells. These metabolic and

hormonal cues activate glycolysis and de novo lipid syn-

thesis in the liver to convert glucose into TG [13], which is

carried to adipose tissue in very low-density lipoprotein

(VLDL) particles [14]. Several key enzymes catalyzing

glycolysis and de novo lipid synthesis such as glucokinase

(GK), liver-pyruvate kinase (LPK), acetyl CoA carboxylase

(ACC), FAS, and stearyl CoA desaturase-1 (SCD1) are

transcriptionally activated in the liver upon ingestion of

high carbohydrates [13, 15, 16]. Transcription factors

SREBP-1c and ChREBP have been considered as major

players in the transcriptional regulation of these glycolytic

and lipogenic genes (Fig. 2) [2, 5, 15].

SREBP-1c

SREBP-1c is activated by insulin and plays a major role in

the induction of lipogenic genes by insulin [16, 17].

SREBP-1c is a member of a transcription factor family that

was originally identified as a mediator of sterol signaling

[18]. The SREBP family comprises SREBP-1a, SREBP-1c

and SREBP-2 that are encoded by two separate genes [2,

19]. Utilization of alternate promoters in a single gene gives

rise to SREBP-1a and SREBP-1c, which are identical in

most domains except for the N-terminal region which is

derived from an alternate exon 1 [20]. Studies in transgenic

and knock-out mice revealed the function of SREBP-1c and

SREBP-2 to primarily control the expression of fatty acid

and cholesterol biosynthetic enzymes, respectively [2, 15,

16]. SREBPs are produced as precursor proteins containing

two transmembrane domains, which anchor the protein in

the ER complexed with the SREBP cleavage activating

protein (SCAP) and ER retention protein called Insig [21].

Low sterol triggers a conformational change of the sterol

sensitive SCAP protein that dissociates the SCAP–SREBP

complex from Insig [22]. The SCAP–SREBP complex

migrates to the Golgi apparatus, where SREBPs are

sequentially cleaved by site 1 (S1P) and site 2 (S2P) pro-

teases to liberate the mature proteins that translocate to the

nucleus and act as active transcription factors [23]. While

SREBP-2 is primarily controlled at the post-translational

level by sterols which regulates its ER-Golgi trafficking,

SREBP-1c is controlled at the transcriptional level by

insulin [21]. Hepatic SREBP-1c mRNA is downregulated in

fasted animals, and dramatically induced upon high car-

bohydrate ingestion by the action of insulin [20, 24]. The

PI(3)-kinase signaling pathway plays an important role in

SREBP-1c expression induced by insulin [25, 26]. Liver X

receptor (LXR) can also induce SREBP-1c mRNA [27, 28].

Induction of lipogenic genes by a synthetic LXR agonist

was blunted in SREBP-1c deficient mice, suggesting that

SREBP1-c is essential for the lipogenic activity of LXR

[17]. Overexpression of SREBP-1c in the liver by using

transgenic mice or adenoviral gene delivery dramatically

induced lipogenic genes accompanied by increased hepatic

TG content [29–31]. In contrast, mice lacking SREBP-1c

in the liver displayed reduced plasma TG levels, and

decreased expression of multiple lipogenic genes upon

refeeding [17]. It is of interest to note that SREBP-1c

deletion only partially suppressed the expression of several

key lipogenic genes, such as glucokinase, Fas, and Acc,

suggesting the presence of compensatory mechanisms [17].

ChREBP

ChREBP was identified as a transcription factor that binds

to a carbohydrate response element (ChRE) in the LPK

Fig. 1 Biochemical pathways leading to the synthesis of TAG and

cholesterol. Glycolytic pathway generates Acetyl CoA from glucose

imported into the cell through GLUT2. TAG and cholesterol are

synthesized from Acetyl CoA by sequential enzymatic actions.

GLUT2 Glucose transporter 2, GK glucokinase, L-PK liver pyruvate

kinase, PEP phosphoenolpyruvate, ACC acetyl-CoA carboxylase,

FASN fatty acid synthase, SCD stearoyl-CoA desaturase, GPAT
glycerol-3-phosphate acyltransferase, DGAT diacylglycerol acyltrans-

ferase, HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A, HMGCS
HMG-CoA synthase, HMGCR HMG-CoA reductase
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gene promoter [32]. ChRE is a motif present within several

gene promoters responsive to high glucose [13]. As a bZIP

transcription factor, ChREBP forms a heterodimeric com-

plex with another bZIP protein Max-like protein X (MLX),

and directly binds to ChRE [33]. It was originally proposed

that PKA phosphorylates ChREBP under low glucose

conditions, preventing its translocation into the nucleus

[34]. However, it is controversial if nuclear translocation is

sufficient for the activation of ChREBP [35, 36]. Recently,

Towle and colleagues demonstrated that the derepression

of the transcriptional activity conferred by the N-terminal

domain of ChREBP is critical for the activation of

ChREBP [37]. ChREBP knock-out mice displayed reduced

fat mass, low plasma free fatty acid (FFA), hyperglycemia,

high liver glycogen and normal hepatic and plasma TG

levels on chow diet [38]. When fed high starch diet, these

mice displayed more profound phenotypes, including sig-

nificant reduction in hepatic TG level, associated with

decreased mRNA levels of select lipogenic genes. Fatty

acid synthesis rate was reduced by *65%, indicating the

essential role of ChREBP in hepatic lipogenesis [38].

ChREBP knock-out mice exhibited moderate insulin

resistance, presumably due to an efficient disposal of glu-

cose [38]. In contrast, downregulation of ChREBP in the

liver by using shRNA delivery improved the insulin sen-

sitivity of ob/ob mice [39]. It is conceivable that ChREBP

knockdown lowered lipotoxicity by suppressing hepatic

lipogenesis.

Unfolded protein response

The ER is a continuous membrane network in the cell that

has multiple important functions. First, the ER plays a

crucial role in the protein secretory pathway [40–42]. All

the nascent polypeptides destined to be secreted are

imported into the ER lumen to attain proper three-dimen-

sional protein structures and various post-translational

Table 1 Physiological functions of the UPR: Lessons from genetic alterations of essential UPR genes in humans and mice

UPR branch Gene Alteration Phenotype Reference

IRE1/XBP1 Ern1 (IRE1a) Germline deletion Embryonic lethal (E10.5) [181]

Ern1-/- Rag2 chimera Impaired early B cell development [181]

Conditional deletion in liver Altered gene expression upon

tunicamycin challenge

[11]

Ern2 (IRE1b) Germline deletion Increased susceptibility to DSS colitis [182]

Germline deletion Hyperlipidemia on high cholesterol/fat diet [11]

Xbp1 Germline deletion Embryonic lethal (E14.5), liver hypoplasia [87]

Xbp1-/- Rag2 chimera Absent plasma B cell differentiation [85]

Xbp1-/- Rag2 chimera Impaired dendritic cell differentiation [88]

Germline deletion,

transgene rescued

Exocrine pancreas malfunction [84]

Conditional deletion in GI tract Inflammatory bowel diseases, Paneth cell loss [83]

Conditional deletion in liver Hypolipidemia, decreased hepatic lipogenesis [8]

ATF6 Atf6 (ATF6a) Germline deletion Increased liver toxicity by tunicamycin [10]

Atf6, Atf6b Germline deletion of ATF6a and b Embryonic lethal [81]

PERK/eIF2a Eif2k3 (PERK) R587Q mutation in human PERK gene Wolcott-Rallison syndrome, diabetes,

skeletal dysplasias

[107]

Germline or conditional deletion Diabetes, skeletal dysplasias, exocrine

pancreas insufficiency

[110–113]

Conditional deletion in b cells Diabetes, impaired embryonic pancreatic

b cell differentiation

[114]

Conditional deletion in

mammary gland

Mammary gland lipogenesis defect [136]

Eif2a (eIF2a) Homozygous S51A Perinatal lethality due to defective

gluconeogenesis

[129]

Heterozygous S51A Insulin resistance, defective insulin production

on high fat diet

[130]

Homozygous S51A in liver,

transgene rescued

Altered gene expression upon

tunicamycin challenge

[11]

Atf4 Germline deletion Fetal anemia, impaired eye lens fiber

formation and osteoblast differentiation

[70, 183, 184]
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modifications, such as disulfide bond formation and gly-

cosylation, and then sorted for transport to the destined

locations. ER resident chaperones, protein disulfide

isomerases (PDIs), and various protein modifying enzymes

are involved in this process. The ER also serves as a pro-

tein quality control check-point, so that misfolded proteins

are screened out for retrotranslocation to the cytoplasm

followed by proteasomal degradation [43, 44]. Second, the

synthesis of neutral and phospholipids occurs in the ER

[45–47]. The lipid bilayer expands in the ER and then is

mobilized to the membranous organelles as needed. Third,

the ER plays a crucial role in drug metabolism with major

drug metabolizing enzymes including cytochrome P450

present in the ER [48]. Fourth, the ER is the major storage

depot for calcium which is released upon appropriate

stimulation to serve as signaling molecules [49].

ER stress can be defined as a condition that compromises

the capacity of the ER to handle its client proteins [6, 7, 50].

Increased input of the client proteins into the ER during the

development of highly secretory cells can induce ER stress.

ER stress can also be induced by treatment of cells with

pharmacological reagents that inhibit protein folding in the

ER. These include protein glycosylation inhibitors (i.e.,

tunicamycin), reducing agents (i.e., dithiothreitol) that

interfere with protein disulfide bond formation, and calcium

channel blockers (thapsigargin) that deplete ER calcium

stores. In response to ER stress, eukaryotic cells activate a

signaling cascade called the UPR to protect the cell from

stress. Mutation of genes in the UPR signaling cascade

frequently results in the increased susceptibility of the cell

to ER stress-induced cell death.

In yeast, the UPR is initiated by the ER stress sensor

IRE1 and executed by the transcription factor HAC1 [51–

54]. IRE1 is a type I transmembrane protein, which senses

ER stress through its luminal domain [55, 56]. The cyto-

solic domain of IRE1 possesses dual enzymatic activities

of a protein kinase and an endoribonuclease [51, 57–60].

Activated by trans-autophosphorylation, IRE1 specifically

cleaves two sites in HAC1 mRNA, which is re-ligated by

t-RNA ligase [57, 60, 61]. This unconventional splicing

event generates HAC1p protein that activates a variety of

genes involved in protein secretory pathways, including

ER-resident chaperones and enzymes in phospholipid

biosynthesis pathways, as well as those engaged in

ER-associated protein degradation (ERAD) [62]. IRE1 or

HAC1 mutant yeasts grow normally under standard con-

ditions, but display increased sensitivity to ER stress

inducing compounds, such as tunicamycin [53, 63].

Mammals have an IRE1/XBP1 UPR signaling system

analogous to yeast IRE1/HAC1 (Fig. 3). IRE1-mediated

Fig. 2 Transcriptional control of hepatic lipogenesis. SREBP-2 is

activated when cellular sterol levels are low, and controls the

expression of genes involved in sterol biosynthesis. SREBP-1c and

ChREBP are activated by insulin and glucose, respectively. Ingestion

of carbohydrates increases circulating glucose and insulin levels, by

inducing insulin production from pancreatic b cells. SREBP-1c and

ChREBP bind to specific promoter elements to activate the

transcription of genes in glycolytic and lipogenic pathways. XBP1

is required for the de novo synthesis of sterols and fatty acids in the

liver and is activated in the presence of high glucose. The mechanism

by which XBP1 controls sterol and fatty acid synthesis genes remains

to be further investigated

Fig. 3 Overview of mammalian UPR signaling pathways. IRE1,

PERK, and ATF6 are proximal ER stress sensors. IRE1, activated by

autophosphorylation, removes 26 nucleotides from the XBP1 mRNA
by using its cytosolic endoribonuclease activity. Spliced XBP1s
protein is a potent transcription factor that induces diverse target

genes. eIF2a phosphorylation by PERK impedes overall protein

synthesis, while activating translation of some transcription factors.

ATF4 plays a major role in PERK-dependent UPR target gene

expression. ATF6 is a member of the family of ER transmembrane

transcription factors, and normally resides in the ER associated with

the ER chaperone BiP. Upon ER stress, ATF6 moves to the Golgi

apparatus where site 1 (S1P) and site 2 proteases (S2P) sequentially

cleave ATF6 to release the N-terminal part of the protein that

translocates to the nucleus to activate its target genes
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splicing removes 26 nucleotides in the XBP1 mRNA

starting from the 184th codon, resulting in a shift of the

translational reading frame [64–66]. XBP1s mRNA

encodes a bZIP transcription factor that binds to the CRE-

like promoter element to activate a group of UPR target

genes [67–69]. While the yeast UPR is controlled solely by

HAC1, XBP1 is responsible for the induction of only a

subset of UPR target genes, indicating the presence of

additional components [68, 70]. Indeed, mammals contain

at least two additional UPR branches that are controlled by

the PKR-like ER-localized eukaryotic initiation factor 2a
(eIF2a) kinase (PERK) and the ER transmembrane tran-

scription factor precursor ATF6 [71, 72]. Phosphorylation

of eIF2a by PERK suppresses translational initiation, low-

ering the input of client proteins into the ER, to mitigate ER

stress [73]. In contrast, translation of certain mRNAs (i.e.,

ATF4 and ATF5) that possess short open reading frames in

the 50 UTR region are facilitated by PERK-dependent eIF2a
phosphorylation under ER stress conditions [73, 74]. ATF4

plays a major role in the transcriptional control of PERK-

dependent UPR target genes [75]. The ATF6 transcription

factor family comprises two transmembrane bZIP tran-

scription factors, ATF6a and ATF6b, that reside in the ER

under basal conditions [72, 76–78]. ATF6a and ATF6b
display limited amino acid sequence homology only in the

bZIP and the ER transmembrane domains, suggesting that

they recognize similar cis-acting promoter elements, but

may differentially regulate their target genes [76, 79, 80].

Indeed, both ATF6a and ATF6b can bind to the CCAAT-

(N9)-CCACG sequences, called the ER stress response

element (ERSE) which mediates the transcriptional induc-

tion of many ER chaperone genes [67, 69, 81]. It is

noteworthy that ATF6 and XBP1 recognize similar DNA

target sequences and can form a hetero-dimer, suggesting

that they may have similar roles in the ER stress response

[67, 82]. ER stress triggers the migration of ATF6 from the

ER to the Golgi apparatus, where it is sequentially pro-

cessed by S1P and S2P proteases to release the N-terminal

cytosolic part of the protein, which then enters the nucleus

to transactivate gene transcription [77].

Physiological functions of the UPR

IRE1/XBP1

Microarray analyses of XBP1-deficient mouse embryonic

fibroblast (MEF) cells and primary B cells stimulated with

lipopolysaccharides identified a series of genes involved in

ER translocation, protein folding, secretory pathways, and

degradation of misfolded proteins as XBP1 target genes

[68, 70]. These XBP1 target genes are expressed at basal

levels under normal conditions and further induced in an

XBP1 dependent manner when cells are ER stressed or

differentiate into antibody secreting plasma cells. Consis-

tent with the relationship of its target genes to cellular

secretory function, XBP1 was found to be required for the

development and protein secretory function of secretory

cells [83–85]. XBP1 is highly expressed in exocrine glands

and osteoblasts in the skeletal system that produce large

amount of secretory proteins [86]. XBP1-deficient mice die

during embryonic development due to liver hypoplasia

accompanied by defective erythropoiesis [87]. It is not

known if embryonic liver development requires a robust

UPR or whether XBP1 may have another function in

embryonic liver unrelated to the UPR. XBP1 also con-

tributes to the development of dendritic cells [88].

Analysis of recombination activating gene 2 (RAG2)

chimeric mice possessing XBP1 deficient lymphoid cells

revealed that XBP1 is essential for the terminal differentia-

tion of mature B cells into antibody secreting plasma cells

[85]. Similarly, the lack of XBP1 severely impairs the

development of other highly secretory cells such as pan-

creatic acinar cells that secrete zymogens to the small

intestine, and intestinal Paneth cells that produce anti-

microbial peptides [83, 84]. Normal acinar cells contain

tightly packed multilayers of ER in the basal area and

zymogen granules at the apical side targeted to the lumen for

secretion. Extensive ER is required for the maturation and

transportation of zymogens. XBP1-deficient pancreatic

acinar cells are completely devoid of mature zymogen

granules. Their ER is minimally expanded and contains

electron dense particles which appear to be zymogen

aggregates that failed to mature into secretory granules [84].

Marked apoptosis of XBP1 deficient pancreatic acinar cells

was observed during the embryonic developmental stage

when cells dramatically increase zymogen production and

expand the ER. Increased expression of a proapoptotic ER

stress marker CHOP revealed heightened ER stress in

XBP1-deficient pancreatic acinar cells. XBP1 deficiency

exerts similar effects on Paneth cells, resulting in complete

absence of zymogen granules, impaired ER expansion and

apoptotic cell death associated with increased ER stress [83].

These data collectively suggest that XBP1 is required for the

biogenesis of cellular secretory machinery and its absence

results in apoptotic cell death due to increased ER stress.

XBP1 is absolutely required for only a subset of secretory

cells. Moderately secretory cells such as adult hepatocytes,

salivary gland acinar cells, pancreatic b cells are only

partially dependent on XBP1, suggesting that the require-

ment of XBP1 correlates with the secretory load of any given

cell [8, 84]. XBP1 is required not only for the development of

secretory cells, but also to maintain the integrity of the

secretory machinery [83]. Inducible deletion of XBP1 in

already differentiated Paneth cells or pancreatic acinar cells

causes the degeneration of the ER and malformation of the
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secretory granule, as seen in XBP1 germline deleted mice

[83] (Lee and Glimcher, unpublished data).

PERK/eIF2a

In response to various stress signals, mammalian cells

control mRNA translation by regulating translational ini-

tiation [89]. Phosphorylation of the translational initiation

component eIF2a is a central mechanism that regu-

lates mRNA translation. eIF2a can be phosphorylated

by different protein kinases, such as protein kinase

RNA-activated (PKR), general control nonderepressible-2

(GCN2), PERK, and heme-regulated inhibitor kinase

(HRI) under various stressful conditions [71, 89–94]. PKR

is activated by double-stranded RNA during viral infec-

tion, GCN2 by amino acid starvation, PERK by unfolded

proteins in the ER, and HRI by heme deficiency in ery-

throid cells. Phosphorylation of eIF2a at the Ser51 residue

inhibits the translation of most mRNAs, suppressing

global protein synthesis to mitigate cellular damage by

stress [6]. It is believed that PERK-induced eIF2a phos-

phorylation lowers the input of cargo proteins into the

ER, and thereby reduces ER stress. While global protein

translation is suppressed upon eIF2a phosphorylation, the

translation of select mRNAs is increased. Short open

reading frames in the 50 UPR of ATF4 mRNA allows

translational initiation from the correct start codon, when

eIF2a phosphorylation is increased [73]. ATF5 translation

is also induced through a similar mechanism [74]. ATF4

is the major transcription factor that executes UPR gene

regulation downstream of PERK signaling pathway [75,

95]. In response to ER stress, ATF4 induces genes largely

involved in amino acid metabolism and cellular redox

control. Therefore, ATF4-/- cells require supplementa-

tion with non-essential amino acids and reducing agents

for their survival [75]. It has been suggested that oxida-

tive protein folding in the ER generates reactive oxygen

species [96], and that ATF4 plays an important role in the

removal of reactive oxygen species under ER stress

conditions.

The UPR signaling pathway controlled by PERK is

important for cell survival under various ER stress condi-

tions. Accumulation of free cholesterol in the ER induces

ER stress and apoptosis of macrophages in advanced

atherosclerosis [97]. PERK-/- macrophages are protected

from free cholesterol induced apoptosis, indicating a

cytoprotective role of PERK. Inactivation of the PERK

signaling pathway impairs the survival of tumor cells under

hypoxic conditions in tumor allograft models [98, 99].

ATF4 is directly upstream of CHOP, an important

PERK-regulated UPR target gene [73, 75, 100, 101].

CHOP has long been considered as a proapoptotic tran-

scription factor, as CHOP deficient cells were resistant to

ER stress-induced apoptosis [102, 103]. For example,

CHOP-deficient macrophages are protected from free

cholesterol-induced apoptosis [97]. Similarly, CHOP

deletion ameliorates pancreatic b cell loss in Akita mice

that express mutant misfolded insulin protein that evokes

ER stress [104]. CHOP induces GADD34 transcription,

which dephosphorylates eIF2a to restore protein translation

during prolonged ER stress [100]. In the absence of CHOP

or GADD34, eIF2a phosphorylation is maintained during

chronic ER stress, reducing protein synthesis and ER stress.

Therefore, mice lacking CHOP or GADD34 were protected

from kidney damage in a tunicamycin-induced ER stress

model [100].

NF-E2-related factor-2 (Nrf2), a protein that transcrip-

tionally induces enzymes that remove reactive oxygen

species in response to oxidative and xenobiotic stress, is

also activated by PERK mediated phosphorylation [105,

106]. It is conceivable that PERK maintains the cellular

redox status by activating Nrf2 in response to the accu-

mulation of reactive oxygen species that are generated

during the unfolded protein response.

PERK is essential for the development of pancreatic b
cells and osteoblasts in the skeletal system. Mutation of the

PERK gene in humans is responsible for Wolcott-Rallison

syndrome (WRS), a syndrome characterized by early onset

diabetes due to b cell dysfunction, multiple skeletal dys-

plasia and growth retardation [107–109]. Germline deletion

of the PERK gene in mice results in similar defects of

insulin production and skeletal abnormalities [110, 111].

PERK deletion also compromises zymogen production

from the exocrine pancreas, accompanied by acinar cell

apoptosis [110–113]. These data suggest that PERK is

essential for the development of these secretory cells,

consistent with its molecular function in transcriptional and

translational control in response to ER stress, and that its

absence causes apoptotic cell death secondary to increased

ER stress. Surprisingly, however, PERK is not required for

the postnatal insulin secreting function of b cells [114].

Hence, post-natal deletion of PERK specifically in b cells

by using the cre/lox system did not induce b cell death or

diabetes, demonstrating a temporal-specific control of b
cell development by this branch of the UPR [111]. Simi-

larly, a recent report suggested that the loss of acinar cells

in the exocrine pancreas of PERK deficient mice is not

related to an impaired ER stress response [113]. Neither the

ER structure of the acinar cells, nor the secretagogue-

induced exocytosis of zymogens from the pancreatic lob-

ules was compromised in PERK-/- mice. No evidence for

increased ER stress in PERK-deficient pancreas was

observed. Nonetheless, PERK-deficient mice displayed

progressive pancreatic atrophy, losing acinar cells by

oncosis, a non-apoptotic form of cell death, starting

at *3 weeks of age. These observations led to the
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conclusion that PERK is essential for the integrity of acinar

cells in a manner which is unrelated to the ER stress

response.

ATF6

ATF6 comprises two isoforms, ATF6a and ATF6b, which

are encoded by separate genes [76, 79, 80]. ATF6 belongs

to a group of transcription factors that are synthesized as

precursor proteins with ER transmembrane domains and

proteolytically activated by site 1 and site 2 proteases [115,

116]. ATF6 is normally present in the ER forming a sta-

ble complex with BiP [117]. ER stress dissociates ATF6

from BiP, which allows the mobilization of ATF6 to

the Golgi apparatus for sequential proteolysis by S1P and

S2P, releasing the N-terminal cytosolic part of the protein

[77–79].

The DNA binding specificity of ATF6 and XBP1 is

remarkably similar. Independent studies identified almost

identical consensus sequences as binding sites of XBP1 and

ATF6 [67, 82]. Clauss et al. demonstrated that recombinant

XBP1 protein bound to CRE-like GAT-GACGTG(T/G)

NNN(A/T)T sequences [67]. Wang et al. demonstrated that

ATF6 bound to TGACGTG(G/A) consensus sequences

[82]. The UPRE motif which refers to the ATF6 binding

site can be activated by both XBP1 and ATF6 [68]. XBP1

and ATF6 can also form a hetero-dimer, suggesting that

they might regulate common target genes [81]. Microarray

analysis revealed ATF6a target genes are limited to select

ER chaperones and ERAD pathway genes, suggesting that

XBP1 has a broader universe of target genes [68, 118].

ATF6a-/- MEF cells and animals show increased sus-

ceptibility to tunicamycin, suggesting a protective role of

ATF6a in the ER stress response [10, 81]. The physio-

logical functions of ATF6a and ATF6b remain to be

determined, however, as mice with targeted disruption of

these genes are grossly normal, although ATF6a/b double

mutant mice die early during embryonic development [10,

81]. It will be interesting to test if ATF6a has a redundant

or supplementary role with XBP1 in the development and/

or function of secretory cells.

Role of the UPR in lipid metabolism

Role of XBP1 in hepatic lipogenesis

A crucial function of the liver is to coordinate whole body

energy homeostasis by regulating carbohydrate and lipid

metabolism. Fasting stimulates glucose production from

the liver through glycogenolysis and gluconeogenesis to

maintain optimal circulating glucose levels, while sup-

pressing fatty acid synthesis. Hepatic lipogenesis is

induced upon ingestion of excess carbohydrates to convert

extra carbohydrates to triglyceride (TG) [13]. TG is

secreted from the liver as VLDL lipoprotein particles, and

then transported to adipose tissue for long-term energy

storage. Hepatic lipogenesis is controlled by transcription

factors such as SREBP and ChREBP, which are regulated

by nutritional and hormonal conditions [2–5] (Fig. 2).

SREBP-1c is strongly activated by insulin and increases

the expression of genes controlling fatty acid synthesis

[119–121]. SREBP-2 activation is controlled by cellular

sterol levels, so that low sterol activates SREBP-2 to

induce genes in the cholesterol biosynthesis pathway [30,

122]. ChREBP appears to be activated by high glucose to

activate genes involved in glycolysis and fatty acid syn-

thesis [34, 38].

Microarray analyses revealed that the majority of XBP1

target genes are involved in protein secretory pathways

[68, 70]. XBP1 also activates the phospholipid biosynthesis

pathway at least by increasing the level of choline cyti-

dylyltransferase protein, a rate-limiting enzyme in the

CDP-choline pathway [123, 124]. The molecular function

of XBP1 is highly reminiscent of yeast HAC1 protein,

which also controls the expression of genes in protein

secretory pathways and lipid synthesis (INO1) [62]. Given

that protein secretion requires ER expansion and the traf-

ficking of secretory vesicles, it makes sense that the UPR

also activates lipid synthesis to meet the demand of lipid

bilayer formation [125]. Consistent with its target gene

signature, XBP1 is critically required for the survival and

the secretory functions of highly secretory cells [83–85].

As discussed above, however, XBP1 is not essential for the

secretory function of hepatocytes [8]. The liver is the major

source of plasma proteins but plasma protein levels were

only slightly decreased in mice lacking XBP1 in the liver.

The ER in XBP1-deficient hepatocytes displayed no mor-

phological abnormality. The secretion and turnover of

apolipoprotein B (ApoB) protein was minimally influenced

by XBP1 deficiency, collectively suggesting that the basal

expression of genes in secretory pathway independent of

XBP1 is sufficient to accommodate the secretory load of

postnatal hepatocytes.

However, XBP1 deletion in the liver resulted in a dra-

matic reduction of plasma lipids [8]. Genes encoding key

lipogenic enzymes such as Acc2, Dgat2 and Scd1 were

dramatically downregulated in XBP1-deficient liver. These

lipogenic enzymes were induced upon high carbohydrate

diet feeding in WT, but not in XBP1-deficient mouse liver.

Consistent with the gene expression profile, de novo

synthesis of fatty acids is impaired in XBP1-deficient

hepatocytes. Sterol synthesis was also downregulated in

XBP1-deficient hepatocytes, although the underlying

mechanism is unknown. Given the essential role of XBP1

in the ER stress response, one might ask whether Xbp1
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deletion caused ER stress in the liver, and consequently

hypodyslipidemia as an indirect effect. Indeed, a recent

study demonstrated that acute ER stress induced hepatic

steatosis, albeit expression of lipogenic genes was sup-

pressed, suggesting that ER stress in the liver disrupts

hepatic lipid metabolism [11]. It has been shown that ER

stress inhibits ApoB100 folding and VLDL secretion,

which might be responsible for the fat accumulation in the

liver in tunicamycin-injected mice [126–128]. Unlike the

tunicamycin-injected mice, XBP1-deficient mice did not

develop hepatic steatosis, and their hepatocytes did not

show any signs of ER stress. In addition to the normal

turnover of ApoB protein, XBP1-independent UPR mark-

ers were not induced at baseline, and were normally

induced upon tunicamycin challenge in the absence of

XBP1. These data argue against the possibility that XBP1

deletion disturbed ER homeostasis, which then resulted in

defective hepatic lipid metabolism. Instead, chromatin

immunoprecipitation assays demonstrated that XBP1 can

directly bind to the promoter region of lipogenic genes.

Further, enforced expression of XBP1 induced the

expression of Acc2 and Dgat2 genes, suggesting that XBP1

is a bona fide transcription factor that controls hepatic

lipogenesis (Fig. 2). Active XBP1s protein is induced in

mice fed a high fructose diet and in hepatocytes cultured in

high glucose media, suggesting that increased glucose

availability induces XBP1. The nature of the signals that

leads to the activation of IRE1/XBP1 and the role of these

proteins in the development of metabolic diseases associ-

ated with hyperdislipidemia remain to be further

investigated.

PERK/eIF2a

Homozygous eIF2a S51A mutant mice die perinatally due

to hypoglycemia caused by defective hepatic gluconeo-

genesis [129]. In contrast, heterozygous eIF2a S51A mice

are prone to weight gain on a high fat diet and develop

insulin resistance [130]. To investigate the function of the

PERK/eIF2a UPR branch in the liver, Oyadomari et al.

generated transgenic mice that overexpressed the c-terminal

fragment of GADD34 protein in the liver [9]. GADD34 is a

regulatory component of eIF2a phosphatase, induced by

PERK signaling upon ER stress [131]. Phosphorylation of

eIF2a both at baseline and after ER stress induction was

dramatically reduced in GADD34 transgenic mice, which

displayed markedly decreased hepatic lipogenesis. Expres-

sion of lipogenic enzymes such as Fasn, Acc2 and Scd1 was

decreased, especially on high fat diet. Lipid accumulation in

the transgenic liver was also reduced, suggesting that

PERK/eIF2a signaling contributes to optimal hepatic lipo-

genesis. Enforced activation of PERK signaling can be

achieved by using the chimeric PERK protein fused to a

ligand-induced dimerization domain [9, 95]. Ligand-

induced PERK activation increased the expression of lip-

ogenic enzymes independent of ER stress, suggesting that

PERK activation is sufficient for the activation of lipo-

genesis in the liver. PERK controls the expression of

C/EBPa and C/EBPb, which play important roles in

hepatic lipogenesis [132, 133]. C/EBPa, C/EBPb, and their

downstream transcription factor, PPAR-c, were signifi-

cantly downregulated in high fat-diet fed GADD34

transgenic mouse liver. Interestingly, C/EBP gene expres-

sion is regulated at both the transcriptional and

translational level by XBP1 and eIF2a [9, 134, 135]. Fur-

ther, the upstream open reading frame (uORF) in C/EBP

mRNA directs the production of a truncated form of the

C/EBP protein in the absence of eIF2a phosphorylation

[135]. eIF2a phosphorylation further increases the trans-

lation efficiency of the full-length C/EBP in a manner

similar to ATF4 [73]. These data suggest an active role for

the PERK-eIF2a signaling pathway in regulation of hepatic

lipogenesis (Fig. 4). A recent study demonstrated that

PERK is also critical for lipogenesis in the mammary

gland. Bobrovnikova-Marjon et al. deleted the Perk gene

specifically in mammary glands by using an MMTV-cre

[136]. Pups nursed by PERK-deficient female mice showed

growth retardation, and mammary glands from PERK-

deficient mothers exhibited an immature phenotype with

reduced alveolar expansion. Free fatty acid and TG content

was significantly reduced in milk produced from these

mothers, accounting for the growth retardation of the pups.

Fig. 4 Intersection of the UPR and hepatic lipid metabolism.

a PERK/eIF2a and IRE1/XBP1 UPR signaling pathways control

lipogenesis. eIF2a phosphorylation activates PPARc and SREBP-1 in

liver and mammary gland to increase the lipid synthesis. XBP1

activates the expression of the lipogenic genes, at least partly via

direct interaction to target promoters. It is not fully understood what

triggers UPR activation leading to increased lipogenesis. ER stress

and high glucose may play a role. b Tunicamycin administration

induces the ER stress and hepatic steatosis. Ironically, SREBP1 and

lipogenic genes are downregulated by tunicamycin. Inhibition of

ATF6a and eIF2a signaling pathways further increase fat accumu-

lation, suggesting their protective roles in tunicamycin-induced

steatosis. Tunicamycin induces degradation of ApoB protein, which

is essential for VLDL secretion from the liver
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The reduced lipid content in the milk was the direct con-

sequence of low de novo lipid synthesis as SREBP1 and

key lipogenic enzyme genes were significantly downregu-

lated in PERK-/- mammary glands, suggesting that PERK

transcriptionally regulates mammary gland lipogenesis via

SREBP1. SREBP1 protein level was low in PERK-defi-

cient mammary epithelial cells cultured under ER stress

conditions, which activate SREBP processing, although the

physiological significance of this observation is unknown

[137, 138]. These data suggest that PERK controls mam-

mary gland lipogenesis through controlling activation of

SREBP.

UPR in Yeast

In yeast, phospholipid biosynthesis is dynamically regu-

lated by the availability of inositol in the media [139, 140].

When the inositol level is low, the master negative regu-

lator of the yeast lipogenesis program, OPI1p, is attached

to the ER membrane through its interaction with phos-

phatidic acid and Scs2p (Fig. 5). The addition of inositol

consumes phosphatidic acid to produce phosphatidylino-

sitol, resulting in the release of OPI1p from the ER

membrane, which translocates to the nucleus and represses

the expression of genes involved in phospholipid biosyn-

thesis [141]. This repression occurs through the UASINO

promoter element where OPI1p antagonizes the transcrip-

tional activators, Ino2p and Ino4p [142, 143]. Microarray

analyses revealed that inositol controls the expression of

a group of genes including key lipogenic enzymes,

transcription regulators, as well as inositol and choline

transporters in an Ino-2p-Ino4p dependent manner [144,

145].

Interestingly, inositol deficiency also activates the UPR

in yeast, inducing IRE1-mediated HAC1 mRNA splicing,

although it is not known whether ER stress is induced

under this condition [53]. Induction of UPR target genes

including KAR2 by inositol deficiency is dependent on

IRE1/HAC1. Notably, HAC1D and IRE1D strains of yeasts

display inositol auxotrophy [146]. INO1 expression is

impaired in these mutant yeast strains, and their inositol

auxotrophy is rescued by OPI1 deletion or enforced

expression of INO1, suggesting that IRE1/HAC1 is

required for the induction of INO1 [125]. However, HAC1

is not sufficient for the expression of lipogenic genes that

are regulated by OPI1, as constitutively active HAC1 is not

sufficient to maintain the expression of these genes after

inositol addition [144]. It has been suggested that HAC1

may de-repress OPI1p through heterodimerization to acti-

vate lipogenic genes [125]. However, other studies

demonstrated the normal expression of INO1 in certain

compound mutant yeast strains lacking HAC1, suggesting

the minimal role of the UPR in INO1 expression under

certain conditions [147, 148]. These data collectively

suggest that the IRE1/HAC1 UPR pathway is required for

the optimal expression of phospholipid biosynthesis genes

in yeast. In addition, considering the role of XBP1 in

membrane biogenesis and hepatic lipogenesis in mammals,

lipid synthesis may be the evolutionarily conserved

molecular function of the IRE1/HAC1/XBP1 pathway.

UPR activation by dysregulation of lipid homeostasis

UPR activation has been reported in the liver, adipose

tissue, pancreatic islets, and brain under various genetic

and nutritional conditions linked to obesity and insulin

resistance [149–155]. Hotamisligil and colleagues first

demonstrated the presence of ER stress in the liver of high

fat diet-fed or leptin-deficient ob/ob mice [152]. Phos-

phorylation of PERK and its downstream target eIF2a was

increased in the liver of these diet manipulated or geneti-

cally modified obese mice. ER stress inhibited insulin

signaling by increasing the serine phosphorylation of

insulin receptor substrate (IRS)-1, and this phosphorylation

occurred via JNK activation by ER stress [156]. Induction

of BiP in the liver of diabetic db/db mice was described as

a marker of ER stress [151], although this finding was not

reproduced in another study [157]. Wang and colleagues

examined the effects of various diets on UPR activation in

rat liver [150]. High sucrose or high levels of saturated

fatty acids in the diet strongly activated the IRE1/XBP1

UPR pathway, as evidenced by increased XBP1 mRNA

splicing, although the expression of XBP1 target genes was

Fig. 5 Transcriptional regulation of lipid synthesis in yeast. OPI1p is

a critical repressor of lipid synthesis in yeast. It is anchored in the ER

membrane through its interaction with Scs2p (reviewed in [185]).

Inositol starvation activates INO2p–INO4p lipogenic transcription

factors by preventing the release of OPI1p from the ER which

antagonizes INO2p. Inositol starvation also activates the UPR. INO1

expression is impaired in IRE1 or HAC1 mutant yeasts, which display

inositol auxotrophy. The mechanism by which the UPR contributes to

the expression of lipogenic genes is not fully understood
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not explored. In contrast, unsaturated fatty acids did not

evoke the UPR, although hepatic TG levels were similarly

increased. BiP and CHOP protein levels were *2-fold

increased by dietary sucrose or saturated fatty acids. UPR

activation correlated with increased liver damage, sug-

gesting that these diets induce ER stress that causes liver

cell death. Several studies demonstrated that saturated fatty

acids induced ER stress in cultured liver and pancreatic b
cells, while unsaturated fatty acids reduced ER stress [158–

161]. One recent study, however, demonstrated that

monounsaturated oleic acids also induced ER stress and

inhibited VLDL secretion in McA-RH7777 liver cells,

suggesting that TG accumulation might induce ER stress in

liver cells [128]. In contrast to these reports suggesting the

induction of ER stress in fatty liver, others failed to detect

the induction of ER stress markers in genetic models of

steatosis [157, 162, 163]. Mice lacking microsomal tri-

glyceride transfer protein (MTP) gene are unable to secrete

VLDL and accumulate TG in the liver. Despite the TG

accumulation, ER stress markers BiP and Grp94 were not

induced in the liver of MTP deficient mice [163]. Dgat2

transgenic mice developed hepatic steatosis, but not insulin

resistance [162]. JNK and PERK were not activated in the

liver of a transgenenic mouse line that developed hepatic

steatosis. It is unclear if ER stress is induced only under

certain conditions of lipid accumulation in the liver. It is

also possible that the limited specificity/sensitivity of the

reagents to detect ER stress markers resulted in different

outcomes.

ER stress was also reported in the hypothalamus of high

fat diet-fed mice [154], although the direct cause of the ER

stress was not described. ER stress inhibited leptin sig-

naling in cultured cells, resulting in decreased STAT3

phosphorylation, linking ER stress to leptin resistance in

the hypothalamus [154, 155].

Contrary to the induction of ER stress by lipids, recent

studies suggested that ER stress can cause hepatic steatosis

[10, 11]. Kaufman and colleagues demonstrated that tu-

nicamycin, a potent ER stress inducer, induced hepatic

steatosis. Surprisingly, however, tunicamycin markedly

decreased the synthesis of lipogenic enzymes as well as

SREBP1, suggesting that the tunicamycin-induced steato-

sis is unrelated to the increased lipogenesis [11]. It is not

known why liver cells accumulate lipids under ER stress

conditions. Given that ApoB protein folding and lipidation

is highly sensitive to ER stress, tunicamycin might induce

the accumulation of TG in the liver by inhibiting VLDL

secretion, as seen in mice lacking ApoB or microsomal

triglyceride transfer protein (MTTP) [126–128]. Indeed,

plasma cholesterol and TG levels were markedly decreased

in tunicamycin-injected mice, suggesting defective lipid

secretion [11]. Interestingly, mice lacking ATF6a or

harboring phosphorylation-defective eIF2a A/A mutation

displayed further increase in lipid accumulation in the liver

upon tuncamycin administration, suggesting a protective

role of the UPR in tunicamycin-induced steatosis. Further

studies are required to clarify the role of the UPR in this

process, and its physiological relevance.

ER stress response in viral hepatitis

Hepatitis B (HBV) and hepatitis C (HCV) viruses are major

pathogens causing acute and chronic hepatitis, cirrhosis and

liver cancer in humans. Since the synthesis of viral struc-

tural proteins and the assembly of viral particles occur in the

ER, one might expect that ER homeostasis is important for

viral proliferation and disease pathogenesis. Indeed,

numerous reports suggested the link between viral infection

and the ER stress response. For example, it was reported

that the HCV core protein induced ER stress by depleting

the ER calcium storage, leading to apoptotic cell death

[164]. Another study suggested that ER stress induced by

core protein activated protein phosphatase 2A, which in

turn inhibited interferon-c signaling [165]. Activation of the

UPR has also been observed in HCV-infected cells [166,

167] and in cells expressing viral proteins [168, 169], but

not in another study [170]. Japanese encephalitis virus

(JEV) and dengue viruses (DEN), which are flaviviruses

like HCV, activated XBP1, which induced ER expansion

and protected cells from virus-induced cytotoxicity, sug-

gesting that flaviviruses may take advantage of the UPR for

their propagation [171]. On the other hand, Siddiqui and

colleagues demonstrated that HCV induced ER stress, but

surprisingly, suppressed the transactivation ability of XBP1

and its downstream ERAD pathway, resulting in slow

degradation of misfolded ER proteins [169]. Translation of

HCV RNA utilizing the internal ribosome entry site was

facilitated in IRE1-deficient cells, suggesting that HCV may

promote its replication by suppressing the IRE1/XBP1

pathway [169]. Regarding HBV, large HBV surface anti-

gens with deletions at the pre-S1 and pre-S2 regions, which

are frequently detected in infected individuals, accumulated

in the ER and activated GRP78 and GRP94 expression,

suggesting the induction of ER stress [172, 173]. HBx, a

regulatory protein encoded by HBV, activated XBP1 and

ATF6 branches of the UPR [174]. Further studies are

required to clarify the consequences of ER stress in viral

infection, and the contribution of the UPR signaling path-

ways in viral propagation and host responses.

ER stress response in alcoholic liver disease

Alcohol consumption causes various types of liver damage

including steatosis, hepatitis and cirrhosis. Interestingly,

microarray analysis of liver samples from a murine model

of intragastric ethanol feeding, which induced necrotic cell
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death and steatosis, revealed the induction of genes related

to the ER stress response [175]. Ethanol feeding increased

the level of GRP78, GRP94, CHOP and caspase-12, as well

as SREBP-1c, which may have contributed to the devel-

opment of fatty liver [176]. It is not completely understood

how ethanol consumption induces ER stress in the liver,

but the increased level of homocysteine appears to play a

role [177]. Plasma homocysteine level is increased upon

alcohol consumption both in humans and mice [175, 178].

Homocysteine is known to induce ER stress and activate

SREBP-1 processing in liver cells [179]. Betaine, which

reduced the plasma homocysteine level in alcohol-fed

mice, decreased the fat accumulation and the expression of

ER stress response genes, suggesting the crucial role of

homocysteine in alcoholic liver disease [175].

Concluding remarks

Recent studies have aroused great interest in the potential

role of the UPR in energy metabolism in mammals. XBP1

plays a critical role in the synthesis of TG and cholesterol

in the liver by controlling the expression of lipogenic

genes. Deletion of XBP1 in the liver drastically lowered

circulating TG and cholesterol levels. PERK also plays

important role in both hepatic and mammary gland lipo-

genesis by regulating lipogenic transcription factors such

as C/EBP, PPARc, and SREBPs. It remained to be further

investigated how the UPR is activated by nutritional and

hormonal cues and interacts with other lipogenesis regu-

lators, such as SREBP and ChREBP. Further studies are

also required to define the role of the UPR in metabolic

disorders accompanied by the dysregulation of lipid

homeostasis.

UPR activation has been reported in the liver, adipose

tissue, pancreatic b cells, skeletal muscle and brain under

nutritional conditions associated with obesity and type 2

diabetes. Due to the technical difficulty of directly

measuring actual ER stress as defined by an increase in

unfolded protein species in the ER, or compromise of ER

integrity, the UPR itself has been frequently used as a

marker of ER stress. Given the active role of the UPR in

cell metabolism and the lack of direct evidence of ER

stress, one can ask if UPR activation is a causative factor in

the development of metabolic dysregulation or is instead

the consequence of ER stress. An assay system to measure

actual ER stress in the cell [180] will be crucial to a better

understanding of the role of the UPR in metabolic disor-

ders. The mammalian UPR is comprised of at least three

different signaling pathways, which are not necessarily

activated simultaneously. A more thorough investigation of

the activation status and function of each branch of the

UPR will contribute to a better understanding of the UPR

in metabolic disorders.
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