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ABSTRACT

RNA molecules play integral roles in gene regulation, and understanding their structures gives us important insights into their
biological functions. Despite recent developments in template-based and parameterized energy functions, the structure of
RNA—in particular the nonhelical regions—is still difficult to predict. Knowledge-based potentials have proven efficient in
protein structure prediction. In this work, we describe two differentiable knowledge-based potentials derived from a curated
data set of RNA structures, with all-atom or coarse-grained representation, respectively. We focus on one aspect of the
prediction problem: the identification of native-like RNA conformations from a set of near-native models. Using a variety of
near-native RNA models generated from three independent methods, we show that our potential is able to distinguish the native
structure and identify native-like conformations, even at the coarse-grained level. The all-atom version of our knowledge-based
potential performs better and appears to be more effective at discriminating near-native RNA conformations than one of the
most highly regarded parameterized potential. The fully differentiable form of our potentials will additionally likely be useful for
structure refinement and/or molecular dynamics simulations.
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INTRODUCTION

RNA molecules are responsible for a wide range of bi-
ological processes occurring in the cell. To function, RNAs
adopt detailed three-dimensional (3-D) folds (Gesteland
et al. 2006). Understanding these structural intricacies gives
insights to molecular evolution and structure-function re-
lationships. Recently it was shown that, with high-resolution
3-D motifs, it is possible to design optimal sequences that
improve RNA function (Das et al. 2010). This highlights the
need for accurate RNA structure prediction and evaluation
tools.

It had been hoped (Tinoco and Bustamante 1999) that
the four nucleotides alphabet of RNA would make RNA
structure prediction a more tractable problem than for

proteins, since the latter have wider structural diversity
arising from their 20 natural amino acids library. However,
predicting the fold of RNA molecules, especially larger
systems, is still a daunting task. Fortunately, RNA structure
prediction is simplified by the hierarchical folding process
of most RNAs (Brion and Westhof 1997; Batey et al. 1999;
Tinoco and Bustamante 1999). An extended RNA first
forms stable secondary structure defined by base-pairing,
then packs into a globular 3-D form.

Given the efficient techniques developed for secondary
structure prediction (Zuker 2003; Mathews 2006; Reeder
et al. 2006; Shapiro et al. 2007; Hofacker 2009), the major
remaining difficulty is determining the detailed local struc-
ture of bases and how they affect the RNA’s global 3-D
structure. Typical base interactions are base-pairing (ca-
nonical and noncanonical) and base-stacking. Even tertiary
interactions—which usually contribute strongly to an RNA
molecule’s overall 3-D fold—like the tetraloop-tetraloop
receptor (a well-defined base-pairing interaction between
two distant small motifs) can be reduced to such local base
interactions. Extensive work has been done to classify these
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base interactions (Murray et al. 2003; Sykes and Levitt
2005; Das and Baker 2007; Frellsen et al. 2009). Recent
advances in RNA structure prediction techniques make use
of base-pairing and stacking preferences either in the form
of an energy function (Dima et al. 2005; Jonikas et al. 2009;
Flores and Altman 2010) or through the use of fragment
libraries taken from known RNA structures (Das and Baker
2007; Parisien and Major 2008).

Despite our understanding and classification of base
interactions, for a given RNA, there are still many possible
conformations consistent with reasonable secondary struc-
tures. Therefore the selection of good native-like models
from an ensemble of conformations (also known as decoys)
is a vital, yet very challenging task. Das and colleagues
showed that a low resolution energy function was insufficient
to discriminate good models (Das and Baker 2007)—defined
by low root-mean-squared deviation (RMSD) to the native
state—and that, with the addition of some higher resolution
terms, its discriminatory power increased significantly (Das
et al. 2010). This energy function—made available in the
Rosetta package—tackles small RNA motifs more effectively
than physics-based energy functions. However, the Rosetta
RNA energy function is based on careful parameterization of
weights for the various energetic components arising from
preferred RNA base orientations and interactions, and
therefore it is unclear how its efficacy scales with RNA size.

Similar problems in the protein folding world have led to
the development of knowledge-based (KB) potentials. For
instance, the potential of mean force (PMF) was generated
from distance distributions between protein atoms, and
was shown to be effective in screening and refining protein
decoys (Samudrala and Moult 1998; Zhou and Zhou 2002;
Zhang et al. 2004; Summa and Levitt 2007). To derive such
a potential, a training set of high-resolution, nonredundant
structures is required. The smaller number of high-resolution
RNA structures available has thus far stalled the development
of such distance-based KB potentials specifically designed for
RNA.

In this study, we derive differentiable all-atom and
coarse-grained KB potentials for RNA structures, using
careful statistical treatment to handle low count regions.
Unlike Rosetta, or other existing RNA potentials, our KB
potentials implicitly incorporate all base interactions into
distance-based potentials, eliminating the need for accurate
weighting of energetic components. Our results show that
our all-atom potential is effective in scoring RNA decoys
for the selection of good native-like models in RNA systems
of different sizes. When the native structure is derived by
NMR, some of the near-native decoy structures scored with
the all-atom potential have an energy that is below that of
the NMR-determined native state: These structures may be
closer to the true native state and thus constitute refined
native states. The fully differential forms of our potentials
facilitate their use in molecular dynamics (MD) and structure
refinement.

RESULTS

Selection of representative RNA data set

The generation of an effective KB potential requires the
careful selection of representative RNA structures. This
data set of RNA structures should be high-resolution (to
capture the intricate base–base interactions), nonredundant
(to ensure that no particular RNA structure dominates),
and sufficiently large (to provide good statistics). These
conflicting criteria are difficult to meet and are not satisfied
by the existing structure sets available in the literature such
as RNAbase (Murthy and Rose 2003) or NDB (Murray
et al. 2003).

We developed a protocol that combines automated and
manual data curations designed to facilitate the extraction
of high-quality, representative RNA structures (Supplemen-
tal Fig. 1; Materials and Methods). The process selects RNA-
only structures that are solved by X-ray crystallography up to
a resolution of at least 3.5 Å, in the absence of bound ligands
or proteins. Structures that have identical sequences are
filtered out to prevent redundancy in the data set.

The complete extraction procedure applied to the PDB
(Berman et al. 2007) led to 77 selected RNA structures
(total 7251 nucleotides [nt]). Fifty-four molecules in our
data set also belong to the Stombaugh et al. (2009) data set,
which contains 304 structures. Our data set is much smaller
due to the stringent criteria used. The finalized data set
used in the generation of the continuous RNA potential is
summarized in Supplemental Table 1. Other than being
useful for this work, the data set is generic enough to be
used for other learning purposes and we have therefore
made it publicly available (http://csb.stanford.edu/rna).

Generation of RNA potential

There are several ways to extract information from our
structural data set. Some common methods to do this use
known RNA base–base interactions like base-pairing and
base-stacking, and generate independent potentials that are
specific to these interactions (Sharma et al. 2008; Jonikas
et al. 2009; Das et al. 2010). This approach, however, re-
quires careful parameterization of the different energetic
components. Alternatively, the BARNACLE model (Frellsen
et al. 2009) uses dihedral angles from RNA rotamers
(Murray et al. 2003) to train an angle-based RNA potential.
While this appears to work well for sampling small RNA
systems constrained by secondary structure information, it
seems less likely that such a potential will capture tertiary
interactions between distant motifs. Instead, we make use
of distributions of inter-atomic distances, which allows us,
in principle, to incorporate information from a wide array
of interaction types.

We generated two RNA KB potentials: a coarse-grained
five-point (P, C49 backbone atoms, and C2, C4, and C6

Knowledge-based potentials for RNA structure

www.rnajournal.org 1067



base-planar atoms per base) version, and an all-atom
version. The former is likely to be more effective for fast,
efficient sampling due to the simplified representation of
each base. This same five-atoms description was shown to
be sufficient in describing base orientations (Sykes and
Levitt 2005). The all-atom potential, on the other hand,
may be useful for high-resolution RNA structure refine-
ment, as a result of its inherent amount of structural detail,
as it is for proteins (Chopra et al. 2010). Due to their
nonoverlapping utility, both potentials were developed and
tested here.

The distance computation led to z1 million distances
<16 Å for the five-atoms per nucleotide model. Among
them, 64% are due to the ribosomal RNA family (51%
being due to the only complete ribosome structure in-
cluded in our data set).

To obtain a potential from these distance measurements,
we built a PMF as described previously for proteins
(Samudrala and Moult 1998; Lu and Skolnick 2001). The
potential between two atoms i and j at distance dij apart can
be written as an energy function (Samudrala and Moult
1998) expressed as

E =�kT +
ij

ln
PobsðdijÞ
Pref ðdijÞ

� �

where T is the temperature (taken to be 300 K) and k the
Boltzmann constant. Pobs(dij) and Pref(dij) represent the ob-
served and reference probabilities, respectively, for the atoms
i and j to be separated by distance dij.

Unlike previous work, in this study, Pobs(dij) and Pref(dij)
are not computed by binning distances, which could sig-
nificantly affect the results. Instead, these are probability
distributions obtained from statistical analysis (see Mate-
rials and Methods): We used a Dirichlet Process Mixture
Model to obtain the analytical form of the potential as a
sum of Gaussian functions. Another feature of this poten-
tial is that it is fully differentiable, making it suitable for
energy minimization or MD. To our knowledge, this is the
first RNA KB potential that can be directly applied to
continuum MD, though a KB potential for discrete MD has
been designed (Sharma et al. 2008).

In developing KB potentials, the choice of the reference
state is key. Some options include an ideal gas reference
state (Zhou and Zhou 2002) or a quasi-chemical approx-
imation (Lu and Skolnick 2001), which originates from
‘‘uniform density’’ reference state defined by Sippl (1990).
This study used the latter with a composition-independent
scale, i.e., the observed distances from all possible pairs are
combined together to represent the reference state.

Assessment of potentials by decoy scoring

To assess the quality of our KB potentials we used them to
score a variety of RNA decoys, and observed their abilities

to distinguish good, near-native models. Scoring is a quick
and simple way to evaluate the quality of a potential,
compared to more computationally intensive methods like
refinement and sampling. As a comparison, we scored the
same decoys using the latest high-resolution scoring func-
tion from Rosetta (Das et al. 2010).

One set of decoys was generated by position-restrained
molecular dynamics and replica-exchange molecular dy-
namics (REMD) simulations (see Materials and Methods),
methods that cover a wide near-native RMSD range (from
0.1 to z12 Å). Five different RNA structures were used,
and scores evaluated using the KB potentials generated
from the full data set (Fig. 1). The cropped (using a data set
where the five structures were all removed) and full versions
of the KB potentials yield similar results (see Supplemental
Fig. 2). In all five cases, the all-atom and coarse-grained KB
potentials and Rosetta were very effective in identifying near-
native decoys, as indicated by the strong scoring funnel
toward the native structure.

The assessment of potentials using a single method for
decoy generation may be insufficient to determine their

FIGURE 1. Energy as a function of RMSD for decoys generated using
position-restrained dynamics together with replica-exchange molec-
ular dynamics for five different systems (rows). All-atom KB, coarse-
grained KB, and Rosetta energies are shown in the left, middle, and
right columns, respectively. In each case, a funnel shape toward the
native structure (white circle) is seen, characteristic of a scoring
function that is effective at distinguishing near-native structures from
less native-like structures.
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limitations (Handl et al. 2009). We therefore generated
a second set of decoys using normal modes (NM). These
decoys cover a narrower range of RMSD but present different
geometrical distortions from the prior physics-based force-
field methods. The all-atom, coarse-grained and Rosetta
potentials show similar efficacy (Fig. 2; Supplemental Fig.
3): The funnel shape characteristic of good potentials is less
pronounced, suggesting weaker ability of all three poten-
tials to differentiate such decoys.

Last, we tested the potentials’ capabilities to score diverse
RNA structures assembled by RNA-like fragments which had
no native base-pairing enforced (see Supplemental Figs. 4–
7). Not surprisingly, due to the reduced constraints, all three
potentials were less effective in scoring these decoys. In
general, our all-atom KB potential (full version) still appears
to quantitatively do better than Rosetta (see Table 1). Das
and colleagues showed that the combination of refinement
and scoring improved the discriminatory power of the
Rosetta potential (Das et al. 2010), suggesting that, with

atomic refinement, our all-atom KB potential could possi-
bly perform well too.

Evaluation metrics

For a quantitative comparison between all three potentials,
we counted the number of decoys that scored lower than
the native structure (Table 1). This gives us an indication of
the number of structures that will be erroneously selected
ahead of the native structure due to limitations in the
potentials. Alternatively, we also define an Enrichment
Score (ES), a useful metric based on identifying the top
10% scoring (Etop10%) and best 10% RMSD values (Rtop10%),
then evaluating their degree of overlap (this choice percent-
age is somewhat arbitrary). The Enrichment Score (Tsai et al.
2003) is defined as

ES =
Etop10% \ Rtop10%

�� ��
0:1 3 0:1 3 Ndecoys

where |Etop10% \ Rtop10%| is the number of structures in the
intersection of Etop10% and Rtop10%. Etop10% corresponds to
the set of structures with energies in the best 10% of the
energy range. Rtop10% corresponds to the set of structures
having RMSD in the lowest 10% of the RMSD range.

For a perfectly linear scoring function for which Ei = c 3

Ri for each structure i and c is a constant, this would give

ES =
Etop10% \ Rtop10%

�� ��
0:1 3 0:1 3 Ndecoys

=
0:1 3 Ndecoys

0:1 3 0:1 3 Ndecoys
= 10

In a random scoring case, we would have

ES =
Etop10% \ Rtop10%

�� ��
0:1 3 0:1 3 Ndecoys

=
0:1 3 0:1 3 Ndecoys

0:1 3 0:1 3 Ndecoys
= 1

Hence, we have

ES=
10; perfect scoring
1; perfectly random
< 1; bad scoring

8<
:

What constitutes a good scoring function is not obvious,
though it clearly should have an ES between 1 and 10, the
closer to 10 the better. For MD and NM, where RNA
decoys have secondary structures similar to their respective
native states, our all-atom KB potential appears to generally
do best (Table 1).

DISCUSSION

Captured structural features

Common RNA base interactions typically explicitly repre-
sented in RNA potentials or force-fields are base-pairing

FIGURE 2. Energy as a function of RMSD for decoys generated by
normal modes for six RNA structures (more in Supplemental Fig. 3).
Scoring using our two KB potentials (all-atom on left, coarse-grained
in middle) and Rosetta (right) are shown. Native scores are repre-
sented as white circles. A funnel toward low RMSD is seen in most
cases. However, in several instances, some decoys score better than the
native structure, a behavior that is more pronounced for the Rosetta
scoring function.
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and base-stacking. While we did not include these terms
explicitly in our KB potentials, the distance-dependent
potentials we developed should inherently include this

information. Figure 3 shows that our
potentials and their first derivatives are
smooth and important base-interaction
features are also captured as troughs in
the potentials. For instance, base-stack-
ing is more pronounced between pu-
rines, but least between pyrimidines
(Saenger 1984). The potential between
C4 atoms in guanines (purines; Fig. 3A)
shows a well at z4.4 Å, which corre-
sponds to the distance between base-
stacked C4 atoms. On the contrary, this
basin is absent for a similar potential
between uracils (pyrimidines; Fig. 3B),
consistent with the weak base-stacking
interaction. The base-pairing interaction
between guanine and cytosine (and ade-
nine and uracil; not shown) is also cap-
tured (Fig. 3C).

The full energy landscape of an RNA
is hyper-dimensional and cannot be
adequately visualized from these poten-
tial plots, which are low-dimensional
projections of the full energy surface.
Nonetheless, the success of our poten-
tials in scoring RNA decoys suggests
that our KB representation of the RNA
landscape is reasonable. Most native
conformations can be accurately identi-
fied by our KB potentials even in its
coarse-grained form (Figs. 1, 2; Supple-
mental Figs. 3–7). There are, however,
structures that score close to, or lower
than the native. To have a sense of which
structural features are well captured by
our potentials, we superimposed the
best-scored decoys to the native state,
and observed their structural differences.

Unsurprisingly, due to their domi-
nance in KB statistics, helical topologies
are well preserved and captured by our
KB potential scoring (see Fig. 4). This
also appears to be the case for Rosetta
scoring. However, Rosetta is less effec-
tive in scoring the correct loop structure
compared to our all-atom KB potential.
The KB potential, unlike Rosetta, does
not contain explicit base-pairing and
base-stacking terms and hence does
not necessarily favor a helix-like stack-
ing for loops. This might be why our
all-atom KB potential outperforms

Rosetta in scoring the GUAA tetraloop (Fig. 4). Success
in modeling such small motifs by Rosetta (Das et al. 2010)
suggests that all-atom refinement of the models could

TABLE 1. Quantitative comparisons of the decoy-screening capabilities of our KB
potentials (all-atom and coarse-grained) with the Rosetta RNA potential

Overall, the all-atom KB potential is a more discriminating scoring function than Rosetta for
all three decoys sets as well as for X-ray and NMR structures. This is seen in the Enrichment
Scores (ES), where the all-atom KB potential has a higher ES than that for Rosetta in 29 cases
whereas Rosetta is better in only nine of the 40 cases. The average values of ES for each
decoy set (A, B, and C) show that set A, which is derived by restrained molecular dynamics,
is easiest to discriminate, whereas set C, which is derived by FARNA, is the hardest to
discriminate. Decoys derived from structures determined by X ray are much easier to
discriminate than those derived by NMR. Similar trends are seen in the number of structures
below native energy: Our all-atom KB potential finds no such structures for decoys whose
native structure is determined by X-ray crystallography. Overall, there is no significant
difference between our coarse-grained KB potential and Rosetta (except for RNA structures
solved by NMR). The significant number of decoys with scores below that of NMR-derived
native structures for both of our KB potentials suggests that these potentials might be useful
for near-native decoy refinement. This could also be an artifact of our KB potentials being
derived from X-ray structures. The largest ES for each decoy are shaded in light green, while
the largest number of structures below native energy are shaded in pink.
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improve scoring, but such analysis is beyond the scope of
this current work.

From Table 1, the experimental method used to solve the
native structure has an impact on the data: It seems to be
more difficult to obtain good scoring for RNA structures
solved by NMR. When the native structure is derived by
NMR, some of the near-native decoy structures scored with
the all-atom potential have energies below that of the
NMR-determined native state. While this could likely be
attributed to the use of X-ray structures in generating the
KB and Rosetta potentials, the behavior could also be partly
due to a single NMR reference structure not fully repre-
senting the true native state. NMR structures are usually
more varied and their accuracies are hard to evaluate, in
contrast to X-ray structures where resolution and Rfree

factor provide good insights into the quality of structures.
The quality of scoring also depends on the nature of the

decoy set. For example, for structures 1q9a and 28sp, FARNA
failed to model bulge regions present in the native RNA, so
all FARNA decoys used lacked such bulges. Hence scoring
results were bad for both KB potentials and Rosetta (Table 1).

In general, the coarse-grained KB potential is less ef-
fective at screening decoys, likely because high-resolution
information is omitted from its representation. This could
explain the reduced ability of the coarse-grained KB po-

tential to discriminate good decoys of small RNAs (e.g.,
1zih, 12 bases; 434d, 14 bases).

Fully differentiable potentials for refinement
and modeling

As mentioned previously, our KB potentials are fully dif-
ferentiable and could be effective for refinement of near-
native RNA decoys. The scoring results on the different
types of RNA decoys (Figs. 1, 2; Supplemental Figs. 3–7)
indicate that our potentials might be promising for re-
finement, since they show strong funnels toward the native
state. However, being able to refine a structure well also
depends on the energy landscape close to the native struc-
ture (Chopra et al. 2008)—we cannot visualize this by the
simple scoring scheme we have adopted here.

We can also make use of our KB potentials to run
MD simulations on different RNA systems. However, it is
unclear whether these potentials can effectively model un-
folded or intermediate RNA states. Modeling such extended
conformations may require long-range interactions, but such
distances are lacking in X-ray structures of globular native
RNA. To better address this problem, and possibly improve
the geometry of base-interactions, we envision having to
explicitly include base-pairing interactions or other orienta-
tion-dependent interactions like those used in recent studies
(Dima et al. 2005; Stombaugh et al. 2009; Zirbel et al. 2009).
In future work, we will look at structural refinement of

FIGURE 3. Structural features captured by the KB potential. The
plots (A–C) show the potentials for specific atom pairs. In each plot,
the corresponding force is shown in the inset. (A) gC4-gC4 potential
showing a base-stacking well z4.4 Å labeled (1). (B) uC4-uC4
potential showing no base-stacking well. (C) gO6-cN4 potential
showing a deep base-pairing well (2a) and various structural wells
(2b and 2c). (D) Distances represented in the different wells shown on
the Rev binding element of HIV-1 structure (PDB id: 1duq).

FIGURE 4. Comparison of the best scoring decoys for the GUAA
tetraloop (PDB id: 1msy). The native structure is shown in C and the
superimposed decoys selected by the all-atom KB potential and
Rosetta are illustrated in D and E, respectively. In both D and E the
native structure is also shown in gray. The close-up views of the
tetraloop for both best scored decoys are shown in panels A and B,
respectively. The Rosetta scoring function incorrectly selects a struc-
ture with stronger base planar stacking than found in the native
structure.
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near-native decoys to investigate the quality of our potentials
close to the native energy basins, and then evaluate the need
for additional terms in our KB potentials.

Simplified treatment of solvent and electrostatics

A major advantage of using KB potentials is the implicit
treatment of electrostatics and solvent, through the use of
pairwise atomic distances in experimentally determined struc-
tures. This removes the need to include solvents and ions in
any sampling or scoring procedure, reducing the size of the
problem, thus allowing the handling of large RNA systems.
Since distance statistics were taken from crystal structures
grown under a diverse range of ionic conditions (albeit most
crystals were grown in the presence of divalent ions), our KB
potentials cannot be directly related to specific ionic condi-
tions. Rather, our potentials are likely applicable to the broad
range of ionic conditions under which most RNAs fold to
their native form. Arguably our KB treatment of electrostatics
and hydration is crude and unphysical, since we intentionally
did not take into account differences in ionic conditions of
the different crystallized RNAs, and also did not differentiate
between diffuse ions from partially or fully dehydrated ones.
However, the significant reduction in computational com-
plexity definitely improves sampling efficiency. We can make
use of the KB potential to seed different structures for more
intricate explicit solvent and ions MD simulations.

CONCLUSION

We built fully differentiable KB potentials from a carefully
curated data set of high-resolution RNA structures and
used decoys to assess their qualities. While such an
evaluation scheme has its limitations (Handl et al. 2009),
it is a fast and easy method to determine the quality of
potentials. We minimized any bias by scoring decoys
generated from three different approaches. Even in the
absence of a priori information, our RNA potentials—in
particular that with all-atom representation—lead to effec-
tive discrimination of RNA decoys, comparable to, and in
some cases bettering, existing parameterized or template-
based techniques.

MATERIALS AND METHODS

RNA data set and distance collection

We built our RNA data set by selecting RNA structures that fulfill
the following specific requirements:

1. Each structure has been solved by X-ray crystallography to
a resolution >3.5 Å.

2. The solved RNA structure should not be bound to proteins or
ligands.

3. Less than 5% of the nucleotides in the RNA are modified or
missing.

4. The data set does not contain two structures with sequence
identity >80%.

5. The structure should be representative of the biologically active
molecule (symmetric molecules are built if needed).

The RNA selection process consists of automated and manual
portions. The PDB (2007 annual release) was scanned for
suitability by using an in-house extension of the BioPython PDB
module (Hamelryck and Manderick 2003) for nucleic acids. The
lengths and sequences of RNA structures that meet criteria 1 and 2
(see above) were extracted and analyzed using the same module.

To account for identical RNAs, these sequences obtained were
aligned using the program Blast (Altschul et al. 1990) and
hierarchical clustering based on sequence identity was performed
using the statistical program R (R Development Core Team 2008).
These clusters of sequences were then manually evaluated. For each
cluster, the structure corresponding to the longest sequence was
retained. The structural details were manually curated and bi-
ological functions extracted from the relevant literature. When the
biologically relevant molecule was not found in the asymmetric
unit, symmetric chains were built using PyMOL (http://www.pymol.
org/) (DeLano 2002) and added to the structure file.

Once selected, structures were labeled using a family tag
(Ribosomal RNAs, Ribozymes, Transfer RNAs, Viral RNAs, SRP
RNAs and miscellaneous; see Supplemental Table 1). This data set
is available at http://csb.stanford.edu/rna.

Statistical analyses and functional forms

Computing Pobs(d) and Pref(d) as shown in Equation 1 from
distance measurements is essentially a density estimation problem.
The probabilities are inferred from the distances {d1,. . .,dn}, which
are assumed to be exchangeable observations of Pobs and Pref. There
are many alternative ways for performing density estimation in
univariate sets. In previous studies, fixed binning and spline fitting
were mainly used. This strategy can induce a lot of artifacts due to
low count and noise and the resultant probability density often may
not be a good representation of the data. Thus we decided to rely
on classical statistical techniques. In this study, we used a Dirichlet
process mixture model, which leads to analytically differentiable
potential functions. Density estimation was performed using the
implementation of Dirichlet process mixture models in the Flexible
Bayesian Modeling package written by R.M. Neal. This software
defines a hierarchical structure for the prior of the parameters f =
{m,s2}. The reader should refer to Neal (1998) for further details.

Normal mixture models are also widely used for density
estimation. The density function is assumed to be a mixture of
a number of Gaussian components weighted by factors v =
{v1,. . .,vn}. The density function has the form

PðdÞ= +
N

j=1

vjNðmj;s
2
j Þ:

Given a fixed number of components N, it is easy to find the
function P(d) that maximizes the likelihood of the data set.
However, determining the optimal number of components in a
statistically meaningful way is a difficult problem to which much
research has been devoted (McLachlan and Peel 2000).

An alternative that has been investigated more recently is to ex-
tend the finite mixture model to an infinite mixture of components.
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One can then use a purely Bayesian approach to infer the parameters
of the model, with a clever prior for the mixing proportions of the
components. A good choice for this prior is a Dirichlet process,
which results in what is known as a Dirichlet process mixture model.
These models can have strong advantages over their finite counter-
parts (Rasmussen 2000):

d In many applications it may be more appropriate not to limit
the number of components.

d The number of represented classes is automatically determined.
d The use of reversible jump Markov Chain Monte Carlo

(MCMC) effectively avoids local minima that plague mixtures
trained by optimization methods.

d It is simpler to work at the infinite limit than to work with finite
mixtures of unknown size.

To overcome signal instabilities generated by the estimations at
small distances where the number of counts is small for both
Pobs (d) and Pref (d), the first part of the potential is assumed to be
linear up to the first descending inflection point. The linear
approximation proved to be sufficient to obtain reasonable looking
potential shapes for the coarse-grained and all-atom potentials and
shows better results than sigmoid estimates (data not shown).
To ensure a smooth truncation at the distance cutoff (taken to be
14 Å), the whole signal was multiplied by a negative sigmoid
function centered on the cutoff distance. Both of those assump-
tions lead to continuously differentiable energy and force func-
tions, suitable for MD simulations.

Generation of decoy structures

In this study, we proposed a method to generate RNA decoy sets
with RMSD ranging continuously from 0 Å to >10 Å. Our method
is based on using MD simulations for sampling (Huang et al.
1996). Typical RNA MD simulations in explicit solvent will
generate configurations that have RMSD values a few angstroms
(typically 2 Å) away from the crystal structure. In order to
generate near-native decoy structures (i.e., with RMSD <2 Å),
we applied a position restraint potential on each heavy atom of
the RNA molecule to constrain the motions of RNA. On the other
hand, in order to generate decoy structures that are far from the
native structure, we applied REMD, an enhanced sampling
algorithm, to sample the configuration space far from the native
structure.

MD simulations are often trapped in local free energy minima
when sampling a rugged free energy landscape for biomolecular
folding. REMD was developed to overcome this problem by
inducing a random walk in temperature space, such that broad
sampling is achieved at high temperature to avoid kinetic traps at
low temperature (Hansmann and Okamoto 1999; Sugita and
Okamoto 1999). In REMD, multiple simulations are run, each at
a different temperature. A random walk in temperature space is
achieved by periodically attempting to swap the conformations at
two neighboring temperatures. The probability of accepting a swap is

Pði! jÞ= min 1; e bj�bið Þ Ui�Ujð Þ
� �

where P(i / j) is the probability of transitioning from temper-
ature T(i) to temperature T( j), bi is 1/(kTi), with k the Boltzmann
constant, and Ui is the potential energy of the conformation at
T(i). Thus, the detailed balance condition is satisfied.

Our simulations used the AMBER 03 potential for nucleic acids
(Chen and Pappu 2007). The GROMACS molecular dynamics
simulation package (Hess et al. 2008) was used due to its speed.
The RNA molecule was solvated in a water box with any solute
atom at least 10 Å away from the wall of the box. Sodium cations
(Na+) were added to neutralize the system. The simulation system
was minimized using a steepest descent algorithm, followed by
a 100 psec MD simulation applying a position restraint potential
to the RNA heavy atoms. All simulations were run with constant
NVT by coupling to a Nose-Hoover thermostat (Hoover 1985)
with a coupling constant of 0.02 psec�1. A cutoff of 10 Å was
used for nonbonded interactions. Long-range electrostatic inter-
actions were treated with the Particle-Mesh Ewald (PME) method
(Darden et al. 1995). Nonbonded pair lists were updated every 10
steps with an integration step size of 2 fsec in all simulations. All
bonds were constrained using the LINCS algorithm (Hess et al. 1997).

Five representative RNA systems were chosen from our initial
RNA data set to generate the decoy structures. For each RNA
system, 20 1-nsec position restraint simulations were performed
with each heavy atom constrained to its initial position by a
harmonic potential,

E = k r�r0ð Þ2

where k, the force constant, equals 0, 10, 20, . . . 90, 100, 200, 300,
. . . 900 respectively in each of the 20 simulations. In addition,
1-nsec REMD simulations are also performed for each RNA
system. The temperature list was roughly exponentially distrib-
uted, with 50 temperatures ranging from 285 to 592K.

Normal-mode decoys were generated using our normal-mode
perturbation method (Summa and Levitt 2007). Quasi elastic
modes of each native structure are computed using just the single-
bond torsion angles as degrees of freedom. The potential energy
and kinetic energy matrices, V and T, were generated by numerical
differentiation (Levitt et al. 1985) using the Tirion-like (Tirion
1996) energy function:

Uij = 90 � r2�R2
� �2

.
R4 � aR4 + 1�að Þr4

	 
� �

where r is the separation of atoms i and j, R is the constant
separation of the same atoms in the native structure, and the
constant a is set to 0.2. Using this function, the energy and its first
derivative are zero at the native state (r = R) and the second
derivative is always positive and decreases as R�6. Eigenvectors
derived in torsion-angle space involve combinations of torsion
angles that do not move atoms along straight lines in Cartesian
coordinates. In the past (Summa and Levitt 2007), we used the
shifts of atomic positions caused by a very small shift along
a torsional mode denoted as yij for the ith Cartesian coordinate of
the jth mode. These shift vectors are not necessarily orthogonal in
Cartesian coordinates +yikyij 6¼ 0

� �
so that adding components

from such vectors can fail to span the subspace of K modes
properly. We dealt with this problem by using the actual torsion
angle changes associated with each normal mode. The angle
changes for the 20 lowest modes were added together with random
amplitudes and then used to perturb the native structure in torsion
angle space. This gave a structure that still had stereochemically
correct bond lengths and angles but could have bad contacts. The
RMSD of this structure was recorded, as was the number of bad
contacts. The procedure was then repeated 50,000 times using
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different random amplitudes whose magnitude slowly increased so
as to ensure that we generated decoys with a uniform range of
RMSD values up to some specified maximum value. The RMSD
values of the structures were used to count how many structures fell
in RMSD bins 0.1 Å wide. A required number of structures in each
bin was specified (10 here) and the maximum RMSD value was set
to 5 Å so that we aim to have 50 bins each containing 10 decoys.
The 50,000 tries generated 100-fold more decoys and we chose the
smallest RMSD with the smallest number of bad contacts in each
bin. This gave z500 decoys that were then refined by Encad energy
minimization to ensure that none of the decoys would be easy to
discriminate due to bad contacts.

The FARNA decoys used in this study were obtained from
http://www.stanford.edu/zrhiju/data.html, and described in de-
tail in the corresponding FARNA article (Das and Baker 2007).

Scoring with Rosetta RNA

Scoring of RNA decoys using the Rosetta scoring function was
conducted with the Rosetta 3.0 package (http://www.rosettacommons.
org). The addition of hydrogen atoms to native structures often
introduces steric clashes. Therefore, for consistency, all hydrogen
atoms were removed (decoys and native). In most cases, the ter-
minal 59-phosphate was missing, and was inserted based on ideal
RNA base geometry. To relieve strain and steric clashes from the
addition of the phosphate, only the corresponding bases were al-
lowed to move in a simple implicit solvent minimization procedure
(AMBER 99 force-field [Wang et al. 2000]; Generalized Born elec-
trostatics [Tsui and Case 2000] with inverse Debye-Huckel length
of 0.19 Å�1; maximum of 500 steps implemented in Nucleic Acid
Builder [Macke and Case 1997]). Such a short and constrained
minimization procedure adequately removes steric clashes intro-
duced by the terminal phosphate, while appropriately maintaining
the RNA fold. Atomic movements introduced were minimal in all
cases, with small RMSD changes. These same structures were also
used in our KB potential scoring.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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INRIA Équipe Associée program for financial support. This work
was supported by a National Institutes of Health award
(GM041455) to M.L., a Human Frontiers in Science Program
grant to M.L., and a Hong Kong University Grants Council award
(RPC10SC03) and RGCHKUST6/CRF/10 to X.H. A.Y.L.S. ac-
knowledges support from the Agency for Science, Technology and
Research (A*STAR), Singapore. The authors acknowledge support
from NSF award CNS-0619926 for computer resources.

Received November 15, 2010; accepted March 1, 2011.

REFERENCES

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic
local alignment search tool. J Mol Biol 215: 403–410.

Batey RT, Rambo RP, Doudna JA. 1999. Tertiary motifs in RNA
structure and folding. Angew Chem Int Ed Engl 38: 2326–2343.

Berman H, Henrick K, Nakamura H, Markley JL. 2007. The
worldwide Protein Data Bank (wwPDB): Ensuring a single,
uniform archive of PDB data. Nucleic Acids Res 35: D301–D303.

Brion P, Westhof E. 1997. Hierarchy and dynamics of RNA folding.
Annu Rev Biophys Biomol Struct 26: 113–137.

Chen AA, Pappu RV. 2007. Parameters of monovalent ions in the
AMBER-99 forcefield: Assessment of inaccuracies and proposed
improvements. J Phys Chem B 111: 11884–11887.

Chopra G, Summa CM, Levitt M. 2008. Solvent dramatically affects
protein structure refinement. Proc Natl Acad Sci 105: 20239–
20244.

Chopra G, Kalisman N, Levitt M. 2010. Consistent refinement of
submitted models at CASP using a knowledge-based potential.
Proteins 78: 2668–2678.

Darden T, York D, Pedersen L. 1995. A smooth particle mesh Ewald
potential. J Chem Phys 103: 3014–3021.

Das R, Baker D. 2007. Automated de novo prediction of native-like
RNA tertiary structures. Proc Natl Acad Sci 104: 14664–14669.

Das R, Karanicolas J, Baker D. 2010. Atomic accuracy in predicting
and designing noncanonical RNA structure. Nat Methods 7: 291–
294.

DeLano WL. 2002. The PyMOL user’s manual. DeLano Scientific, San
Carlos, CA.

Dima RI, Hyeon C, Thirumalai D. 2005. Extracting stacking inter-
action parameters for RNA from the data set of native structures.
J Mol Biol 347: 53–69.

Flores SC, Altman RB. 2010. Turning limited experimental informa-
tion into 3D models of RNA. RNA 16: 1769–1778.

Frellsen J, Moltke I, Thiim M, Mardia KV, Ferkinghoff-Borg J,
Hamelryck T. 2009. A probabilistic model of RNA conformational
space. PLoS Comput Biol 5: e1000406. doi: 10.1371/journal.pcbi.
1000406.

Gesteland RF, Cech T, Atkins JF. 2006. The RNA world: The nature of
modern RNA suggests a prebiotic RNA. Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, NY.

Hamelryck T, Manderick B. 2003. PDB file parser and structure class
implemented in Python. Bioinformatics 19: 2308–2310.

Handl J, Knowles J, Lovell SC. 2009. Artefacts and biases affecting the
evaluation of scoring functions on decoy sets for protein structure
prediction. Bioinformatics 25: 1271–1279.

Hansmann UH, Okamoto Y. 1999. New Monte Carlo algorithms for
protein folding. Curr Opin Struct Biol 9: 177–183.

Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. 1997. LINCS: A
linear constraint solver for molecular simulations. J Comput Chem
18: 1463–1472.

Hess B, Kutzner C, Van der Spoel D, Lindahl E. 2008. GROMACS 4:
Algorithms for highly efficient, load-balanced, and scalable
molecular simulation. J Chem Theory Comput 4: 435–447.

Hofacker IL. 2009. RNA secondary structure analysis using the Vienna
RNA package. Curr Protoc Bioinformatics Chapter 12: Unit12 12.
doi: 10.1002/0471250953.bi1202s26.

Hoover W. 1985. Canonical dynamics: Equilibrium phase-space
distributions. Phys Rev A 31: 1695–1697.

Huang ES, Subbiah S, Tsai J, Levitt M. 1996. Using a hydrophobic
contact potential to evaluate native and near-native folds gen-
erated by molecular dynamics simulations. J Mol Biol 257: 716–
725.

Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag
D, Altman RB. 2009. Coarse-grained modeling of large RNA
molecules with knowledge-based potentials and structural filters.
RNA 15: 189–199.

Levitt M, Sander C, Stern PS. 1985. Protein normal-mode dynamics:
Trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol
181: 423–447.

Lu H, Skolnick J. 2001. A distance-dependent atomic knowledge-
based potential for improved protein structure selection. Proteins
44: 223–232.

Bernauer et al.

1074 RNA, Vol. 17, No. 6



Macke TJ, Case DA. 1997. Modeling unusual nucleic acid struc-
tures. In Molecular modeling of nucleic acids (ed. NB Leontis, J
SantaLucia Jr), Vol. 682, pp. 379–393. American Chemical Society.

Mathews DH. 2006. Revolutions in RNA secondary structure pre-
diction. J Mol Biol 359: 526–532.

McLachlan G, Peel D. 2000. Finite mixture models. Wiley, New York.
Murray LJ, Arendall WB III, Richardson DC, Richardson JS. 2003.

RNA backbone is rotameric. Proc Natl Acad Sci 100: 13904–13909.
Murthy VL, Rose GD. 2003. RNABase: An annotated database of RNA

structures. Nucleic Acids Res 31: 502–504.
Neal RM. 1998. Markov chain sampling methods for Dirichlet process

mixture models. J Comput Graph Stat 9: 249–265.
Parisien M, Major F. 2008. The MC-Fold and MC-Sym pipeline infers

RNA structure from sequence data. Nature 452: 51–55.
R Development Core Team 2008. R: A language and environment for

statistical computing. R Foundation for Statistical Computing,
Vienna, Austria.

Rasmussen CE. 2000. The infinite Gaussian mixture model. In
Advances in neural information processing systems (ed. SA
Sollaet al.), Vol. 12, pp. 554–560. MIT Press, Boston.

Reeder J, Hochsmann M, Rehmsmeier M, Voss B, Giegerich R. 2006.
Beyond Mfold: Recent advances in RNA bioinformatics. J Bio-
technol 124: 41–55.

Saenger W. 1984. Principles of nucleic acid structure. Springer-Verlag,
New York.

Samudrala R, Moult J. 1998. An all-atom distance-dependent condi-
tional probability discriminatory function for protein structure
prediction. J Mol Biol 275: 895–916.

Shapiro BA, Yingling YG, Kasprzak W, Bindewald E. 2007. Bridging the
gap in RNA structure prediction. Curr Opin Struct Biol 17: 157–165.

Sharma S, Ding F, Dokholyan NV. 2008. iFoldRNA: Three-dimen-
sional RNA structure prediction and folding. Bioinformatics 24:
1951–1952.

Sippl MJ. 1990. Calculation of conformational ensembles from poten-
tials of mean force. An approach to the knowledge-based prediction
of local structures in globular proteins. J Mol Biol 213: 859–883.

Stombaugh J, Zirbel CL, Westhof E, Leontis NB. 2009. Frequency and
isostericity of RNA base pairs. Nucleic Acids Res 37: 2294–2312.

Sugita Y, Okamoto Y. 1999. Replica-exchange molecular dynamics
method for protein folding. Chem Phys Lett 314: 141–151.

Summa CM, Levitt M. 2007. Near-native structure refinement using
in vacuo energy minimization. Proc Natl Acad Sci 104: 3177–
3182.

Sykes MT, Levitt M. 2005. Describing RNA structure by libraries of
clustered nucleotide doublets. J Mol Biol 351: 26–38.

Tinoco I Jr, Bustamante C. 1999. How RNA folds. J Mol Biol 293:
271–281.

Tirion MM. 1996. Large amplitude elastic motions in proteins from
a single-parameter, atomic analysis. Phys Rev Lett 77: 1905–1908.

Tsai J, Bonneau R, Morozov AV, Kuhlman B, Rohl CA, Baker D. 2003.
An improved protein decoy set for testing energy functions for
protein structure prediction. Proteins 53: 76–87.

Tsui V, Case DA. 2000. Theory and applications of the generalized
Born solvation model in macromolecular simulations. Biopolymers
56: 275–291.

Wang J, Cieplak P, Kollman PA. 2000. How well does a restrained
electrostatic potential (RESP) model perform in calculating confor-
mational energies of organic and biological molecules?. J Comput
Chem 21: 1049–1074.

Zhang C, Liu S, Zhou H, Zhou Y. 2004. An accurate, residue-level,
pair potential of mean force for folding and binding based on
the distance-scaled, ideal-gas reference state. Protein Sci 13: 400–
411.

Zhou H, Zhou Y. 2002. Distance-scaled, finite ideal-gas reference
state improves structure-derived potentials of mean force for
structure selection and stability prediction. Protein Sci 11: 2714–
2726.

Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. 2009.
Classification and energetics of the base-phosphate interactions in
RNA. Nucleic Acids Res 37: 4898–4918.

Zuker M. 2003. Mfold web server for nucleic acid folding and
hybridization prediction. Nucleic Acids Res 31: 3406–3415.

Knowledge-based potentials for RNA structure

www.rnajournal.org 1075


