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Abstract

There has been a rapid increase in the incidence of diabetes as well the associated vascular complications. Both

genetic and environmental factors have been implicated in these pathologies. Increasing evidence suggests that epi-

genetic factors play a key role in the complex interplay between genes and the environment. Actions of major patho-

logical mediators of diabetes and its complications such as hyperglycaemia, oxidant stress, and inflammatory factors

can lead to dysregulated epigenetic mechanisms that affect chromatin structure and gene expression. Furthermore,

persistence of this altered state of the epigenome may be the underlying mechanism contributing to a ‘metabolic

memory’ that results in chronic inflammation and vascular dysfunction in diabetes even after achieving

glycaemic control. Further examination of epigenetic mechanisms by also taking advantage of recently developed

next-generation sequencing technologies can provide novel insights into the pathology of diabetes and its compli-

cations and lead to the discovery of much needed new drug targets for these diseases. In this review, we highlight

the role of epigenetics in diabetes and its vascular complications, and recent technological advances that have signifi-

cantly accelerated the field.

This article is part of the Review Focus on: Epigenetics and the Histone Code in Vascular Biology

1. Introduction

Changes in dietary habits and lifestyles associated with rapid econ-
omic growth have dramatically increased the incidence of diabetes,
obesity, and related vascular complications. This has created a
global epidemic of these metabolic disorders and a major health-care
concern. Both type 1 diabetes (T1D) and type 2 diabetes (T2D) are
associated with hyperglycaemia, oxidant stress and inflammation, and
significantly increased risk for macrovascular complications such as
atherosclerosis and stroke and microvascular complications such as
diabetic nephropathy (DN), neuropathy, and retinopathy.' ¢ Several
biochemical mechanisms and genetic factors have been implicated in
the pathology of diabetes and its complications. However, it is
evident that due to the influences of gene—environmental inter-
actions, epigenetic mechanisms such as chromatin histone modifi-
cations and DNA methylation regulate at least a part of these
pathological mechanisms. Therefore, further understanding of these
chromatin-based molecular mechanisms may lead to the development
of better therapeutic strategies. In this review, we highlight the role of
epigenetic mechanisms in diabetes and its vascular complications, and
recent technological advances that have helped accelerate the field.

2. Cellular mechanisms of diabetic
vascular complications and
metabolic memory

Diabetes and diabetogenic agents such as high glucose (HG),
advanced glycation end-products (AGEs), angiotensin Il (Ang Il), trans-
forming growth factor-B (TGF-B), and oxidized lipids have adverse
effects in major target cells involved in vascular dysfunction including
endothelial cells (ECs), vascular smooth muscle cells (VSMCs), mono-
cytes, and renal mesangial cells (MCs).2~*’~"? Several signal transduc-
tion mechanisms including oxidant stress, activation of receptor for
AGEs (RAGE), protein kinase C (PKC), tyrosine kinases, mitogen-
activated protein kinases (MAPKs), and transcription factor nuclear
factor-kB (NF-kB) have been implicated in these events.*®12~'°
However, evidence shows that current therapies based on these
mechanisms are not fully efficacious in preventing complications,
suggesting the need for the identification of novel therapeutic
targets. In particular, it has been noted that some individuals with dia-
betes experience a continued progression of vascular complications
even after glycaemic control subsequent to a period of prior
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hyperglycaemic exposure, a phenomenon termed ‘metabolic
memory’. This has been demonstrated in multiple clinical trials such
as the Diabetes Control and Complications Trial (DCCT) and
follow-up Epidemiology of Diabetic Complications and Interventions
Trial (EDIC) in T1D subjects, and later in other clinical trials with
T2D patients. These studies demonstrated that intensive glycaemic
control could reduce the progression of diabetic complications but
could not prevent them, lower fasting blood glucose levels at the
time of diagnosis correlated with delayed vascular complications,
and early intervention to control hyperglycaemia could lead to
better outcomes for macrovascular complications.'® 2" Furthermore,
episodes of post-prandial hyperglycaemia may also increase the risk
for vascular complications.”

Experimental models in cell culture and animals have revealed a
similar metabolic memory phenomenon. Earlier studies showed that
retinal complications persisted even after the reversal of hyperglycae-
mia in dogs.?® Islet transplantation in diabetic rats, 6 weeks after the
onset of diabetes, led to reduced rates of retinopathy, but islet trans-
plantation 12 weeks post-diabetes could not prevent retinopathy.”*
Studies with streptozotocin (STZ)-injected T1D rats showed that the
reinstitution of glycaemic control after a short period of hyperglycaemia
had protective effects in the eyes, including reduction in parameters of
oxidant stress and inflammation. However, reinstitution of glycaemic
control after prolonged diabetes failed to show similar protection.”>2®

ECs cultured in HG displayed a sustained increase in the expression
of key extracellular and pro-fibrotic genes®’ and persistently increased
oxidant stress,”® despite subsequent glucose normalization. Further-
more, transient exposure of ECs to HG for 16 h resulted in sustained
increases in the expression of NF-kB p65, oxidant stress, and inflam-
matory genes up to 6 days after glucose normalization.””*° In another
model, VSMCs cultured from the arteries of obese T2D db/db mice
exhibited a sustained increase in inflammatory gene expression,
NF-kB activation, migration, oxidant stress, and adhesion to mono-
cytes relative to VSMCs cultured from non-diabetic genetic control
db/+ mice."?"32

Thus, both in vivo and in vitro studies show that the deleterious effects
of prior hyperglycaemic exposure have long-lasting effects on target
organs even after subsequent glycaemic control underscoring the ben-
eficial effects of intensive glycaemic control in diabetes. They also
suggest that the oxidant stress triggered by HG, AGEs, lipids, and
otherrelated factors may be a key mediator. Furthermore, increasing evi-
dence now supports epigenetic mechanisms as important components
in metabolic memory and the pathology of diabetic complications.

3. Epigenetics and gene
transcription

Chromatin function plays a critical role in the regulation of transcrip-
tion in mammalian cells. Dynamic switching between ‘active’ and ‘inac-
tive’ states of chromatin in response to extracellular and intrinsic
signals is a central mechanism involved in gene regulation®* and is
termed as ‘epigenetic mechanism’, because it does not alter the
underlying DNA sequence. Chromatin is a highly organized structure
composed of chromosomal DNA arranged into repeating units of
nucleosome core particles in the nucleus. Nucleosomes are made
up of 147 bp DNA wrapped around a histone octamer unit consisting
of dimers of core histone proteins H2A, H2B, H3, and H4, held
together by an H1 linker.>* DNA methylation is one of the most

stable epigenetic modifications and traditionally regarded as the
major mediator of epigenetic regulation. However, this view has
been modified now to include post-translational modifications
(PTMs) of nucleosomal histones and the more recently discovered
small non-coding RNAs or microRNAs (miRNAs) and large intergenic
non-coding RNAs as additional epigenetic components.®>>¢ Epige-
netic mechanisms regulate both short-term (non-heritable) and long-
term (heritable) effects and thus have a significant impact on diverse
biological processes.®” Epigenetic changes genome-wide are now col-
lectively referred to as the ‘Epigenome’ and intense research efforts
using state-of-the-art ultra-high-throughput profiling technologies
have yielded unprecedented insights into the mammalian epigenome
(Figure 1).35383°

DNA methylation is exerted by DNA methyltransferases (DNMTs)
at the 5’ position of cytosine residues in CpG dinucleotides by trans-
ferring methyl groups from S-adenosyl methionine. Hypermethylation
of promoter CpG islands generally results in transcription repres-
sion.”® DNA methylation in somatic cells was once considered to
be generally irreversible, but recent studies have demonstrated evi-
dence for DNA demethylation by both passive and active mechan-
isms. However, the mechanism of DNA demethylation and the
identity of DNA demethylases require further verification.*’ DNA
methylation is important in many cellular processes including the
silencing of repetitive elements, X-inactivation, imprinting, and devel-
opment. Long-term silencing of tumour suppressors genes via hyper-
methylation of promoter CpG islands is a well-established mechanism
in the development of cancer.®**°

Chromatin histone PTMs such as lysine acetylation, and methyl-
ation of lysine and arginine are the other well-studied epigenetic
modifications. They act in concert with other PTMs including phos-
phorylation, ubiquitination, and sumoylation to fine tune gene
expression by controlling chromatin access to transcription factors
to the cognate cis-elements at promoter and enhancer
regions.>***~** Combinatorial actions of these modifications form
a ‘histone code’ that dictates the ‘repressed’ or ‘active’ states of
chromatin.*

Histone H3 lysine acetylation (H3KAc) such as H3K9Ac, H3K14Ac,
and H3K27Ac is generally associated with active gene promoters.
Histone acetyltransferases (HATs) mediate H3KAc and histone dea-
cetylases (HDACs) remove it.** Histone H3 arginine methylation
(H3Rme) is mediated by protein arginine methyltransferases
(PRMT) such as co-activator-associated arginine methyltransferase 1
(CARM1) and generally activates gene expression.”** Histone
lysine methyltransferases (HMTs) mediate histone lysine methylation
(HKme), which can be associated with either active or repressive
gene expression depending on the lysine modified. Furthermore,
HMTs can mediate mono- (mel), di- (me2), or trimethylation
(me3) of specific lysine residues to add an extra layer of regu-
lation.”*** H3K9me2, -me3 and H3K27me2, -me3 are generally
repressive marks, whereas H3K4me is generally an active mark.
H3Kme is relatively stable and evidence shows that it can be epigen-
etically transferred.*® The recent discovery of histone lysine demethy-
lases (HDMs) that remove methylation marks from specific lysine
residues demonstrated the dynamic nature of HKme.*” Emerging evi-
dence shows an important regulatory role of HMTs and HDMs in
diverse physiological processes and disease conditions.’** Interest-
ingly, some of these enzymes can also modify non-histone proteins
including p53 and NF-kB,***® further re-enforcing their growing
importance in cellular processes.
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Figure | Schematic diagram showing the role of epigenetic mechanisms in transcription regulation. Chromatin consists of nucleosomes which are
made up of DNA wrapped around histone octamers containing dimers of core histone H2A, H2B, H3, and H4. Histone modifications such as H3
lysine-9 methylation (H3K9me) or H3 lysine-27 methylation (H3K27me) are generally repressive marks, whereas H3 lysine-9/14 acetylation
(H3KACc) and H3 lysine-4 methylation (H3K4me) are generally activation marks. H3Kme is regulated by histone methyltransferases/demethylases
(HMTs/HDMs) and H3KACc is regulated by HATs/HDACs. Histone modifications coupled with DNA methylation at CpG islands by DNMTs/DNA
demethylases (DNAdeMeth) determine the active or inactive state of chromatin leading to gene expression or repression, respectively. This
dynamic state of the chromatin is subject to alteration by external stimuli via the regulation of epigenetic machinery and miRNAs leading to gene

expression and pathophysiological phenotypes.

In addition to genetic pre-disposition, environmental factors and
nutrient states may alter epigenetic states to play critical roles in
normal development as well as susceptibility to diseases including dia-
203649731 Diabetes can further

exacerbate the effects of environmental and other risk factors to

betes and related complications.

accelerate vascular complications. Increased understanding of
chronic effects of the diabetic milieu on the dynamic regulation of
the epigenome could offer mechanistic clues to the metabolic
memory phenomenon and provide unique opportunities to develop

novel therapeutic approaches.

4. DNA methylation: relation to
diabetes and vascular complications

Only limited studies have examined the role of DNA methylation in
the pathogenesis of diabetes and vascular diseases. Previous studies
showed that the regulation of Agouti gene expression by DNA methy!-
ation plays an important role in the development of obesity and dia-
betes in mice.’” Studies using the intrauterine growth retardation
model demonstrated that the islet dysfunction and development of
diabetes in rats is associated with epigenetic silencing via promoter
DNA methylation of Pdx1, a key transcription factor that regulates
B-cell differentiation and insulin gene expression.>® Peroxisome

proliferator-activated receptor-y co-activator 1o (PGC-1ar) regulates

insulin production in pancreatic (-cells. Studies with T2D animals
showed that DNA hypermethylation at the promoter of its gene
PPARGC1A reduces PGC-1a expression and inhibits insulin pro-
duction.®* Interestingly, PPARGCTA promoter was also hypermethy-
lated in skeletal muscles from T2D patients, but at non-CpG
nucleotides. DNA methylation in myotubes was induced by TNF-a
and free fatty acid palmitate in a DNMT3B-dependent manner,
whereas both insulin and glucose had no effect.®® Studies in renal
cells exposed to HG and in renal tissues from STZ-induced T1D
rats did not show significant differences in DNA methylation at candi-
date gene promoters.>®*” However, significant differential DNA
methylation was observed at 19 gene promoters in genomic DNA
from T1D patients with DN compared with patients without DN.>®
Notably, one of the hypermethylated genes was UNC13B, which
was linked with DN in genetic studies.”® These findings suggest a
link between DNA methylation, diabetes, and its complications
(Figure 2).

The role of DNA methylation in the pathogenesis of cardiovascular
diseases (CVDs) is not completely understood. Atherosclerosis was
associated with global hypomethylation in SMCs of atherosclerotic
lesions from humans, and animal models such as high-fat diet-fed

59-61
Furthermore,

ApoE null mice and balloon-injured rabbits.
altered DNA methylation of several candidate genes linked with
atherosclerosis was identified in both VSMCs and ECs, and in

mouse models. These include hypoxia-inducible factor-1a, c-fos,
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Figure 2 Schematic diagram showing the role of epigenetic mech-
anisms in diabetes and metabolic memory implicated in accelerated
vascular complications. Diabetes and the associated hyperglycaemia
(HG) and AGEs can lead to production of pro-inflammatory
mediators such as cytokines and growth factors. Together, they acti-
vate multiple signal transduction pathways including oxidant stress,
tyrosine kinases (TK), PKC, and MAPKs leading to activation of tran-
scription factors (TFs) such as NF-«kB, and dysregulation of epige-
netic mechanisms including HKme, histone lysine acetylation
(HKACc), and DNA methylation (DNAme) via the action of corre-
sponding methyltransferases, demethylases, acetylases, and deacety-
lases. In addition, miRNAs can further fine tune the expression of
key players involved in these pathways. The net outcome of these
events is the loss of repressive chromatin marks and gain of acti-
vation marks, leading to the formation of open chromatin state at
the promoters of pathological genes allowing increased access to
transcription factors. Persistence of this altered state of the epigen-
ome through unknown mechanisms can lead to ‘metabolic memory’
linked with chronic inflammation and other cellular defects associ-
ated with micro- and macrovascular complications. HMTs, histone
methyltransferases; HDMs, histone demethylases; HATSs, histone
acetyltransferases; HDACs, histone deacetylases; DNMTs, DNA
methyltransferases; DeMet, DNA demethylases.

p53 and oestrogen receptor, growth factors, arachidonic acid-
metabolizing enzymes (15-lipoxygenase), vasodilator endothelial
nitric oxide synthase, and matrix metalloproteinases.®>*® Alterations
in genomic DNA methylation were also demonstrated in leucocytes
derived from ApoE null mice preceding the development of athero-
sclerosis.** Other CVD risk factors such as hyperhomocysteinaemia,
hypercholesterolaemia, and inflammation have also been implicated
in DNA methylation changes associated with atherosclerosis.®*~ %
Altered global DNA methylation was noted in peripheral blood
monocytes of patients with increased risk for CVDs.*” Risk for

CVDs and diabetes increases with age, and ageing is associated with

hypomethylation of genomic DNA.® Interestingly, the formation of
AGEs increases over age and this process is accelerated in diabetes.
AGEs and their receptor RAGE have been implicated in inducing
oxidant stress, inflammation, and vascular complications.””"*
However, whether AGEs can alter DNA methylation profiles in dia-
betes is still unclear. Thus, several risk factors associated with diabetes
and CVDs could potentially alter DNA methylation. With the avail-
ability of improved technologies for surveying the DNA methylome,
it is likely that important information will soon become available
from several clinical cohorts.

5. Histone PTMs: relation to
diabetes and vascular complications

The role of histone PTMs has been extensively studied in cancer.®>*

However, much less is known in diabetes and its complications,zo'21
Histone PTMs have been implicated in 3-cell function and insulin pro-
duction. Under HG conditions, islet-specific transcription factor Pdx1
was shown to stimulate insulin expression by recruiting co-activators
p300 and the HMT SET7/9, which increased histone acetylation and
H3K4me2, respectively, and the formation of open chromatin at the
insulin promoter. In contrast, under low-glucose conditions, Pdx1
could recruit co-repressors HDAC1/2, leading to inhibition of insulin
gene expression. Furthermore, Pdx1 also mediated 3-cell-specific
expression of SET7/9, which could regulate genes involved in
glucose-induced insulin secretion.®””® Evidence also showed the regu-
latory roles of H3K27me3, H3K4me3, and Polycomb group of proteins
such as Bmi-1, the H3K27me3 transferase Ezh2, its demethylase JMJD3,
and the H3K4me3 transferase MLL in the expression of tumour sup-
pressor p16INK4a in B-cell proliferation and regeneration.”" Histone
PTMs (H3K4me2 and H3K9me2), H3K4 demethylase lysine-specific
demethylase 1 (LSD1), and an H3K9me2 methyltransferase SET
domain bifurcated 1 (SETDB1) were implicated in adipogenesis.”” Inter-
estingly, mice deficient in the H3K9me2 demethylase Jhdm2a (JMJD1a)
developed obesity and hyperlipidaemia.”* Several transcription regula-
tors involved in islet differentiation are also regulated by acetylation,
suggesting a role for HATs/HDACs in diabetes.”* SIRT1, a member of
Sirtuin family with HDAC activity, has been shown to modulate
energy metabolism and inflammation. SIRT1 overexpression or acti-
vation by resveratrol could improve insulin resistance and SIRT1 activa-
tors are being developed for diabetes treatment.”> However, the role of
other HDACs and the potential use of HDAC inhibitors in diabetes are
not very clear.”*”®

Inflammation plays a key role in diabetes and its vascular compli-
cations. The role of NF-kB in mediating inflammatory gene expression

is well established.”®

Diabetic conditions can promote inflammatory
gene expression via NF-kB activation and enhance monocyte
binding to ECs and VSMCs, and subsequent monocyte to macrophage
differentiation.’®>"””~8 A number of studies have now explored epi-
genetic mechanisms in inflammatory gene expression in vascular cells
and monocytes. Gene induction by pro-inflammatory agents was
associated with increased histone lysine acetylation in ECs and
VSMCs, whereas inhibition of HDACs increased inflammatory gene
expression.®* "8 Increased inflammatory gene expression required
collaboration of transcription factors such as NF-kB and cAMP
response element-binding protein with HATs including p300/CBP,
pCAF#*~#  Oxidized
LDL-induced chemokine expression was associated with H3KAc

steroid receptor co-activator-1, and
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and phosphorylation, and recruitment of HATs along with NF-kB in
ECs, and these were reversed by pre-treatment with statins.”®
Recent studies showed alterations in histone modification patterns,
along with changes in expression of the corresponding HMTs, in
VSMCs and ECs from aortas of adult mice exposed to hypercholes-
terolaemia.”” Studies in monocytes showed that H3K9/14Ac and
HATs CBP/p300, H3R17me and its methyltransferase CARM1, play
key roles in inflammatory gene expression.”>”> HDACs also played
key roles in lipopolysaccharide (LPS)-induced inflammatory gene
expression in monocytes and macrophages. However, HDAC inhibi-
tors surprisingly suppressed a subset of inflammatory genes but
increased pro-atherogenic genes, suggesting that further studies are
needed to clarify their role in atherosclerosis and inflammation.”*”*
H3Kme also plays a key role in inflammatory gene expression in
monocytes. Levels of the repressive mark H3K9me3 were reduced
at early time points but restored to control levels at later time
periods in monocytes stimulated with pro-inflammatory agents,
suggesting a role of H3K9me3 in negative feedback mechanisms
associated with inducible inflammatory gene expression.”® Similar
results were obtained in VSMCs.*? LPS-induced inflammatory gene
expression in macrophages was associated with reduced H3K27me3
and increased expression of an H3K27me3 demethylase JMJD3,
which was suggested to fine tune LPS-induced responses.””?8
TNF-a-induced expression of a subset of inflammatory genes in mono-
cytes increased promoter H3K4me and occupancy of SET7/9.”% Thus,
epigenetic mechanisms can regulate inflammatory gene expression and
CVD susceptibility even under non-diabetic states. These mechanisms
may be further accentuated by diabetic conditions and contribute to
accelerated complications and metabolic memory (Figure 2).

Inflammatory gene expression induced by diabetic stimuli like HG
and a RAGE ligand S100B was associated with increased H3K9/14Ac
along with increased recruitment of NF-kB and HATs CBP/p300 at
inflammatory gene promoters in THP-1 monocytes. In vivo relevance
was demonstrated by noting increased histone lysine acetylation at
these promoters in monocytes obtained from T1D and T2D patients.”
Elevated inflammatory gene expression was associated with increased
H3K4me and SET7/9 recruitment in TNF-a treated monocytes and in
macrophages from T1D mice.” Furthermore, genome-wide location
studies using chromatin immunoprecipitation (ChIP) coupled with
microarray analysis (ChlP-on-chip) revealed significant changes in
H3K4me2 and H3K9me2 patterns at key gene regions in HG-treated
THP-1 monocytes, with relevant changes being observed in primary
monocytes from diabetes patients.'® In addition, ChlP-on-chip profil-
ing in blood lymphocytes from T1D patients vs. controls demonstrated
significantly increased H3K9me?2 levels at a subset of genes, analysis of
which linked them to key autoimmune and inflammatory pathways
often associated with the development of T1D and its complications. '’
These genome-wide studies reveal the utility of epigenomic approaches
and suggest that while a reasonably stable methylation pattern is main-
tained in normal individuals in a cell-type-specific manner and this
pattern can be disrupted under disease states.

6. Epigenetic mechanisms in
metabolic memory

Recent studies using cell culture and animal models mimicking meta-
bolic memory have identified the role of epigenetic histone modifi-
cations such as H3KMe in vascular cells. ChIP assays using cultured

db/db VSMCs that exhibit enhanced pro-inflammatory responses
demonstrated significantly reduced levels of the repressive H3K9me3
mark at inflammatory gene promoters relative to db/+ even after
several passages in vitro.>> Furthermore, db/db VSMCs were hyper-
responsive to pro-inflammatory stimuli such as TNF-a with increased
inflammatory gene expression, persistently reduced levels of repressive
H3K9me3, and occupancy of the H3K9me3 methyltransferase Suv39h1
at inflammatory gene promoters, suggesting defective feedback or
repressive mechanisms in db/db cells. Diabetic db/db VSMCs also exhib-
ited reduced levels of Suv39h1, and reconstitution of Suv39h1 reversed
the pro-inflammatory phenotype of db/db cells. Human VSMCs treated
with HG also exhibited elevated inflammatory genes and reduced
H3K9me3 at their promoters.> In another model using ECs exposed
to HG, metabolic memory was associated with enhanced pé65
(NF-kB) expression and increased H3K4me1 and SET7/9 HMT recruit-
ment at the p65 promoter, with oxidant stress and reactive dicarbonyls
such as methylglyoxal being implicated.”” Additional studies also
revealed persistently reduced H3K9me2 and H3K9me3 levels and
increased recruitment of LSD1 at the p65 promoter in ECs exposed
to HG.*® In a rat model of diabetic retinopathy mimicking metabolic
memory, poor glucose control for prolonged periods followed by
euglycaemia could not prevent progression of retinopathy or histone
acetylation in these retinas, suggesting a role for epigenetic mechanisms
in metabolic memory of microvascular complications.'®* Taken
together, these findings suggest that diabetic stimuli can trigger
changes in the chromatin that can have long-lasting effects on the
expression of target genes and support a key role for epigenetic
histone PTMs in metabolic memory. It is likely that various other
histone PTMs, DNA methylation, and related chromatin factors
could also be identified as effectors of diabetes-induced vascular com-
plications (Figure 2). Since diabetes is a multifactorial disease involving
other factors besides hyperglycaemia, the net outcome may be from
their combined effects in several target cells and these still remain to
be identified.

Reversal of epigenetic mechanisms or ‘epigenetic therapy’ can be
effective in pathological conditions as shown in the treatment of
certain cancers.'®® An anti-inflammatory agent and HAT inhibitor cur-
cumin ameliorated HG-induced inflammatory gene expression and
histone acetylation at their promoters as well as changes in HAT
and HDAC activities in human monocytes.'®* There has been much
interest in the development of HDAC or HMT inhibitors for CVDs
and diabetic complications.””’*”®> Given the well-known roles of
oxidant stress, growth factors, AGEs, PKC, and extracellular matrix
proteins in diabetic complications, it would be worth determining
whether inhibitors of these factors can also interfere with down-
stream epigenetic mechanisms. Recent studies demonstrated that in
MCs, epigenetic HKme and recruitment of HMT SET7 play key
roles in HG- and TGF-B-mediated fibrotic gene expression and
these effects were significantly blocked by a TGF-f neutralizing anti-
body.'® Overall, these studies suggest that approaches aimed at
reversal of epigenetic mechanisms could be beneficial in ameliorating
diabetes-associated complications.

7. miRNAs in vascular complications

The 22-nucleotide small non-coding miRNAs play important roles in
diverse biological processes and disease conditions such as cancer,
diabetes, DN, cardiogenesis, angiogenesis, and vascular development
by post-transcriptional mechanisms.'®~""? Interaction of mature
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miRNAs with specific binding sites in the 3’ untranslated regions of
target mMRNAs in the RNA-induced silencing complex leads to
either mRNA degradation or inhibition of translation.' Each
miRNA can regulate multiple targets including signal transduction
components, transcription and epigenetic factors, and provide
another level of epigenetic mechanism to fine tune gene regulation
in response to environmental stimuli'® Evidence shows that
miRNAs can affect the function of both ECs and VSMCs relevant to
199=112 miRNAs are implicated in phenotypic switch-
ing, proliferation, migration, and neointimal thickening in VSMCs, as
well as capillary formation, migration, senescence, expression of
adhesion molecules, and angiogenic growth and transcription factors
in ECs."%%"3=""7 1n monocytes and macrophages, miRNAs regulate
inflammation, response to oxidized lipids, oxidative stress, immune
function, cholesterol homeostasis, and differentiation.'®>""8~122

Several studies have implicated miRNAs in diabetes pathogen-
esis."%13712¢ However, the role of miRNAs in diabetes vascular
complications is less studied. RAGE ligands
pro-inflammatory gene COX-2 by post-transcriptional mechanisms
via down-regulation of miR-16 in THP-1 monocytes.'”” HG increased
miR-1/miR-206 via SRF and MEFK1/2 and promoted apoptosis in car-
diomyocytes.'® miRNAs have been implicated in the regulation of
key renal genes related to DN. miR-192 and miR-216a were shown
to regulate collagen 1 (a2) (Col1a2) and E-cadherin gene expression
in renal cells."®"?="32 Fyrthermore, miR-216a and miR-217 were
up-regulated in glomeruli from diabetic mice, and by TGF-$ in MCs
and could increase hypertrophy.’*® miR-93 was down-regulated by
HG leading to up-regulation of its target VEGF-A in DN models."*

Recent studies showed that miR-125b levels were up-regulated in
cultured diabetic db/db VSMCs. Furthermore, miR-125b could down-
regulate Suv39h1 protein, increase inflammatory gene expression,
reduce H3K9me3 at their promoters, and enhance VSMC—monocyte
binding."** These results present evidence of miRNA-based mechan-
isms in epigenetic regulation of inflammatory gene expression in dia-
betes and potential contribution to metabolic memory of vascular
complications. Overall, it is clear that miRNAs may contribute to mul-
tiple complications of diabetes and can therefore be evaluated as
potential therapeutic targets.

vascular diseases.

increased

8. Emerging technologies for
epigenomics research

Candidate gene-based approaches have provided evidence of epige-
netic mechanisms in diabetes and vascular complications. However,
the full impact of epigenome alterations in disease development can
be better understood by taking advantage of genome-wide
approaches such as ChIP-on-chip and massively parallel next-
generation sequencing (NGS) methods."*>"*¢ NGS technologies
have revolutionized the efforts to map the human genome and epi-
genome by allowing sequencing of millions of short DNA fragments
in a single run and providing large volumes of accurate sequence
data in a more robust fashion. In these methods, DNA fragments
are directly sequenced and counts of sequence reads used as a
direct quantitative measure of the chromatin modification or gene
expression.”>> Several platforms are available that use proprietary
technologies to generate a library of short DNA fragments linked
with adapters and capture them on to beads or cross-link to solid
supports or deposit them into single wells, where DNA sequencing

is performed.*® The commonly used platforms include Illumina’s
Genome Analyzers, Roche’s 454 sequencing system, Applied Biosys-
tem’s SOLID™', Helicos Biosciences tSMS™, and Pacific Biosciences
SMRTR."*¢ These NGS technologies are now used in all aspects of
genome-wide profiling including gene expression (RNA-Seq),
miRNA sequencing, transcription factor binding and histone PTMs
(ChIP-Seq), and DNA methylation, thus providing an integrated
genomic platform.”®*~"*" Traditionally, DNA methylation is studied
by methods involving bisulfite conversion of genomic DNA, digestion
with methylation sensitive restriction enzymes, and also affinity-based
methods to enrich methylated DNA using antibodies to methyl-
binding proteins or to methylcytosine in assays such as
methylated-CpG island recovery assay (MIRA) or methylated DNA
immunoprecipitation (Me-DIP)."*~"** For genome-wide profiling,
DNA obtained from these methods is hybridized to DNA microar-
rays'* or sequenced by NGS approaches. Such NGS methods
helped reveal cell-type-specific differences in DNA methylomes
between embryonic stem cells, pluripotent stem cells, and fully differ-
entiated cells."**"*>"¢ DNA methylation profiling revealed 19 CpG
sites associated with the risk of DN in T1D patients.”® Methods to
analyse genome-wide DNA methylation patterns in clinical samples
are being developed.™” There is no doubt that these emerging tech-
nologies will significantly increase our knowledge of DNA methylation
in disease states.

Histone PTMs and transcription factor binding in vivo have been
studied using ChIP technique in which formaldehyde cross-linked
DNA-—protein complexes are immunoprecipitated with specific anti-
bodies against histone PTMs, transcription factors, or other chromatin
factors of interest. Immunoprecipitated DNA is amplified using
genomic DNA primers specific to promoters of genes being exam-
ined."®"*? Utility of ChIP assays has been augmented by ChIP-on-chip
technique in which ChlIP-enriched DNA is hybridized to various
microarrays including high-resolution promoter tiling arrays or
whole-genome arrays.'**"*?1*% These approaches have increased
our understanding of genome-wide histone PTMs at regulatory
regions, enhancers, cell-specific differences, and bivalent promoters
in stem cells.*®">"~"** ChIP-on-chip was also used to identify diabetes
and HG-specific histone PTM signatures in monocytes and lympho-
cytes.'%19" ChiP-linked to NGS (ChIP-Seq) has now significantly
improved the scope of genome-wide location studies of histone
PTMs."*?~ %" ChiP-Seq was used to profile several different histone
PTMs in T cells and characterize the histone PTM patterns specific
to enhancers, miRNA promoters, and chromatin states of pluripotent
and lineage-committed cells.'>>~"*8

The major challenge of NGS technologies lies in the analyses of the
large volumes of data generated, complex bioinformatics, gene ontol-
ogy, and data analysis tools required to reach biologically meaningful
conclusions. Several software tools are currently available and many
more are constantly emerging. Integration of data obtained from mul-
tiple techniques such as RNA-Seq, DNA-methylation, and ChlIP-Seq
will yield a wealth of information to address several unanswered ques-
tions such as how interactions between various components of the
epigenome, including histone PTMs, DNA methylation, and miRNAs
can lead to gene activation or repression under pathophysiological
conditions."*" These integrative approaches will be highly useful to
identify novel epigenetic and transcriptional regulation mechanisms
across several tissues and cells relevant to diabetes and vascular com-
plications. Another potentially useful application of NGS could be in
personal genomics and epigenomics to catalogue variations between
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individuals and in different disease states to provide improved and cus-
tomized therapies, including combinations of conventional drugs with
those targeting epigenetic factors. The Human Epigenome Project is
expected to yield key information in this connection.>***>? Techno-

logical breakthroughs will permit large-scale epigenomic analyses of
various disease states and offer opportunities to develop novel thera-
pies to combat diabetes and associated vascular complications.
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