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Apoptosis and the rapid clearance of apoptotic cells (ACs) by professional or nonprofessional phagocytes are 
normal and coordinated processes that ensure controlled cell growth and stress response with nonpathological 
outcomes. Uptake of ACs by phagocytes is thought to suppress autoimmune responses through the release of 
anti-infl ammatory cytokines such as interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and inhibition 
of proinfl ammatory cytokines. The production of pro- and anti-infl ammatory cytokines by phagocytes is highly 
regulated as part of an intrinsic mechanism to prevent infl ammatory and autoimmune reactions in a physiologi-
cal state. Production of IL-10 by phagocytes during clearance of ACs is critical to ensuring cellular homeostasis 
and suppression of autoimmunity. The molecular mechanism whereby IL-10 production is induced by ACs is 
only beginning to be understood. This review summarizes our recent work in this aspect of an essential physi-
ological and homeostatic process.

Phagocyte-Mediated Clearance of Apoptotic Cells

Apoptotic cell (AC) death is an essential process in the 
development of multicellular organisms (Morris and 

others 1984). Effi cient removal of ACs helps sculpt organs, 
maintain homeostasis, and eliminate abnormal, nonfunc-
tional, or harmful cells (Vaux and Korsmeyer 1999; Henson 
and Hume 2006). Moreover, removing ACs prevents harmful 
infl ammatory and autoimmune responses owing to release 
of potentially dangerous contents. Ineffi cient engulfment 
of ACs, or degradation of apoptotic cell contents, results in 
chronic infl ammatory and autoimmune diseases (Grigg and 
others 1991; Savill and others 1993; Cox and others 1995). 
In human systemic lupus erythematosis (SLE), impaired 
phagocytosis of apoptotic material by macrophages has been 
reported (Herrmann and others 1998; Baumann and others 
2002), providing an explanation for increased levels of early 
ACs, DNA, and nucleosomes observed in the circulation of 
SLE patients (Raptis and Menard 1980; McCoubrey-Hoyer 
and others 1984; Steinman 1984; Perniok and others 1998). 
The impaired clearance of ACs resulting in an accumulation 
of late apoptotic and secondary necrotic cells including oli-
gosomes might lead to an activation of autoreactive T and B 
cells (Voll and others 1997).

The process of removing dead cells is carried out by a 
wide variety of cell types. When apoptosis occurs at mod-
erate rates such as during normal adult tissue turnover, 

neighboring cells such as fi broblasts can act as phagocytes 
in their ingestion and clearance. When apoptosis occurs on 
large scales such as during embryonic morphogenesis, ion-
izing radiation, and acute infections, macrophages are the 
major professional phagocytes that play important roles in 
the clearance of ACs. Macrophages are attracted to sites of 
high rates of apoptosis such as the thymus and the follicles 
of secondary lymphoid tissues in the immune system. The 
process of removing ACs involves multiple receptors (Savill 
and others 1993), such as scavenger receptors, oxidized low-
density lipoprotein receptors, CD14, CD68, CD36, and vit-
ronectin receptor. Animal studies have also identifi ed some 
of the important nuclear, intracellular, and extracellular 
molecules in the clearance of potentially antigenic material 
from the circulation, such as DNAse I (Napirei and others 
2000), serum amyloid P component (SAP) (Bickerstaff and 
others 1999), C1q (Teague and others 1999), and C-reactive 
protein (CRP) (Du Clos and others 1994).

The surface structure of ACs is altered during the 
death pathway so that they present patterns recognized 
by phagocytes as “altered self,” or sometimes referred to 
as AC-associated molecular patterns (ACAMPs). ACAMPs 
arise either from the exofacial exposure of endogenous 
molecules or the modifi cation of pre-existing surface mol-
ecules. ACs exhibit numerous alterations of membrane lipid 
molecules and carbohydrates. There are 4 major phospho-
lipids in the plasma membrane of many mammalian cells: 
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macrophages (Hanayama and others 2002). Other bridging 
molecules include β2-glycoprotein I (Balasubramanian and 
others 1997), IgM (Kim and others 2002), and C1q (Païdassi 
and others 2008).

What are the mechanisms that lead to the engulfment of 
the apoptotic corpse into a phagosome? Reorganization of the 
cytoskeleton, as well as delivery of membrane to  accompany 
the surface area increase of the phagocytic cup, is required. 
Maturation is the process by which particles internalized in 
phagosomes such as bacteria and ACs are traffi cked into a 
series of increasingly acidifi ed membrane-bound structures, 
leading to particle degradation (Kinchen and Ravichandran 
2008). These phagosomes sequentially acquire different inte-
gral membrane and cytoplasmic proteins such as the Rab 
GTPases during maturation, and eventually fuse with lyso-
somes (Garin and others 2001; Stuart and others 2007). It is 
important to note that the phagocytosis of foreign particles 
and of ACs involves different phagocytic receptors that elicit 
different immune responses. Therefore, there may be spec-
ifi city in the roles of particular Rabs in regulating AC clear-
ance versus phagocytosis of other particles.

Role of IL-10 in Homeostatic Control of 
Infl ammation and Immune Activation

Interleukin-10 (IL-10) is a pleiotropic cytokine produced 
by both T/B cells and macrophages and possesses both anti-
infl ammatory and immunosuppressive properties (Moore 
and others 1990). Extensive research showed that IL-10 is 
an inhibitor of a broad spectrum of monocyte/macrophage 
functions,  including cytokine synthesis, nitric oxide pro-
duction, and expression of MHC class II and co-stimulatory 
molecules such as CD80/CD86 (Moore and others 2001). 
Investigations in numerous infl ammatory disease models 
including chronic enterocholitis, cutaneous infl ammatory 
condition, endotoxic shock and Shwartzman reaction, and 
autoimmune encephalomyelitis in IL-10-defi cient mice have 
yielded strong evidence that IL-10 plays a central role in vivo 
in restricting infl ammatory responses (Fuss and others 2002). 
However, endogenous IL-10 production and systemic admin-
istration can also exacerbate macrophage and T-cell dysfunc-
tion, decrease T-cell apoptosis, blunt antimicrobial activity, 
and increase mortality in other less acute bacterial models of 
sepsis or after thermal injury (Oberholzer and others 2002). 
In addition, IL-10 also processes immunostimulatory effects 
that have not attracted suffi cient attention. IL-10 is a potent 
growth factor for B lymphocytes. It promotes B-cell prolif-
eration, antibody production, and class II expression (Schall 
and others 1990). IL-10 enhances, paradoxically, the develop-
ment of cytotoxic T lymphocytes (CTL) (MacNeil and others 
1990). It induces NK cytotoxicity against NK-resistant tumor 
cells in vitro and increases IL-2-induced NK cell proliferation 
(Carson and others 1995). It acts as a cofactor for colony for-
mation by mast cell progenitors (Robinson and others 2003) 
and thymocytes (MacNeil and others 1990).

IL-10 Gene Expression in Microbially Stimulated 
Macrophages

IL-10 gene expression in macrophages is usually triggered 
by the same typical infl ammatory stimuli such as lipopoly-
saccharides (LPSs) that induce the release of proinfl ammatory 
cytokines. However, the kinetics of its induction differs from 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), 
phosphatidylserine (PS), and sphingomyelin. PS is the most-
studied “eat-me” signal, exposed on the surface of dying 
cells (Fadok and others 1992; Williamson and Schlegel 2002). 
PS is maintained predominantly in the inner leafl et of the 
plasma membrane in viable cells through the action of ATP-
dependent aminophospholipid translocases (Bratton and 
others 1997; Daleke and Lyles 2000; Vance and Steenbergen 
2005). During apoptosis, the balance between translocase 
and scramblase activities that exchange PS between leafl ets 
alters, and PS accumulates on the exoplasmic leafl et (Gardai 
and others 2006).

The exposed PS on ACs is recognized by several phago-
cyte receptors including a presumptive PS receptor (PSR) 
(Savill and others 1993). Ligation of this presumptive PSR 
has been proposed to be the primary mechanism through 
which these responses are initiated (Savill and others 1993), 
although experimental demonstration of such a receptor has 
been quite controversial (Williamson and Schlegel 2002). 
Very recently, several groups have identifi ed receptors that 
both directly recognize PS and induce phagocytosis of ACs. 
These receptors include the brain-specifi c angiogenesis 
factor 1, the T-cell immunoglobulin domain and mucin do-
main 4, and stabilin-2 (Miyanishi and others 2007; Park and 
others, 2007, 2008).

Other “eat-me” signals expressed at the surface of ACs 
include modifi cations to the cell glycosylation profi le such 
as altered oligosaccharides attached to cell-surface glyco-
proteins (Morris and others 1984), changes in the oxidation 
status of macromolecules such as low-density lipoprotein 
(Ramprasad and others 1995), exposure and redistribution 
of calreticulin, a 46-kDa soluble, highly charged protein that 
binds calcium ions (Gardai and others 2005).

Interactions Between Phagocytes and 
Apoptotic Cells

The process of AC clearance by phagocytes can be 
 divided into a succession of steps, from the recognition of 
apoptosis-specifi c cues on the dying cells (“eat-me” signals), 
to internalization of the corpse, processing of the corpse as 
the phagocytic vacuole matures, and the consequences for 
the engulfi ng cell (Somersan and Bhardwaj 2001). Target 
selectivity in this phagocytic process is based on the specifi c 
cell–cell interaction between phagocytes and target cells 
undergoing apoptosis. Pattern-recognizing phagocytosis 
receptors present on the surface of phagocytes specifi cally 
bind, either directly or indirectly through bridging mol-
ecules, to ACAMPs and transmit signals to induce phago-
cytosis of bound ACs. Phagocytes often evoke subsequent 
actions, rather than simply digesting engulfed ACs, for a 
fi ne-tuning of tissue homeostasis.

Mechanisms for recognizing PS in mammals also in-
volve secreted bridging molecules. Gas6 (growth arrest-
specifi c gene 6) and protein S can bind PS, and are in turn 
recognized by Mer, a member of the family of tyrosine 
kinase receptors expressed at the phagocyte surface (Nagata 
and others 1996; Ishimoto and others 2000; Scott and 
others 2001). MFG-E8 (milk fat globule epidermal growth 
factor 8), another bridging molecule secreted by activated 
macrophages, also specifi cally bind PS (Borisenko and others 
2004). MFG-E8-coated ACs are recognized by the vitronec-
tin receptor, also called αvβ3 integrin, then phagocytosed by 
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2006). Hox proteins and some orphan homeodomain proteins 
form complexes with either Pbx or Meis subclasses of home-
odomain proteins. This interaction can increase the binding 
specifi city and transcriptional effectiveness of the Hox part-
ner (Moens and Selleri 2006). Our study on the induction of 
IL-10 during phagocytosis of ACs establishes a novel role of 2 
developmentally critical factors in the regulation of homeo-
stasis in the immune system. This study carries the prospect 
to open up a completely new area for future exploration at 
the intersection between cellular homeostasis and regula-
tion of immune responses to exogenous pathogens as well as 
to endogenous danger signals.

IL-10 and SLE

Accumulating evidence suggests that IL-10 is a strong 
candidate gene in SLE susceptibility. First, it maps to human 
chromosome 1q31̃32, which is a susceptibility region for 
SLE (LOD = 3.79) (Johanneson and others 2002). It is also 
homologous to a murine SLE susceptibility region (Tsao 
and others 1997). Second, IL-10 is known to be an important 
immunoregulatory cytokine. It enhances B-cell survival, 
proliferation, differentiation, and autoantibodies produc-
tion (Moore and others 2001), properties that could render 
IL-10 a causal factor for the hyperactivity of B cells in SLE. 
Third, high IL-10 production has been observed in B cells 
and macrophages from SLE patients in vitro (Llorente and 
others 1993), and elevated serum IL-10 levels were observed 
in SLE patients and have been shown to be associated with 
disease activity (Llorente and others 1997; Gröndal and oth-
ers 2000). In NZB/W F1 lupus-prone mice, T-cell cytokine 
imbalance toward production of IFN-γ and IL-10 is associ-
ated with autoantibody levels and nephritis (Enghard and 
others 2006). Fourth, continuous administration of anti-IL-10 
antibodies in this model delayed the onset of lupus-like 
autoimmunity and improved the survival rate from 10% to 
80%, through up-regulation of endogenous TNF-α (Ishida 
and others 1994). Conversely, continuous administration of 
IL-10 accelerated the onset of autoimmunity in these mice. 
Collectively, these evidences suggest that elevated IL-10 
levels may play a role in SLE pathogenesis by causing the 
hyperactivity of B cells and the autoantibody production.

IL-10 production is primarily controlled at the transcrip-
tional level and is under strong genetic infl uence (Bienvenu 
and others 1995; Westendorp and others 1997). The 5′ fl ank-
ing region of the IL-10 gene, which controls transcription, is 
polymorphic. Six single-nucleotide polymorphisms (SNPs) 
have been reported in the human IL-10 promoter to be asso-
ciated with IL-10 production (Turner and others 1997; Eskdale 
and others 1999; D’Alfonso and others 2000; Gibson and oth-
ers 2001). They are located at positions −3575 (T/A), −2849 
(G/A), −2763 (C/A), −1082 (A/G), −819 (T/C), and −592 (A/C) 
from the transcription start site. The −3575 SNP lies within 
a putative Pit-1-binding site and −2763 SNP situates within 
putative lymphocyte-specifi c factor- and myeloid zinc-fi nger-
binding sites (Gibson and others 2001). SNP at position −1082 
is within a putative ETS-like transcription factor-binding site 
(Lazarus and others 1997). The SNP at −592 is located in a 
region that mediates negative regulatory function (Lazarus 
and others 1997), whereas the SNP at −819 may affect an 
estrogen receptor element (Kube and others 1995). Several 
studies showed that −1082, −819, and −592 combined to 
form 3 haplotypes (hts): GCC, ACC, and ATA that correlated 

those of the proinfl ammatory mediators (de Waal Malefyt and 
others 1991). Recent molecular analyses of the murine IL-10 
promoter show that IL-10 transcription in macrophage cell 
types can be regulated by constitutive and ubiquitous tran-
scription factors such as Sp1 and Sp3, suggesting that IL-10 
may be produced at low levels constitutively to maintain cer-
tain level of control over “baseline” infl ammation (Brightbill 
and others 2000). Another study provided evidence that post-
transcriptional regulation of IL-10 gene expression through 
sequences in the 3′-untranslated region of the IL-10 mRNA 
contributes to its overall production as well (Alizadeh and 
others 2000). A critical role for Stat3 but not other Stat proteins 
in LPS-induced IL-10 transcription in a human B-cell line was 
reported by Benkhart and colleagues who demonstrated a 
direct interaction of Stat3 with the human IL-10 promoter at 
–120 (Benkhart and others 2000). Since Stat3 is also the medi-
ator of IL-10 signaling via the IL-10 receptor (Moore and oth-
ers 2001), this fi nding provides a mechanistic explanation for 
the noted autoregulation of IL-10. Cao and others showed that 
the NF-κB cis element on the mouse IL-10 proximal promoter 
was located to –55/–46, where p50 can homodimerize and 
form a complex with the transcriptional co-activator CREB-
binding protein to activate transcription. The other Rel family 
members appeared to play a negligible role in IL-10 transcrip-
tion (Cao and others 2006).

IL-10 Gene Expression During Phagocytosis of 
Apoptotic Cells

Resolution of infl ammation depends not only on the 
removal of ACs but also on active suppression of infl amma-
tory mediator production. Aberrations in either mechanism 
are associated with chronic infl ammatory conditions and 
autoimmune disorders (Grigg and others 1991; Savill and oth-
ers 1993; Cox and others 1995). Uptake of ACs by phagocytes 
is thought to suppress autoimmune responses through up-
regulation of cell-surface expression of co-inhibitory mole-
cules such as PD-L1 and ICOS-L, release of anti-infl ammatory 
cytokines IL-10, transforming growth factor-β (TGF-β), plate-
let-activating factor (PAF), and prostaglandin E2 (PGE2), and 
inhibition of proinfl ammatory cytokines TNF-α, GM-CSF, 
IL-12, IL-1β, and IL-18 (Savill and others 1993; Voll and oth-
ers 1997; Sun and Shi 2001; Kim and others 2004). However, 
little was known about the molecular mechanisms whereby 
the production of pro- and anti-infl ammatory cytokines is 
regulated. We fi rst reported that IL-10 production stimu-
lated by ACs was regulated at the level of transcription in a 
manner dependent on p38 mitogen-activated protein kinase, 
partially on the scavenger receptor CD36, and required 
cell–cell contact but not phagocytosis (Chung and others 
2007a). Using a reporter assay, we mapped the apoptotic cell 
response element (ACRE) in the human IL-10 promoter, and 
provided biochemical and physiological evidence that ACRE 
mediates the transcriptional activation of IL-10 via pre-B-
cell leukemia transcription factor-1b (Pbx-1b) and another 
Hox cofactor Pbx-regulating protein 1 (Prep-1) in response 
to ACs (Chung and others 2007a). The Pbx homeoproteins 
are known to function as cofactors for the Hox family of 
homeodomain-containing transcription factors that pattern 
the embryonic body axes (Moens and Selleri 2006). Pbx-1a 
and Pbx-1b are the 2 isoforms of Pbx-1. Pbx-1a expression is 
restricted to neural tissues while Pbx-1b exhibits widespread 
expression patterns in the mouse embryo (Moens and Selleri 
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encephalomyelitis (EAE) (Chiarugi 2002), diabetes mellitus 
(Akiyama and others 2001). Furthermore, PARP−/− mice are 
protected from endotoxic shock (Kühnle and others 1999; 
Oliver and others 1999).

PARP-1 is a 113-kDa protein composed of an N-terminal 
DNA-binding domain, containing 2 zinc fi nger motifs, a 
C-terminal catalytic domain, which can synthesize ADP-
ribose polymers from the substrate NAD+, and an automod-
ifi cation site, which links the N- and C-terminal domains (de 
Murcia and others 1991). Typically catalytic activity is inhib-
ited, but DNA binding to the N-terminal domain allosteri-
cally activates PARP polymerase function. There is evidence 
suggesting that PARP-1 can directly recognize specifi c DNA 
sequences. It has been shown that PARP-1 can directly inter-
act with the promoter of Reg (regenerating gene) impor-
tant for regeneration of pancreatic islet β-cells in the active 
transcriptional DNA/protein complex, and destabilize the 
complex by autopoly(ADP-ribosyl)ation of PARP (Akiyama 
and others 2001). PARP-1 binds in vitro and in vivo to spe-
cifi c sequences in a regulatory region of Bcl-6 (in the fi rst 
intron) and inhibits Bcl-6 mRNA expression in B-cell lines 
(Ambrose and others 2007). PARP-1 has also been described 
as having a function in transcriptional regulation through 
their ability to modify chromatin-associated proteins and 
as a cofactor of different transcription factors, most notably 
NF-κB and AP-1 (Aguilar-Quesada and others 2007).

During apoptosis, PARP-1 is cleaved by caspase 3, result-
ing in separation of the N-terminal 24-kDa DNA-binding 
fragment from the C-terminal 89-kDa catalytic fragment. 
This cleavage is important for the regulation of infl amma-
tory responses by PARP-1 (Pétrilli and others 2004). It has 
been shown that the 24-kDa fragment is an antagonist of 
full-length PARP-1 and it can inhibit DNA repair, ADP-
ribose polymer formation, and damage-dependent up-regu-
lation of transcription (D’Amours and others 2001; Yung and 
Satoh 2001).

The genetic loci located on chromosome 1 are associated 
with SLE in humans (Tsao 2000). Located in these loci are 
genes encoding TNFR2, complement component C1q, Fcγ 
receptors, TCR ζ chain, HRES-1 (an endogenous retrovirus), 
and interestingly, IL-10 and PARP-1 (Martens and others 2007). 
In patients with SLE, the highly ordered signal transduction 
cascade of apoptosis is disturbed. SLE patients show reduced 
PARP activity. PARP cleavage products are mainly found in 
association with either antinuclear or anti-dsDNA antibodies. 
Serum samples from SLE patients and other autoimmune dis-
eases display anti-PAR and anti-PARP autoantibodies (Böhm 
2006). In particular, autoantibodies to the catalytic fragment 
of PARP-1 were found in the sera of nearly 50% patients with 
SLE while they were not present in the sera of patients with 
rheumatoid arthritis, systemic sclerosis, or healthy donors 
(Lim and others 2002; Jeoung and others 2004). In the parent-
into-F(1) model of chronic graft-versus-host disease (cGVHD) 
in which a lupus-like phenotype highly similar to human SLE 
is reliably induced in normal F(1) mice, PARP-1 was identifi ed 
as a frequently targeted nuclear autoantigen modifi ed by cas-
pases during apoptosis (Grader-Beck and others 2007).

Septic Shock–Associated IL-10 −1082A>G 
Polymorphism

IL-10 attenuates the proinfl ammatory response in bacte-
rial sepsis and reduces others (Steinhauser and others 1999). 

with decreasing IL-10 expression levels (Turner and others 
1997; Crawley and others 1999; Edwards-Smith and oth-
ers 1999; Yilmaz and others 2005). In a study that involved 
76 white patients with SLE and 119 controls, no signifi cant 
change in the allele frequency of the 3 IL-10 gene promoter 
dimorphic polymorphisms in the SLE group compared with 
controls was found. However, when subgrouped according 
to autoantibody status and clinical features, −1082G, −819C, 
and −592C alleles were increased in patients possessing Ro 
autoantibodies and those with renal involvement (Lazarus 
and others 1997). These alleles are in preferential allelic 
association, namely GCC, ACC, and ATA haplotypes, and the 
GCC haplotype was increased in these patient subgroups. 
A larger scale study examining the association of IL-10 pro-
moter SNPs (−3575T/A, −2849G/A, −2763C/A, −1082A/G, 
−819T/C, and −592A/C) with SLE in 554 Hong Kong Chinese 
SLE patients and 708 ethnically matched controls, and an-
other study involving 119 Taiwanese Chinese SLE patients 
revealed that the homozygous genotype of high IL-10 pro-
duction haplotypes was signifi cantly increased in these SLE 
patients (Chong and others 2004; Zimmermann and others 
2006). In addition, Gibson and others reported that the hap-
lotype of −3575T and −2763C is associated with high IL-10 
expression levels in African Americans (Gibson and others 
2001). The allele frequency of −1082G in the Vietnamese SLE 
patients was signifi cantly higher than that in the healthy 
controls (Khoa and others 2005). A study in a large popula-
tion of Chinese patients with lupus nephritis (LN) showed a 
strong association of the −592A/C SNP with the disease ac-
tivity and renal pathology of LN. Particularly, patients carry-
ing the −592C allele had a higher risk of diffuse proliferative 
glomerulonephritis (Song and others 2005).

Taken together, these studies strongly suggest that SNPs 
within the IL-10 gene promoter, which are associated with 
high IL-10 levels, may contribute signifi cantly to the devel-
opment of certain clinical features in SLE. We found that the 
homozygous GCC haplotype linked to greater SLE severity 
confers higher IL-10 gene transcriptional activity than the 
ATA haplotype in macrophages that encounter ACs, because 
of the differential DNA binding to the −592 SNP by a nuclear 
protein uniquely induced by ACs. Further, we identifi ed this 
protein as poly(ADP-ribose) polymerase 1, confi rmed its 
physiological role, and characterized its molecular proper-
ties, as a transcriptional repressor induced by ACs, in modu-
lating IL-10 production during phagocytosis of ACs (Chung 
and others 2007b).

Poly(ADP-Ribose) Polymerase 1

PARP-1 is a nicotinamide adenine dinucleotide (NAD+)-
dependent nuclear enzyme that detects and participates in 
DNA damage repair arising from genotoxic stress. It has 
also been linked to multiple events for transcriptional regu-
lation in development (Tulin and others 2002; Ju and others 
2004; Kim and others 2004; Pavri and others 2005). A large 
body of evidence demonstrates that PARP-1 is overacti-
vated during the infl ammatory response, depleting energy 
metabolism, and thus contributing greatly to tissue damage. 
Accordingly, pharmacological inhibition of PARP-1 is being 
actively investigated for therapeutic effi cacy in animal mod-
els of infl ammation such as ischemia–reperfusion (Szabó 
and Dawson 1998), chronic colitis (Jijon and others 2000), 
asthma (Virág and others 2004), experimental autoimmune 
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the −1082 site. In other words, the −592C/A alleles mediate 
PARP-1 inhibition of IL-10 transcription in response to ACs, 
whereas the −1082G/A alleles mediate AC-induced relief of 
the inhibition, both in an allele-specifi c manner.

Our studies (Chung and others 2007b; Kang and others 
2010) unveil a novel role of PARP-1 in the regulation of IL-10 

However, excess of IL-10 induces immunosuppression in 
sepsis (Steinhauser and others 1999) and increases mortal-
ity by impairing bacterial clearance in pneumococcal pneu-
monia (van der Poll and others 1996). A systemic infectious 
insult is often associated with subsequent hyporesponsive-
ness to endotoxin and an increased risk of late nosocomial 
infection in some patients. For example, immediately fol-
lowing cardiac surgery, many patients become relatively 
refractory to LPS stimulation. In humans, elevated circulat-
ing IL-10 has been associated with septic shock (Marchant 
and others 1994), severity of injury (Derkx and others 1995; 
Gómez-Jiménez and others 1995; Friedman and others 1997; 
Neidhardt and others 1997; Rodríguez-Gaspar and others 
2001; Igonin and others 2004), and mortality (Monneret and 
others 2004; Simmons and others 2004). In acute respiratory 
distress syndrome (ARDS), the studies have been mixed. 
Lower levels of IL-10 were found in patients with ARDS 
compared with critically ill non-ARDS patients (Armstrong 
and Millar 1997). High plasma IL-10 but low bronchoalveo-
lar lavage concentration of IL-10 correlated with increased 
mortality in ARDS (Donnelly and others 1996; Parsons and 
others 1997). Susceptibility for invasive pneumococcal dis-
ease has also been associated with the mannose-binding 
lectin gene, but no genetic linkage has been found for sepsis 
severity (Roy and others 2002).

Stanilova and others showed that the A allele of the 
−1082 polymorphism is associated with lower IL-10 pro-
duction and sepsis susceptibility in patients, whereas G 
allele is associated with increased mortality in severe sep-
sis (Stanilova and others 2006). Another study demon-
strated that the IL-10 intermediate/high producer genotype 
(−1082G-allele carrier) was associated with a lower risk of 
death among patients with acute renal failure who require 
dialysis (Jaber and others 2004). It was reported that individ-
uals with genetic predisposition for increased IL-10 induc-
ibility, as determined by the IL-10 −1082 polymorphism, 
have a higher risk of severe pneumococcal infection leading 
to septic shock (Schaaf and others 2003). A nested case–con-
trol epidemiology study in ARDS patients and controls who 
were admitted to an intensive care unit with sepsis, trauma, 
aspiration, or massive transfusions revealed that the high 
IL-10-producing −1082GG genotype is associated with var-
iable odds for ARDS development depending on age, being 
associated with lower mortality and organ failure (Gong 
and others 2006). It was reported that in patients with acute 
pancreatitis, those who developed further into septic shock, 
showed a signifi cantly higher prevalence of the −1082G 
allele than those without shock (Zhang and others 2005).

The preponderance of clinical data on the association 
of the IL-10 −1082 SNP with bacterial septic shock and the 
sequelae is contrasted with an almost total lack of under-
standing of the molecular basis of the SNP-associated var-
iability in IL-10 levels in different individuals. We recently 
reported that the −1082G>A allele in the promoter region 
of the human IL-10 gene physically interacts with PARP-1 
in an haplotype-specifi c manner that results in different 
levels of IL-10 transcription. We showed that PARP-1 acts 
as a transcription repressor, and its DNA-binding activity 
is strongly regulated in macrophages that engulf ACs but 
not stimulated with LPS (Kang and others 2010). The critical 
difference between the −592 and −1082 SNPs, both of which 
interact with PARP-1 in response to ACs, is that PARP-1 
binding is induced at the −592 site whereas it is inhibited at 
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FIG. 1. Model of regulation of interleukin-10 (IL-10) pro-
duction in res ponse to apoptotic cells (ACs). ACs, through not 
clearly defi ned AC-associated molecular pattern (ACAMP) 
inter acting with phagocytic receptors, induce IL-10 produc-
tion by macrophages. One of the phagocytic receptors is CD36, 
the engagement of which by ACs induces p38 MAPK phos-
phorylation and the activation of a yet to be identifi ed pro-
tein tyrosine kinase (X). Activation of p38 MAPK leads to the 
assembly of a Hox complex, composed of Pbx-1b, Prep-1, and 
Meis1 as a minimum, on the IL-10 promoter via the apoptotic 
cell response element (ACRE) at −105/−100. Prep-1 tyrosine 
phosphorylation is presumably carried out by the hypotheti-
cal kinase X. The Hox complex is the main transcriptional 
factor driving IL-10 expression in response to ACs and it 
does not appear to be variable in human individuals. Two 
negative regulatory elements (NREs) exist: NRE1 at −592 and 
NRE2 at −1082, which also represent 2 major SNPs in human 
populations. Both NREs interact with PARP-1, which acts as 
a transcription repressor, but the modes of action are dif-
ferent. NRE1 does not bind PARP-1 in resting macrophages 
and the interaction with the 24-kDa cleaved fragment of 
PARP-1 is induced by ACs being ingested by the phagocyte. 
NRE2 binds the intact, 113-kDa PARP-1 in resting cells and 
the binding is reduced in macrophages in contact with ACs, 
resulting in inhibition of IL-10 transcription. It is possible 
that the cleavage product of PARP-1 is actually a transcrip-
tional activator for IL-10, opposing the effect of its precur-
sor. This possibility awaits formal confi rmation. Both NREs 
regulate IL-10 transcription in an allele-specifi c manner, 
resulting in variable levels of IL-10 gene expression in differ-
ent individuals in response to ACs. Note that p38 activation 
is also inducible via the TLR pathway by microbial patho-
gens, which represents an evolutionarily independent route 
to induce IL-10 production. This pathway leads to the bind-
ing of transcription factors such as Sp1 to the IL-10 promoter 
region. Abbreviations: CM, cell membrane; NM, nuclear 
membrane; TATA, TATA box; Y-kinase, tyrosine kinase; 
ACRE, apoptotic cell response element; NRE, negative regu-
latory element. Solid lines represent proven relationship 
while dashed lines designate hypothetical dependency.
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