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Abstract
We have recently developed and tested an efficient algorithm for solving the nonlinear inverse
elasticity problem for a compressible hyperelastic material. The data for this problem are the
quasi-static deformation fields within the solid measured at two distinct overall strain levels. The
main ingredients of our algorithm are a gradient based quasi-Newton minimization strategy, the
use of adjoint equations and a novel strategy for continuation in the material parameters. In this
paper we present several extensions to this algorithm. First, we extend it to incompressible media
thereby extending its applicability to tissues which are nearly incompressible under slow
deformation. We achieve this by solving the forward problem using a residual-based, stabilized,
mixed finite element formulation which circumvents the Ladyzenskaya–Babuska–Brezzi
condition. Second, we demonstrate how the recovery of the spatial distribution of the nonlinear
parameter can be improved either by preconditioning the system of equations for the material
parameters, or by splitting the problem into two distinct steps. Finally, we present a new strain
energy density function with an exponential stress-strain behavior that yields a deviatoric stress
tensor, thereby simplifying the interpretation of pressure when compared with other exponential
functions. We test the overall approach by solving for the spatial distribution of material
parameters from noisy, synthetic deformation fields.
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1. Introduction
It is well known that many solid tumors, such as breast and prostate tumors, are stiffer than
healthy glandular tissue. This fact has been used for some time to detect tumors using finger
palpation. In the last one to two decades, it has lead to the development of a group of
techniques, collectively referred to as elastography or elasticity imaging (see [1–5] for
reviews), that focus on generating images of tissue stiffness, or quantities that are indicative
of its distribution (such as strain). More recently, it has been observed that while both benign
and malignant tumors are stiff, the latter appear to stiffen with strain at a faster rate than
either the background tissue, or benign tumors [6–8]. While it has not yet been shown
conclusively why this happens, it appears likely it is due to the structure of collagen fibers.
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In benign tumors they appear to be significantly coiled whereas in malignant tumors they are
straighter and almost rod-like [9,10]. The fibers tend to uncoil, or straighten, with applied
strain. Thus it would appear likely that in a malignant tumor, the fibers would start to
contribute to the strength of the tissue at smaller strains than in benign tumors. Regardless of
precisely why it happens, the strong strain hardening behavior of malignant tumors leads to
the intriguing possibility of diagnosing cancerous tumors on the basis of images of nonlinear
tissue behavior. Evidence supporting this possibility has recently been presented by O'Hagan
and Samani [11], who address precisely this question in an experimental study of 44 ex vivo
breast tumors.

In quasi-static elasticity imaging the region of interest is viewed using conventional imaging
techniques, usually ultrasound, while it is slowly compressed. Images recorded during the
compression are then used to determine the displacement field within the tissue. Using this
approach displacement fields with overall compressive strains that are as high as 15% have
been evaluated. At these strains, the nonlinear behavior of tissue is likely to play an
important role. This data may therefore be useful in reconstructing images of nonlinear
tissue material properties once the associated inverse problem is solved. The solution of this
inverse problem is the focus of this paper.

In preceding work [12,8] we described a strategy for solving this problem for a compressible
medium (or more precisely, for an incompressible medium in plane stress.) We modeled the
solid as a hyperelastic material with an exponential stress–strain response based on the
Veronda–Westmann model [13]. We posed the inverse problem as a minimization problem
and sought the distribution of material parameters that yields the displacement fields that
best match the measured displacement fields. We solved this problem using a gradient based
quasi-Newton algorithm. Two key features leading to the high computational efficiency of
the method were evaluation of the gradient using the adjoint equations and utilization of a
novel continuation strategy in material parameters. We tested this approach on synthetic
noisy data as well as clinical data.

In this paper we present several extensions to our earlier approach. First we extend our
analysis to incompressible media, thereby making it feasible to model incompressible tissue
in plane strain in two-dimensions or in three-dimensions. We accomplish this by solving the
forward problems at each iteration using a residual-based, stabilized, mixed finite element
formulation, thereby circumventing the LBB condition [14,15]. This approach was
developed in [16,17] and applied to linear elastic materials and then to Neo–Hookean
materials. In this paper we consider its application to solids with material nonlinearity.

Second, we propose and test two strategies to improve the recovery of the nonlinear
parameter in our reconstructions, without adversely affecting the recovery of the linear
modulus. In [12] it was observed that the recovery of the nonlinear parameter is not as
accurate as that of the linear shear modulus. We have since recognized that one reason for
this is the lower sensitivity of the displacement field to the nonlinear parameter, even for the
deformation fields measured at large values of overall strain. In order to alleviate this
problem we propose and test two strategies. First, we simply rescale the nonlinear parameter
by a fixed constant, effectively preconditioning the system of equations with a diagonal
preconditioner. Second we decouple the problem for the nonlinear parameter from the
problem from the linear parameter. The deformation fields at small values of strain carry no
information about the nonlinear parameter. Thus the linear parameter may be estimated
using these fields. Once it is known, the nonlinear parameter may be estimated using the
large deformation fields.
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Finally, we also adopt a new strain energy density function that, like the functions due to
Blatz et al. [18] and Veronda and Westmann [13], stipulates an exponential stress–strain
behavior. Unlike these models, however, it yields a stress contribution that is purely
deviatoric. This simplifies the interpretation of pressure in the stress–strain relation.

The format of the remainder of this paper is as follows: In Section 2, we describe the
forward elasticity problem and its discretization. This includes the new strain energy density
function and the stabilization strategy for the finite element solution of the problem. In
Section 3 we describe the inverse problem and our solution. This includes the use of the
adjoint equations to efficiently compute the gradient vector. We remark that we derive the
adjoint of the fully discretized forward problem. This ensures that the computed gradient of
the discrete objective function is exact up to numerical roundoff. In Section 4, we consider
numerical examples that test our approach for solving the forward and the inverse problems.
We also motivate and describe rescaling and staggered solution strategies that improve the
performance of the algorithm in recovering the nonlinear parameter. We end with
conclusions in Section 5.

2. Nonlinear forward elasticity problem
The material response is modelled with a hyperelastic model. In hyperelasticity, the
existence of a strain energy density function is assumed from which a constitutive relation
between stress and strain is derived. The total energy that is needed to deform the body is
only dependent on the initial and the end state, that is, the state of the body is independent of
the loading path.

Throughout this paper equations are written in the reference configuration and tensors and
vectors are denoted by bold letters.

2.1. Strong form
The strong form is given in general terms without any specification of the stress–strain
relation. This is specified in detail in Section 2.4. The strong form is: Find the displacement
field u and the pressure p such that:

(1)

(2)

(3)

with the incompressibility constraint:

(4)

As mentioned above, this problem statement must be augmented by the stress–strain relation
to specify the stress in terms of the deformation. This discussion is postponed until Section
2.4.
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In the equations above Ω0 is the reference configuration or reference domain. Eqs. (2) and
(3) define the Dirichlet and Neumann boundary conditions, respectively, where the
displacement data g is prescribed on Γg and the traction data h is prescribed on Γh. The
following restrictions are given on Γg and  defines the closed boundary of
the domain and Γg ∩ Γh = θ. F = ∇ϕ is the deformation gradient associated with the
transformation ϕ that maps the material points X into the current locations x = ϕ(X). The
displacement field can be determined from ϕ as u = ϕ − X. The gradient operator ∇ in the
equations above is defined with respect to the material coordinates. The incompressibility
constraint in Eq. (4) enforces that the Jacobian or determinant of the deformation gradient J
= detF = 1, so that there is no change of volume. Further, n is the unit outward normal
vector along the boundary and S is the second Piola–Kirchhoff stress tensor defined as:

(5)

Here p is the pressure and W is the strain energy density function that depends on the
invariants of the Cauchy–Green strain tensor C = FTF.

2.2. Weak form
The weak form can be derived easily from the strong form by multiplying Eq. (1) with a
vector test function, integrating-by-parts over the reference domain, and utilizing the traction
boundary condition. The incompressibility constraint is multiplied by another scalar test
function and integrated over the reference domain. The weak form is given by: Find U ≡ [u,
p] ∈  ×  such that

(6)

where

(7)

(8)

The function spaces , , and  are defined as:

(9)

(10)
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(11)

2.3. Stabilization of the discretized mixed formulation
The weak form (6) may be discretized by selecting finite dimensional spaces h ⊂ , h ⊂

 and h ⊂  and using Galerkin's approach. This leads to a nonlinear algebraic problem
for the displacement and pressure degrees of freedom that may be solved using the Newton–
Raphson method. When equal order polynomials are used for the displacement and pressure
trial solutions and weighting functions, the resulting linearized system does not satisfy the
LBB conditions [14,15]. The linear system has the form

(12)

which is typical of a saddle point problem. The difficulty lies in the matrix K12 which does
not satisfy the discrete inf–sup conditions. This deficiency manifests itself as spurious
oscillations in pressure modes and locking in the displacement field. Over the years several
remedies have been proposed to tackle this problem. These include selective reduced
integration schemes, Taylor–Hood elements that employ different displacement and pressure
interpolation functions that satisfy the LBB conditions, the B-bar approach [19], the
enhanced strain approach [20] and stabilized finite element methods [16,17].

In this paper, following [16,17] we have utilized an equal order stabilized finite element
method based on the streamline upwind (SUPG) approach. In this approach the Galerkin
form is appended with additional terms that are driven by the residual of the original
equations. These terms stabilize the method while retaining its consistency. In particular, the
weak form is given by: Find Uh ≡ [uh, ph] ∈ h × h such that

(13)

where the stabilization term is given by

(14)

In the equation above the subscript  is the  inner product evaluated in the
interior of the eth element and

(15)

We note that in the stabilization term the integration is performed over the element interiors
and summed over all elements. The integrand consists of the scalar product of the gradient
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of the weighting function with the residual of the momentum equation. When converging to
the exact solution, this term becomes zero, and the consistency of the method is retained.
The stabilization parameter τ in Eq. (15) consists of a factor α ≈ 1/2, the shear modulus μ,
and the characteristic element length h which would be the diameter of the outer circle for
triangular elements. For further information about the stabilized mixed formulation the
reader is referred to [21].

Following [17], the stabilization term may be simplified as follows

(16)

To arrive at the first equality of (16) we have used (5) in (14). To arrive at the second
equality we note that since we are working with linear triangular elements, the deformation
gradients and hence all strains and stresses (except pressure) are constant within an element,
and therefore their divergence is zero. This means that the first term on the right hand side of

the first equality is zero. To simplify the second term we have utilized . Finally to
arrive at the last line we have made use of the Piola identity, ∇·(JF−T) = 0.

The matrix system obtained after linearizing the stabilized formulation has the structure

(17)

where the submatrix K22 is positive definite. This matrix system does not correspond to a
saddle point problem, and its stability can be assessed by examining the coercivity of the
method, which can be proved under certain restrictions. Thus when working with stabilized
methods the LBB conditions for the incompressibility constraint may be circumvented.

2.4. Strain energy density function
A generic trend in the stress–strain relation of soft tissues is a gradual stiffening with applied
strain [7,6,22,13]. Several writers have modeled this stiffening with an exponentially
stiffening strain energy function. (See, e.g. [18,13] and the review focusing on arterial walls,
[23].) Here we consider a modification of a model due to Blatz and coworkers [18]. The
modification made here is to replace the appearance of I1 with J−2/3I1. This change renders
the elastic energy contribution purely deviatoric, which is particularly appropriate for
modeling incompressible materials. Thus, the strain energy function used here is:

(18)

Here μ is the shear modulus at zero strain, γ is a nonlinear parameter that determines the
nonlinearity of the material response, and I1 = trace (C) is the first principal invariant of the
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Cauchy Green tensor. This strain energy function has several advantages in this application.
First it is capable of modeling the observed exponential stiffening of soft tissues. Second, it
contains only two material parameters to evaluate, μ and γ. Third, the material parameters
have clear, distinct, physical interpretations: μ governs the small strain behavior independent
of the value of γ, while γ controls the exponential stiffening, independent of μ. The
respective roles of these two parameters may be most easily seen in uniaxial tension for
small strains. In this case, the stress–strain relation may be approximated by:

(19)

Here, ε = λ − 1 is the linearized strain measure, and σ is the Cauchy stress.

The full nonlinear stress–strain behavior in uniaxial tension is given by the equation:

(20)

where σ is the uniaxial Cauchy stress and λ is the stretch.

We plot the stress-stretch curve in Fig. 1(a) for a fixed shear modulus value of 1 and
consider different values of the nonlinear parameter γ ranging from 1 to 11. At γ = 1 the
stress-stretch curve is not significantly nonlinear. With increasing values of γ the
nonlinearity of the material response increases noticeably.

In order to demonstrate the effect of the nonlinear parameter on the relative stiffening of the
material with increasing strain we consider the ratio of the Young's modulus at a stretch λ to
the Young's modulus at λ = 1. This ratio is given by

(21)

Right away we note that this ratio is independent of the shear modulus μ and depends only
on the parameter γ. Fig. 1(b) shows variation of this ratio as a function of stretch for
different values of γ. We note an exponential strain hardening whose extent is determined by
the nonlinear parameter γ.

Returning now to the general 3D case, we use this definition for the strain energy density
function in (5), to find the second Piola–Kirchhoff stress is given by

(22)

and the Cauchy stress σ is given by
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(23)

Using the equation above it is easily verified that , as expected for an
incompressible medium. The material tangent corresponding to this strain energy density
function is

(24)

where

(25)

(26)

(27)

3. Nonlinear inverse elasticity problem
The solution of the inverse elasticity problem for compressible materials was discussed in
detail in [12]. For the incompressible case discussed in this paper we adopt the same overall
approach. In addition we introduce several new features that account for the
incompressibility constraint and improve the performance of the method. In particular:

1. In solving the forward problem we have made use of stabilized finite element
methods to handle the incompressibility constraint (see Section 2.3).

2. We have developed and implemented a modified version of the Blatz strain energy
density function that ensures that the elastic part of the Cauchy stress is deviatoric
(see Section 2.4).

3. We have consistently accounted for the stabilization terms in deriving the equations
for the adjoint fields. This is described below in Section 3.2.

4. We have improved the reconstructions for the nonlinear parameter by recognizing
that its contribution to the gradient tends to be smaller than the contribution from
the shear modulus. These approaches are discussed in Sections 4.3 and 4.5.

The inverse problem is solved iteratively by minimizing an objective function under the
constraint that the predicted displacement fields satisfy the forward problem. There is a wide
range of methods that may be used to perform this minimization. Some, like genetic
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algorithms, require only values of the objective function, while others require first order or
second order derivatives of the objective function. In this paper we work with a quasi-
Newton method which requires only the first order derivatives of the objective function and
constructs an approximate Hessian from these. In particular we use the low memory BFGS
algorithm described in [24]. We evaluate the gradient efficiently using the adjoint equations.

3.1. Inverse problem statement
The inverse problem is stated as follows: Given nmeas measured displacement fields

, find the material properties β = [β1, β2, …, βNβ] such that the objective
function

(28)

is minimized under the constraint that the predicted displacement fields ui satisfy the
equations of equilibrium (1)–(4)).

For the material model we have selected, Nβ = 2, with β1 = μ and β2 = γ, and recall that μ
denotes the shear modulus at zero strain and γ denotes the nonlinear stiffening parameter. In
Eq. (28) the first term is the displacement matching term and is a measure of how close the
measured displacement field is to the ith predicted displacement field ui in the L2 norm.
Here ‖·‖0 denotes the L2 norm. Since the displacement fields are measured at different values
of overall strain, we expect their magnitudes to be quite different. Therefore each
displacement field is multiplied by a weighting factor wi which is selected to ensure that the
contributions to the objective function from all measurements are of the same order. The
tensor T is selected to weigh different components of displacement differently. This is
necessary because in ultrasound-based elasticity imaging often the component of
displacement along the axis of the transducer is measured much more accurately than the
other components. Thus we may want to emphasize the contribution to the objective
function by appropriately selecting T.

The second term is the regularization term where αj is the regularization parameter. This has
to be chosen appropriately depending on the noise level in the measured displacements. In
selecting one may use Morozov's discrepancy principle or the L-curve approach [25]. The
regularization term can be thought of as a penalty term in the objective function that ensures
a certain smoothness to the reconstructed material properties. We utilize the total variation
diminishing (TVD) regularization which is implemented as:

(29)

TVD suppresses oscillations in the reconstructions and smooths the solution for noisy data
without penalizing large gradients in the reconstruction. The constant c is a small non-zero
number that ensures that the regularization term is differentiable when ∇βj = 0.
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3.2. Solution of the inverse problem
Our objective function is defined in Eq. (28). To use a gradient based optimization method,
we need an efficient way to compute the gradient of this function with respect to the
material properties. We do so using the adjoint method [12,26–28].

In order to evaluate the gradient vector, the adjoint equations can be derived at the
continuous or the discrete level. When they are evaluated at the discrete level, the gradient
vector is exactly equal to the gradient vector for the discrete problem. If one is to evaluate
the gradient from the continuous problem and then discretize, one must work with a
variational statement that is precisely consistent with the eventual discretization strategy.
Otherwise, there is no guarantee that the resulting gradient will be exactly equal to the
gradient of the discrete problem. All that could be said in that case is that in the limit of
mesh refinement, this gradient will (likely) converge to the exact gradient field. In light of
this discussion we prefer to derive the adjoint equations for our discrete problem and then
use these and the discrete primal problem to evaluate the discrete gradient vector.

We begin by recalling the stabilized weak form (13) defining the ith displacement and
pressure fields as functions of the material properties, β:

(30)

Here, we recall that the displacement and pressure are represented as a single unknown
vector, Ui = [ui, pi], and the material property vector β = [β1, β2] = [μ, γ]. We also note that
in order to simplify the notation we have suppressed the superscript h on the trial solution
and weighting functions and assumed that the Dirichlet and traction boundaries Γg and Γh,
respectively, are identical for all measured displacements. For any given material property
distribution, β, Eq. (30) defines a corresponding displacement and pressure field, Ui.

We now consider changing β by a small (infinitesimal) amount β ← β + δβ. Doing so will
cause the displacement ui ← ui + δui and pressure pi ← pi + δpi to change accordingly. That
is, Ui ← Ui + δUi. The relation between δUi and δβ can be obtained by differentiating Eq.
(30). As shown in the appendix, this leads to

(31)

Similarly, differentiating our objective function (28) gives

(32)

To compute the gradient of our objective function, one could select a basis on which to
represent δβ. Then for each basis vector, one solves (31) for δUi. Finally (32) can be used to
compute the gradient for that single component of β. One would then select the next basis
vector for δβ, and repeat the process.
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A particularly efficient alternative to the brute force method just described is to use the
adjoint equations. We introduce the following (linear) boundary value problems for the
nmeas functions W ̄i ∈ h × h:

(33)

In terms of W ̄i, we now may compute the gradient as follows. First, we note that since δUi ∈
h × h, we may replace V in (33) with δUi. This gives:

(34)

Similarly, since W ̄i ∈ h × h we may replace W in (31) with W ̄i. This gives:

(35)

We now subtract (35) from (34) to find:

(36)

Eq. (36) shows that once we have computed W ̄i, we can directly evaluate the gradient of our
data matching term for any number of δβ directions without solving another boundary value
problem.

The final expression for the gradient results by substituting (36) into (32) to obtain:

(37)

In our implementation all variables including displacement, pressure and material properties,
are represented by linear finite element basis functions. The optimization variables are the
nodal values of the material parameters, and the gradient with respect to these variables is

given by (37), g = Dβπ[β,δβ]. More precisely, we represent  with the
same shape functions as for the displacement and the pressure fields. Then the discrete
gradient vector is given by gjA = Dβ π[β,NA(X)ej]; here ej is a Nβ dimensional vector with 1
in the jth component and zeros everywhere else. We begin with an initial guess for the
material parameters (usually homogeneous) and then calculate the gradient using the
procedure described above. This gradient and the objective function is the input for the
BFGS method, which returns an updated estimate of material parameters and the whole
process is repeated until convergence.
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3.3. Continuation in material properties
The continuation in material properties is an important strategy to further reduce the overall
cost of the objective function at each iteration. As discussed in the previous section we need
to solve the forward and the dual problems in order to compute the gradient after each call of
the BFGS algorithm. The forward problem is computationally very expensive and for large
deformations requires an incremental loading of the boundary condition. In this approach at
every step the boundary load is incremented by small amount, and the corresponding
nonlinear system of equations is solved using Newton's method. For large deformations at
about 20% strain, the external load is applied in about 50 increments, and at each increment
Newton's method requires around 5 to 6 linear solves to converge. As a result the total cost
of solving the forward problem is equivalent to about 250–300 linear solves. We note that
dual problem is linear and requires only one linear solve, so it is relatively inexpensive. To
reduce the amount of computation for the forward problem, we apply the entire load in a
single step while using the converged solution from the previous BFGS iteration as an initial
guess. We note that the material properties do not significantly change from one BFGS
iteration to another, so that with this initial guess the Newton's method converges in about 4
iterations (thus requiring 4 linear solves compared to 250–300 solves otherwise). In
instances where the variation in the material properties between BFGS iterations is large the
material property distribution may be incrementally increased from its value at the previous
iteration to the current iteration. This strategy may be understood as continuation in the
material properties as described in [12].

4. Numerical examples
4.1. Validation of the stabilization method in Cook's problem

We first evaluate the performance of our stabilized mixed formulation for plane strain,
incompressible materials in a forward problem and thereafter present solutions to the inverse
nonlinear problem. A typical test for mesh locking is the Cook's problem [17,16]. Fig. 2
shows the set up of Cook's problem. The wing-like profile is meshed with linear triangular
elements on which the displacement and pressure fields are approximated. The values for
the nonlinear parameter γ and the shear modulus μ are chosen to be 5.0 and 0.8, respectively.
As boundary conditions we fix the bottom edge in horizontal and vertical directions and
apply a shear traction of 6.25 × 10−2 on the top edge. All other boundaries are traction free.
The tip deflection at top right corner is computed for varying number of elements, using the
mixed formulation with and without stabilization.

The tip deflection as a function of the number of elements is shown in Fig. 3. The upper
curve represents the computations with stabilization and the lower curve without
stabilization. Mesh locking is observed for the mixed method without stabilization when a
small number of elements is used whereas the stabilized version does not lock. When the
mesh is refined, both curves converge to the same value.

For the Galerkin formulation refining the mesh appears to solve the problem of mesh
locking, but it does not stabilize the pressure mode. This can be seen in Fig. 4(a) and (b),
where we have plotted the pressure distribution for the case with 5000 elements for the
mixed method and the stabilized mixed method, respectively. For the plain mixed method
we observe that the pressure fluctuates between about −25 to above +30, and the distribution
is physically unrealistic. We note that these pressure values will also contaminate the
stresses evaluated using this method. For the stabilized formulation we have a smooth and
realistic pressure distribution, varying between −0.105 and 0.22. The pressure concentration
seen at the right bottom corner is to be expected due to the bending of this structure under
the action of the prescribed force.
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4.2. Solution of the Inverse problem
In this section we evaluate the performance of our inverse problem solution strategy on
synthetic data. We begin with a “known” material property distribution. We load this
specimen by solving the forward problem and record the displacement fields. Thereafter we
add noise to the displacement fields to generate the “measured” displacements and use these
in our algorithm to reconstruct the spatial distribution of the material properties. The mesh to
compute the synthetic data is the same as for solving the inverse problem. However, we do
not commit an inverse crime, as we are adding noise to our displacement field before we
reconstruct the material properties. We compare these reconstructions with the original
distributions in order to assess the performance of our approach. In our initial tests we find
that our approach yields good reconstructions of the shear modulus but poor reconstructions
of the nonlinear parameter. We propose and test approaches to improve these
reconstructions in Sections 4.3 and 4.5.

4.2.1. Creating synthetic data—The material property distributions for our synthetic
specimen are given in Fig. 5(a) and (b). For the shear modulus we have two inclusions in a
homogeneous background. Both inclusions have the same shear modulus value of 5 and the
shear modulus in the background is unity. For the nonlinear parameter there are three
inclusions with values of 5, 15 and 10 embedded in a homogeneous background with a value
of unity. The measured field is created by solving the forward problem and then adding
white Gaussian noise to be consistent with noisy experimental data. We use 7200 linear
triangular elements on a unit square to solve the forward problem. We consider two loading
scenarios. In the first instance we compress the specimen in the vertical direction by
prescribing a uniform displacement in the positive Y direction to the bottom edge and
keeping the top edge fixed in the Y direction. Both these edges are free to deform in the
horizontal direction, and the lateral edges are completely traction free. We prescribe
displacements of 2.0 × 10−3 and 0.2 units, corresponding to overall strains of 0.2% and 20%
respectively, in order to generate a small deformation and a large deformation displacement
field. In the second instance we rotate the loading state by 90° in the counter-clockwise
direction. As a result we prescribe a uniform displacement in the horizontal direction along
the right edge while holding the left edge fixed in the same direction. The top and bottom
edges are left traction free, and overall strains of 0.2% and 20% are applied.

We have a total of four displacement fields that are used in the minimization process. We
add to these displacement fields about 0.3%, 1% and 3% noise which corresponds to noise
in strain of about 7.5%, 25.3%, and 74%, respectively. The noise is measured using the L2
norm, and is given by

(38)

where η can be thought of as a displacement or strain field without noise, and ηnoise is the
corresponding noisy field.

4.3. Simultaneous reconstructions
Using the four displacement fields with 1% noise we apply our method for reconstructing
the shear modulus and the nonlinear parameter. The regularization parameter for μ and γ are
chosen to be 1.0 × 10−7 and 1.0 × 10−8, respectively, corresponding to a Morozov parameter
of 0.72, which is close to unity. We note that the Morozov discrepancy principle states that
the value of the regularization parameter should be chosen such that the difference between
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the predicted and the noisy measured displacement field should be the same order as the
difference between the clean and the noisy measured displacement. Thus the Morozov
parameter is defined as

(39)

In the equation above η ̄ is the predicted displacement field.

In Fig. 6(b) we have plotted the reconstructed shear modulus next to the exact distribution
Fig. 6(a). The shear modulus ratio of inclusion to background is very close to the exact value
of 5. Fig. 7 shows the shear modulus value plotted along the horizontal line through the
center of the inclusions. In Fig. 8(b) we have plotted the reconstruction of the nonlinear
parameter next to the exact nonlinear parameter distribution. We observe that the nonlinear
parameter is not well recovered. The comparison between the exact and reconstructed value
of the nonlinear parameter along the horizontal centerline in Fig. 9 shows that the
reconstructed value significantly underestimates the correct value. This was also observed in
the compressible case in [12]. The reason for this is that the gradient of the objective
function with respect to gamma is much smaller than the gradient with respect to μ for both

the small and large deformation cases. That is . As a result the BFGS method,
which utilizes these gradients, tends to alter the value of μ while leaving γ relatively
unchanged at the initial guess of unity.

An explicit expression for the ratio  can be derived for a simple uniaxial tension/
compression for a homogeneous material as given in Eq. (40).

(40)

From (40) one can see that the ratio is only a function of the stretch and the shear modulus.
The smaller the stretch is, the bigger becomes the ratio of the gradients. Considering a
stretch of λ = 0.8 which corresponds to our total strain of 20% and a shear modulus of 1
results in a gradient ratio of around 7.

A simple fix to this problem is to re-scale the parameters μ and γ such that the value of the
gradient is comparable in the large deformation case. In the small deformation case we still
expect the gradient with respect to γ to be small as this data carries very little information
about the nonlinear behavior of the material. This rescaling may be thought of as a diagonal
preconditioning of the original system of equations. This idea is explored in the following
section.
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4.4. Simultaneous reconstructions with scaling
We replace the nonlinear parameter γ by ξγ in the formulation, so that the appropriate

gradient changes from  to . Here ξ is the scaling factor which is chosen a priori such

that  in the large deformation case. For our example the appropriate value is ξ = 5.

Using the scaled version of γ in our formulation we reconstruct the material properties for
the problem described in the previous section. We consider all three levels of noise. The
regularization parameters for μ and γ as well as the corresponding Morozov parameters for
all computations are listed in Table 1. We observe that the Morozov parameter is close to
unity.

For 1% noise the shear modulus and nonlinear parameter reconstructions are plotted in Fig.
10(b) and Fig. 12(b). We observe that both reconstructions are in good agreement with the
exact distributions. In order to illustrate the effect of scaling γ, in Figs. 11 and 13 are plotted
the shear modulus and the nonlinear parameter values along the horizontal centerline for the
case with and without scaling. We observe that the scaled version recovers the exact contrast
in γ much more accurately without losing contrast in the value of μ.

Fig. 14(b) and (d) show reconstructions of the shear modulus using the scaled version of γ
with 0.3% and 3% noise in the displacement, respectively. The reconstruction with 1.0%
noise is also included in the figures for completeness. The corresponding horizontal
centerline plot appears in Fig. 15. The reconstructions for the nonlinear parameter γ are
shown in Fig. 16(b) and (d), and the corresponding horizontal centerline plots appear in Fig.
17.

We note that even with a high noise level of 3% noise in the displacement, which
corresponds here to a very high level of strain noise of 74%, we are able to distinguish the
inclusions with respect to their stiffness and nonlinear behavior. The contrast improves
dramatically with decreasing noise and regularization parameter, due to the reduction in the
effect of TV regularization.

4.5. Sequential reconstructions
In the previous sections we have demonstrated the utility of rescaling the nonlinear
parameter when the shear modulus and the nonlinear parameter are reconstructed
simultaneously using small and large displacement fields. The need for rescaling can be
avoided with the strategy of sequential optimization. This idea is based on the fact that small
strain deformations are completely independent of the γ distribution. Thus, in the first step
the two small displacement fields are used to reconstruct the shear modulus while the
nonlinear parameter is held fixed at a small value. The regularization parameters and
corresponding Morozov parameters are given in Table 2 for the different noise levels. The
shear modulus reconstructions are plotted in Fig. 18(b) to (d) for the different noise levels.
The corresponding plot through the horizontal centerline is presented in Fig. 19. We observe
that the shear modulus reconstructions are very accurate and compare favorably with the
simultaneous reconstructions.

In the next step we fix the previously computed shear modulus distributions and minimize
the objective function with respect to γ using the two large displacement fields. The
regularization parameter and the Morozov parameter are given in Table 3. The
reconstructions for γ are presented in Fig. 20(b) to (d), while the values along the horizontal
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centerline appear in Fig. 21. We observe that the sequential approach performs as well as, if
not better than, the scaled simultaneous approach.

5. Conclusions
In this paper we have developed and tested an approach for solving the inverse nonlinear
elasticity problem for an incompressible hyperelastic solid. This problem arises in elasticity
imaging, or elastography, where the displacement field inside the tissue is measured at
different values of overall strain and images of the material parameters are sought. We pose
this problem as a minimization problem, where we assume an exponential dependence of
stress on strain, and find the distribution of material parameters which yields the best match
between predicted and measured displacement fields. The predicted displacement fields are
constrained to satisfy the equations of equilibrium.

We solve this problem by using a quasi-Newton algorithm and implement several numerical
techniques that make the solution possible. We evaluate the gradient vector efficiently by
making use of the adjoint equations and a novel continuation strategy in material
parameters. We solve the forward and adjoint problems for an incompressible solid by using
a stabilized finite element formulation that avoids mesh locking and spurious pressure
modes. We propose a new strain energy density function with an exponential stress response
that yields a deviatoric stress tensor and simplifies the interpretation of pressure for an
incompressible material. Finally, we propose and implement a diagonal preconditioning and
a decoupling approach to improve the reconstruction of the nonlinear parameter. We test and
demonstrate the utility of these ideas as well as the performance of the overall approach on
synthetically generated, noisy displacement data. Their application to experimentally
measured displacement data will be considered in the near future.

Appendix A. Linearization of the stabilized weak form
In solving the forward problem as well as in solving the adjoint problem the linearization of
the left hand side of the weak form about a given displacement and pressure field is
required. Mathematically this is denoted by:

(A.1)

where ΔU ≡ [Δu, Δp]. The first term on the right hand side of (A.1) is given by

(A.2)

The second term is derived from (16) and is given by

(A.3)

where
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(A.4)
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Fig. 1.
Nonlinear exponential behavior of the new strain energy density function.
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Fig. 2.
Set up for Cook's membrane problem.
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Fig. 3.
Tip deflection versus number of elements, with and without stabilization.
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Fig. 4.
Pressure distribution with 5000 elements.
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Fig. 5.
Exact material property distributions.
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Fig. 6.
Shear modulus reconstruction using 4 displacement fields with 1% noise.
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Fig. 7.
Shear modulus reconstruction using 4 displacement fields with 1% noise along the
horizontal centerline.
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Fig. 8.
Nonlinear parameter reconstruction using 4 displacement fields with 1% noise.
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Fig. 9.
Nonlinear parameter reconstruction using 4 displacement fields with 1% noise along the
horizontal centerline.
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Fig. 10.
Shear modulus reconstruction using 4 displacement fields with 1% noise and scaling γ.
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Fig. 11.
Shear modulus reconstruction along the horizontal centerline, using 4 displacement fields
with 1% noise.
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Fig. 12.
Nonlinear parameter reconstruction using 4 displacement fields with 1% noise and scaling γ.
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Fig. 13.
Nonlinear parameter along the horizontal centerline using 4 displacement fields with 1%
noise and scaling γ.
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Fig. 14.
Shear modulus reconstruction after scaling γ for different noise levels.
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Fig. 15.
Shear modulus along the horizontal centerline after scaling γ for different noise levels.
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Fig. 16.
Nonlinear parameter reconstruction after scaling γ for different noise levels.
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Fig. 17.
Nonlinear parameter along the horizontal centerline after scaling γ for different noise levels.
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Fig. 18.
Sequential reconstruction of shear modulus. μ reconstructed from two small strain
displacement fields, with different levels of noise. During μ reconstruction, γ is held fixed.
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Fig. 19.
Sequential shear modulus reconstruction along the horizontal centerline.
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Fig. 20.
Sequential reconstruction of nonlinear parameter. γ is reconstructed from two large
displacement fields, with different levels of noise added. During the reconstruction of γ, μ is
held fixed to those distributions depicted in Fig. 18(b)–(d).
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Fig. 21.
Nonlinear parameter reconstruction along the horizontal centerline.
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Table 1

Parameters for material property reconstructions.

Noise in displacement (%) Regularization parameter for μ Regularization parameter for γ Morozov parameter

0.3 1.5E–07 1.8E–09 0.69

1.0 5.0E–07 1.0E–08 0.71

3.0 2.0E–06 4.0E–08 0.70
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Table 2

Parameters for sequential reconstructions (for μ).

Noise in displacement (%) Regularization parameter Morozov parameter

0.3 1.5E–12 0.68

1.0 5.0E–12 0.68

3.0 2.0E–11 0.69
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Table 3

Parameters for sequential reconstructions (for γ).

Noise in displacement (%) Regularization parameter Morozov parameter

0.3 1.8E–09 0.69

1.0 1.0E–08 0.71

3.0 4.0E–08 0.70
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