
Gene-centered regulatory networks
H. Efsun Arda and Albertha J.M.Walhout*

Advance Access publication date 13 December 2009

Abstract
Differential gene expression plays a critical role in the development and physiology of multicellular organisms.
At a ‘systems level’ (e.g. at the level of a tissue, organ or whole organism), this process can be studied using gene reg-
ulatory network (GRN) models that capture physical and regulatory interactions between genes and their regula-
tors. In the past years, significant progress has been made toward the mapping of GRNs using a variety of
experimental and computational approaches. Here, we will discuss gene-centered approaches that we employed to
characterize GRNs and describe insights that we have obtained into the global design principles of gene regulation
in complex metazoan systems.
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INTRODUCTION
In multicellular of organisms, most genes need to be

expressed in a specific spatiotemporal manner, in

order to guide development and to maintain post-

developmental physiology. For instance, the stem

cell factors Oct4, Sox2, Klf4 and c-Myc are

expressed early in development and function to pre-

serve the pluripotency of uncommitted stem cells.

Their expression is sufficient to preserve or induce

this unique cellular property [1]. On the other hand;

a different group of genes is activated upon cellular

differentiation. One of the classical examples is the

Pax6 gene that is required for eye development in a

variety of organisms [2]. Likewise, in Drosophila
embryos, the spatiotemporal expression of gap and

pair-rule genes is crucial for defining segmentation

patterns and development (reviewed in: [3]).

Finally, yet another group of genes is expressed in

specialized, fully differentiated tissues to enable post-

developmental functions in physiology throughout

the lifetime of an organism. A textbook example is

proinsulin, the insulin precursor, which is specifically

expressed in the pancreas and regulates the level of

glucose in the blood after food intake.

As exemplified above, differential gene expression

is a highly regulated and controlled process. It occurs

at a first level by the action of transcription factors

(TFs): proteins that physically interact with cis-acting

genomic regions to control expression of their target

genes. TFs can either repress or activate transcription

and many can do both, depending on the cellular

context. In addition to TFs, chromatin modifications

(e.g. histone acetylation, methylation, etc. [4]),

microRNAs (reviewed in: [5]), RNA binding

proteins, mRNA stability, export and splicing, and

post-translational modifications also contribute to

differential gene expression. However, it is transcrip-

tional regulation which first and foremost determines

where and when a gene is expressed, whereas other

types of regulation often modulate and dampen

gene expression, rather than to determine it.

The human genome encodes �1500 TFs [6] and

600 microRNAs [7]. For most of these regulators,

their function is completely unknown. Indeed, even

in large community efforts such as the ENCODE

project, only a handful have been comprehensively

studied [8]. Furthermore, increasingly more non-

protein-coding nucleotides are being associated
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with a regulatory function in the 3.2 Gb human

genome [8]. Thus, the comprehensive delineation

of the mechanisms that control differential gene

expression at a genome scale, or systems level in

humans is as of yet a daunting task.

Systems level studies of differential gene expres-

sion are greatly advanced by the use of geneti-

cally tractable model organisms such as the

fruitfly Drosophila melanogaster and the nematode

Caenorhabditis elegans. We have focused on C. elegans
because it is a relatively simple animal with a fixed

lineage of only 959 cells. In addition, the C. elegans
genome is fully sequenced and annotated, and is

compact compared to the human genome: even

though both contain �20 000 genes, the 100 Mb

worm genome is 30 times smaller [9, 10].

Consequently, �26% of the worm genome is

exonic, compared with 1–2% in humans. In addi-

tion, the majority of intergenic regions are shorter

than 2 kb [11], and introns are much shorter with a

median length of 65 bp, whereas the median length

of human introns is 3 kb [12]. Thus, the potential

regulatory genomic ‘space’ that needs to be consid-

ered in studies of differential gene expression is much

smaller. The C. elegans genome also encodes fewer

TFs (�940) and microRNAs (�150) than the

human genome [13–15]. Finally, studies about the

mechanisms of differential gene expression at a sys-

tems level are greatly facilitated by the fact that

C. elegans is a transparent animal. By using reporters

such as the green fluorescent protein (GFP) one can

elucidate where and when genes are expressed in

living animals, and determine how different pertur-

bations affect gene expression [16–20].

Differential gene expression can be studied at a

systems level using gene regulatory networks

(GRNs) that model physical and regulatory interac-

tions between genes and their trans regulators

(Figure 1) [21]. Physical TF-DNA interactions can

be delineated using two conceptually different but

highly complementary approaches (Figure 2).

TF-centered, ‘protein-to-DNA’, methods start with

a TF or set of TFs of interest and identify genomic

DNA fragments that these TF(s) interact with.

Chromatin-immunoprecipitation (ChIP) and

DamID are the most widely used TF-centered meth-

ods [22, 23]. ChIP has been particularly powerful for

the identification of TF–DNA interactions in homo-

geneous systems such as yeast, and in mammalian

tissue culture cells, including primary cells or stem

cells. Although powerful, it is technically difficult to

systematically apply ChIP to most TFs in heteroge-

neous and complex metazoan systems such as intact

worms. This is because many TFs are expressed at low

levels, and some may be expressed in a limited

number of cells, or during a narrow developmental

interval. Furthermore, antibodies that are suitable for

ChIP assays are only available for a handful of worm

TFs. On the other hand, gene-centered, ‘DNA-to-

protein’, methods start with one or more regulatory

DNA fragments and identify the TFs that can interact

with these fragments [21]. Here, we will discuss our

efforts on the delineation of gene-centered GRNs in

C. elegans and describe some of the insights that we

have obtained into the global mechanisms of differ-

ential gene expression.

GATEWAY-COMPATIBLE YEAST
ONE-HYBRIDASSAYS
Seminal work from Eric Davidson and colleagues has

characterized the wiring of endo-mesodermal gene

regulation in the sea urchin embryo. This work epi-

tomizes the concept of gene-centered regulatory net-

work mapping because it focused on cis-regulatory

DNA elements to understand where and when genes

are expressed during development, followed by the

identification of TFs that may regulate this process

[24]. The endo-mesodermal network has been deli-

neated over the course of many years because the

Figure 1: Cartoon illustrating hypothetical interac-
tions in a GRN, which combines physical and regulatory
interactions between TFs and their target genes.
In addition toTFs, other regulators need to be incorpo-
rated such as microRNAs and transcriptional cofactors.
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work required laborious assays that were not amena-

ble to use in high-throughput settings in complex

animals. In addition, the interactions identified are

not necessarily direct, as physical associations

are not immediately revealed. To provide a gene-

centered method that can detect physical interactions

between sets of genes and multiple TFs in a relatively

short amount of time, we have developed a high-

throughput version of the yeast one-hybrid (Y1H)

system [25]. With this method, interactions identi-

fied are strictly physical, as Y1H assays do not

immediately reveal in vivo regulatory consequences

(see also below).

Y1H assays are conceptually similar to yeast two-

hybrid (Y2H) assays that have been used to identify

thousands of protein–protein interactions in many

systems, including C. elegans [26, 27]. Instead of

using two hybrid proteins (a protein bait and a pro-

tein prey), the Y1H system uses a DNA bait and a

single hybrid protein prey (Figure 3). The Y1H

system was first developed to facilitate the identifica-

tion of proteins that can bind to multiple copies of a

short DNA sequences of interest [28, 29]. However,

the comprehensive mapping of GRNs needs to be

unbiased, as most small cis-regulatory DNA elements

that control gene expression are not yet discovered.

Instead, larger genomic fragments that likely harbor

many of these elements such as gene promoters and

enhancers need to be interrogated. Furthermore, the

original Y1H system used conventional, restriction-

enzyme-based cloning methods for DNA bait

generation and was therefore not amenable for

system-level analyses. To alleviate these limitations,

we have developed a Y1H system that uses Gateway

recombinational cloning to rapidly transfer multiple

DNA baits into Y1H Destination vectors in parallel

[25]. We have demonstrated that this Y1H system

can be used with both small elements and with large,

complex DNA fragments such as gene promoters.

Gateway-compatible Y1H assays start with a set

of DNA fragments (DNA baits) of interest (Figure 3).

Briefly, the DNA bait is Gateway-cloned upstream

of two Y1H reporter genes (HIS3 and LacZ) and the

two DNA bait::reporter constructs are integrated

into the yeast genome (double integration). This

ensures that DNA baits are chromatinized which

minimizes background and, therefore, reduces false

positive interactions. To enable the identification of a

wide variety of DNA binding proteins, including

transcriptional repressors, a strong heterologous acti-

vation domain (AD – Figure 3) is added to the prey

proteins. If the prey protein contains a DNA binding

domain that can interact with the DNA bait, repor-

ter gene expression is activated. Activation of HIS3
expression is assessed on media lacking histidine and

containing 3-aminotriazole (3-AT), a competitive

inhibitor of the His3 enzyme. Activation of LacZ
is assessed by a colorimetric (‘blue-white’) assay

(Figure 3). So far, we have used both a cDNA library

and TF library as prey resources in our Y1H screens.

It was important to include a low-complexity TF

library because TFs that are expressed at low levels

or in only a few cells in an organism are difficult to

retrieve from screens that employ high-complexity,

non-normalized cDNA libraries. Recently, we have

made additional adaptations of the Y1H system.

Figure 2: GRNs can be delineated using two conceptually different, but highly complementary approaches.
TF-centered methods start with a TF of interest and identify DNA fragments this TF binds to. Gene-centered
methods start with a set of DNA fragments and identify theTFs these fragments interact with.
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For instance, we have developed a smart-pooling

method that is based on the Steiner triple system,

which allows direct testing of multiple TFs that are

allocated to specific pools, and the immediate iden-

tification of interacting TFs by deconvolution [14].

This assay eliminates the need for extensive prey

sequencing (as with library screens) and therefore

reduces the cost per screen and increases the

throughput. One can also perform mating or trans-

formation experiments with arrays of TFs to directly

test TF–DNA interactions (an example of five TFs is

shown in Figure 3) [14]. In addition to predicted

TFs, we have also retrieved several proteins that do

not possess a recognizable DNA binding domain.

These proteins robustly interact with their Y1H tar-

gets in yeast, and for 11 of them we have confirmed

direct promoter interactions by ChIP from yeast

using an anti-AD antibody [30, 31]. The retrieval

of these proteins suggests that not all regulatory

TFs have been uncovered, and that there may be

as of yet unrecognized DNA-binding folds. The

observation that the yeast Arg5,6 enzyme can bind

DNA supports this notion [32]. It is possible that

these interactions may not necessarily be directly

with DNA, instead they could be with other (chro-

matin) proteins that specifically bind C. elegans gene

promoters in yeast. However, we believe that this is

not very likely as we rarely retrieve known or pre-

dicted chromatin proteins or transcriptional

cofactors. In sum, identifying novel TFs is a unique

feature of gene-centered methods.

GENE-CENTERED C. ELEGANS
REGULATORYNETWORKS
Thus far, we have used gene-centered Y1H assays to

delineate several medium-scale GRNs [30, 31, 33]

(Arda et al., submitted). As discussed below, these

networks have already provided insights into the

design principles of regulatory circuits. In addition,

they have enabled us to estimate the sensitivity and

specificity of the assay.

Y1H assays can efficiently delineate tissue-specific

GRNs. By using a set of genes expressed in the

C. elegans digestive tract or involved in its develop-

ment, we identified many digestive tract TFs.

Similarly, our neuronal GRN was enriched for neu-

ronally expressed TFs [30, 31]. Recently, we also

mapped a metabolic GRN, which shows that

process-specific GRNs can also be characterized by

Y1H assays (Arda et al., submitted).

GRNs are bipartite as they contain directed inter-

actions between two types of nodes: genes and reg-

ulators. GRNs can be visualized using publicly

available tools such as Cytoscape and N-browse

[34, 35]. The resulting graph models are highly

complex, particularly when large numbers of

protein–DNA interactions are incorporated,

which makes them difficult to interrogate by

eye (Figure 4A). Instead, a variety of computational

and mathematical tools for network analysis need

to be used. These tools can inform us about the

properties of the network as a whole, or can identify

important network neighborhoods (’modules’) or

Figure 3: Gateway-compatibleY1H assays provide a convenient gene-centered method for GRN mapping. A yeast
DNA bait strain contains two reporter constructs integrated into its genome. Each construct contains the same
DNA fragment, but different reporter genes, such as HIS3 and LacZ. A cDNA or TF library can be used as a
prey resource, or collections of TFs can be tested individually. The panel on the right shows the readout of a Y1H
experiment. AD alone indicates the negative control used to assess DNA bait background growth on media lacking
histidine and containing 3-AT, and background bait coloring on a bGal assay. Different interacting TFs confer
different interaction phenotypes; i.e. light blue versus dark blue.
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overrepresented network building blocks (’motifs’)

(Figure 4). At the level of whole networks, measures

that are often used are the degree and degree distri-

bution [36]. The degree is defined as the connectiv-

ity of individual nodes, i.e. the number of TFs bound

by a DNA fragment or the number of DNA frag-

ments bound by a TF. These are referred to as

incoming and outgoing degree, respectively. The

degree distribution provides information about

the overall network connectivity. In the majority

of biological networks, the degree distribution

follows a power law, rather than a normal distribu-

tion: most nodes have a relatively low degree, but

a small number are disproportionally highly con-

nected [37]. These TFs and promoters are referred

to as ‘hubs’. TF hubs interact with many genes,

from many different tissues or organs. They

are often essential, indicating their overall impor-

tance in gene regulation and development [30, 38].

Network modules are highly interconnected net-

work neighborhoods. Such modules can contain

functionally related genes and TFs. Several measures

can be used to identify network modules, including

topological overlap coefficient (TOC) analysis. TOC

analysis followed by TOC clustering can be used to

identify TF modules that are based on similarities

between TFs in terms of the target genes they inter-

act with (Figure 4). We have previously identified

TF modules in a neuronal GRN and found that one

of these was enriched for paired-type homeodomain

TFs [31]. Interestingly, these TFs associate predomi-

nantly with genes that are exclusively neuronal and

these TFs are themselves neuronally expressed.

Moreover, the neuronal expression of paired-type

homedomain TFs is conserved between C. elegans
and mice. This example illustrates how TF modules

can be used to functionally annotate sets of TFs at a

systems level.

Network motifs are small building blocks com-

posed of two or more interactions (or ‘edges’) that

are overrepresented in GRNs compared to rando-

mized networks [39]. Thus, such motifs represent

Figure 4: GRNs can be analyzed at the whole network level, for instance by determining individual and global con-
nectivities. (A) A compiled GRN of �200 C. elegans gene promoters (based on our published data). This model
reflects the complexity of systems level gene regulation. CirclesçTFs, diamonds, diamondsçtarget gene
promoters, edgesçprotein^DNA interactions as determined by Y1H assays. This visualization was done using
Cytoscape v.2.6 software with ‘random layout’ settings, which randomly distributes the nodes in a given network.
(B) Topçanalysis of incoming or outgoing degrees of individual nodes reveals network hubs. MiddleçTOC analysis
and clustering can reveal TF modules. Bottomçexamples of network motifs that are overrepresented in GRNs.
CirclesçTFs, diamondsçtarget gene promoters, hairpin structureçmiRNA gene promoters.
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successful mechanisms of gene regulation. One of

the best-studied motifs is the feed-forward loop in

which a TF regulates another TF and both share a

downstream target [40] (Figure 4). This motif is

found in GRNs from bacteria, yeast and C. elegans
[30, 39]. We recently delineated the first genome-

scale GRN that not only includes TFs and their

target genes, but also incorporates microRNAs

[33]. This network contains interactions between

microRNA promoters and TFs, and predicted

interactions between microRNAs and the 30UTRs

of TF-encoding mRNAs. Interestingly, we found

that this network contains a novel type of network

motif: a feedback loop in which microRNAs and

TFs reciprocally regulate each other (Figure 4).

The microRNAs and TFs that participate in these

loops have a high flux-capacity: a combined high

in-and outgoing degree. This indicates that such

motifs may provide adaptable and robust gene

expression programs (reviewed in: [15]). Feedback

loops are not overrepresented in pure transcriptional

networks, and therefore microRNAs may provide an

important GRN component for feedback regulation.

It is likely that other types of interactions may also

contribute to different types of network motifs,

including protein–protein interactions [41], and

perhaps interactions involving RNA binding

proteins.

TF BINDING SITES
Y1H data provide a unique resource for the identi-

fication of TF binding sites; short sequences within

the larger DNA bait with which the TF directly

associates. By using our data and a combination

of available computational algorithms, we have

delineated the consensus binding site for several

C. elegans TFs. First, we identified the binding site

for ZTF-2, a novel pharyngeal TF [30]. We found

that this site greatly resembles a predicted pharyngeal

regulatory motif that is found in the promoters of

genes whose expression is enriched in the C. elegans
pharynx. We subsequently showed that ZTF-2

represses gene expression by binding to this element

[30]. Second, we identified the binding site for FLH-

1 and FLH-2, two TFs that interact with several

microRNA promoters in Y1H assays. We found

that FLH-1 and FLH-2 redundantly repress early

embryonic expression of these microRNAs by bind-

ing to this element [33, 42]. Finally, we identified an

extended binding site for the Snail-type TF CES-1

and demonstrated that this site is both necessary and

sufficient for CES-1 binding [43].

LIMITATIONSOF Y1H ASSAYS:
FALSE NEGATIVESAND FALSE
POSITIVES
Y1H assays provide information regarding interac-

tions between TFs and genomic DNA fragments

that can occur. When carried out appropriately, the

interactions retrieved are highly robust, which means

that the technical false positive rate is low. Y1H

assays ideally need to be carried out using DNA

baits that do not have a high background reporter

gene activity (e.g. because they interact with a yeast

transcriptional activator), readouts from both

reporter assays should be considered and interactions

identified need to be retested in fresh yeast cells.

However, even when carried out appropriately

there are limitations to Y1H assays as not all inter-

actions retrieved are by definition biologically

Table 1: Advantages and limitations of TF versus gene-centered methods

TF-centered methods Gene-centered methods

� Start with aTF and find all possible genomic regions theTF can
bind.

� Interactions captured in vivo.
� Powerful for the identification of protein^DNA interactions

in unicellular or homogenous systems.
� Powerful for capturing interactions whenTF activity depends

on post-transcriptional modifications.
� Limited by the endogenous expression level and/or

spatio-temporal expression pattern of TFs, i.e. TFs that are
expressed at high levels, or in a large number of cells can
be assayed.

� Limited by the availability of TF-specific antibodies.

� Start with a genomic fragment (e.g. a gene promoter) and find
TFs that can interact with the DNA fragment.

� Interactions captured are ‘in levuro’, i.e. not in vivo, but not
in vitro either.

� Powerful for the identification of protein^DNA
interactions that pertain to complex tissues or processes.

� May miss interactions that involveTFs that are post-
transcriptionally modified.

� Not limited by the endogenous expression level and/or spatio-
temporal state of TFs, interactions found are ‘condition-
independent’.

� No antibody is required.
� Cannot yet detect heterodimers.

Gene-centered regulatory networks 9



meaningful (biological false positives), and interac-

tions may be missed (false negatives).

In our combined GRNs, we identified TFs from

all major families, including nuclear hormone recep-

tors (NHRs), C2H2 zinc fingers, homeodomains and

basic helix-loop-helix (bHLH) proteins [30, 31, 33].

This demonstrates that the Y1H system does not

have an inherent bias for or against particular types

of TFs. However, a current limitation of the method

is that it can only detect monomeric or homodimeric

TFs. Many TFs bind DNA as obligatory dimers [44],

and, therefore, implementations of the Y1H system

will need to be developed to alleviate this limitation.

Other TFs that may be missed include those that

need to be post-translationally modified before

they can interact with DNA, for instance by phos-

phorylation. Finally, TFs that will be missed include

those that are underrepresented in cDNA libraries or

for which a full-length open reading frame has not

yet been cloned (i.e. they are not yet present in TF

libraries). So far, we have detected interactions for

�25% of all predicted C. elegans TFs in Y1H assays,

which is unprecedented for any multicellular

organism.

Y1H-based TF-DNA interactions can be vali-

dated in vivo in C. elegans using a variety of methods.

By performing ChIP and functional assays such as

comparing promoter activity or target gene expres-

sion in the presence or absence of an interacting TF,

we have demonstrated that numerous TF-target

gene interactions that we identified do occur in
vivo. However, we do not expect all physical inter-

actions to have an observable biological conse-

quence. It has been shown in other systems that

TFs can be physically associated with chromatin/

DNA without regulatory consequences [45, 46]. In

addition, it is important to note that validation assays

are not foolproof: interactions that occur in only a

few cells or during a short (developmental) time

period will be difficult to detect in whole animal

assays. Indeed, we used prior knowledge to validate

microRNA promoter interactions for the TFs

DAF-3 and LIN-26: for DAF-3 we used dauer

animals, where we know DAF-3 is active, and for

LIN-26 we analyzed embryos as loss of lin-26 con-

fers an embryonic phenotype [33].

CONCLUSION
Gene-centered methods such as Gateway-

compatible Y1H assays provide powerful tools for

GRN mapping. For complete, high-quality GRNs

the data obtained with these methods need to be

integrated with other data types such as those

obtained by TF-centered methods. In the future, it

will be important to incorporate multiple types of

regulatory molecules and to connect GRNs to sig-

naling networks. Finally, it is a major future chal-

lenge to go beyond static, Boolean GRN models

and to incorporate cellular states, dynamics and inter-

action affinities as well.
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