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  ABSTRACT 
  Microtiter plate (MTP) assays often exhibit distortions, such 
as caused by edge-dependent drying and robotic fluid handling 
variation. Distortions vary by assay system but can have both 
systematic patterns (predictable from plate to plate) and random 
(sporadic and unpredictable) components. Random errors can be 
especially difficult to resolve by assay optimization alone, and 
postassay algorithms reported to date have smoothing effects that 
often blunt hits. We implemented a 5  ×  5 bidirectional hybrid 
median filter (HMF) as a local background estimator to scale each 
data point to the MTP global background median and compared it 
with a recently described Discrete Fourier Transform (DFT) tech-
nique for correcting errors on computationally and experimentally 
generated MTP datasets. Experimental data were generated from 
a 384-well format fluorescent bioassay using cells engineered to 
express eGFP and DsRED. MTP arrays were produced with and 
without control treatments used to simulate hits in random wells. 
The HMF demonstrated the greatest improvements in MTP coef-
ficients of variation and dynamic range (defined by the ratio of 
average hit amplitude to standard deviation, SD) for all synthetic 
and experimental MTPs examined. After HMF application to a 
MTP of eGFP signal from mouse insulinoma (MIN6) cells obtained 
by a plate-reader, the assay coefficient of variation (CV) decreased 
from 8.0% in the raw dataset to 5.1% and the hit amplitudes were 
reduced by only 1% while the DFT method increased the CV by 
36.0% and reduced the hit amplitude by 21%. Thus, our results 
show that the bidirectional HMF provides superior corrections of 
MTP data distortions while at the same time preserving hit ampli-
tudes and improving dynamic range.  

  The software to perform hybrid median filter MTP corrections 
is available at http://bccg.burnham.org/HTS/HMF_Download_
Page.aspx, password is pbushway.      

  INTRODUCTION 

 E
rrors in microtiter plate (MTP) data can arise from many 
sources including robotic liquid handling, instrumen-
tation, and atmospheric conditions, and are frequently 
exacerbated by lengthy or complex assays.  1–4   The detri-

mental localized data distortions in MTP data obtained from a 
chemical library screen can be random, such that sporadic errors 
are distributed unpredictably throughout a screen, or systematic, 
such that a similar pattern is repeated predictably. These distor-
tions include edge artifacts that can be caused, for example, by 
variations in temperature and humidity over the area of a MTP. 
Even seemingly predictable patterns such as edge artifacts usu-
ally have random components that cannot be easily modeled or 
corrected.  2   Random components become more evident when com-
paring spatially patterned data distortions from MTP to MTP, as 
they often defy prediction by a concise error model. Strategies 
for rectifying systematic errors include defining and tracking the 
error sources and introducing methods to compensate for their 
effects. A common approach is to flag and remove errors from 
MTP data, but this has the undesirable effect of discarding poten-
tially useful data.  4   The primary challenge, therefore, is to design a 
method for correcting underlying data distortions while preserv-
ing the signal contributed by the hits, which can be modeled as 
sparse point noise, or outliers. 

 Local distortions, such as edge artifacts, can be thought of as 
local variations in background. This shifts the problem to one of 
finding a way to correct the background values to within a nar-
row and uniform range (eg, a flat surface in a 3D plot), thereby 
removing the distortions/artifacts and improving the confidence 
in resolving the sparse “point noise” of outliers that correspond to 
screening hits, while reducing the hit/background dynamic range 
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as little as possible. We believe the simplest way to do this is to 
estimate the local background ( L ) within an appropriate sample 
neighborhood and scale each target data point (target value) cen-
tered in that neighborhood by the ratio of the global ( G ) and local 
backgrounds ( L ) as 

 
Corrected Value

G
L

Target Value� �
⎛
⎝⎜

⎞
⎠⎟  

(1)

 where the corrected value replaces the target value in the cor-
rected MTP dataset. 

 In chemical library or functional genomics (RNAi and cDNA) 
screens, hits are typically of high- or low-magnitude values com-
pared to the background wells. Thus, error correction consists of 
correcting local background distortions by, for example, apply-
ing a median filter  5   as illustrated in   Figure 1A  , while retaining 
sporadic, high/low magnitude events. That is, the hits are analo-
gous to the “salt and pepper,” or “point” noise that typically com-
prises errors in many other applications. For chemical library or 
functional genomics screening applications, nonparametric data 
scaling should not remove or dwarf these rare, low- or high-mag-
nitude events, since these correspond to assay hits and are the 
samples of interest. MTPs with local patterns designed into the 
assay, such as serial dilutions of compounds for dose responses, 
should be addressed with other methods such as LOcal regrESSion 

(LOESS) to fit and normalize data  1   ,   6   via locally adaptive processes 
that use low-order polynomials to approximate a fit to neighbor-
hood data.  7   

 For primary screens, both the median filter and the hybrid 
median filter (HMF) can be used to estimate the local (empirically 
defined neighborhood) background to scale the center element 
by the global background ( G/L , see  Equation 1 ).  G  is the true or 
expected background, which can be estimated by the median or 
average of the whole dataset or a representative subset of values 
(eg, multiple plates in a batch, or one plate) in the screen; the 
global background estimate is a constant for a whole dataset, a 
batch of plates, or a single plate, respectively. Importantly, the 
median-based correction is outlier resistant in that a single hit/
outlier will not alter the local estimate  L  of the background. By 
taking the statistical median stepwise over predetermined sub-
regions of the neighborhood, the HMF provides additional free-
dom to ignore multiple hits/outliers within the neighborhood to 
create the background estimate. Because they completely ignore 
the hits/outliers in estimating the background, we hypothesized 
that median filters would be a better choice than typical smooth-
ing operators/filters and methods based on the Discrete Fourier 
Transform (DFT), which invariably blunt the hits. The linear DFT 
views everything as spatial frequencies, which cannot always 
properly represent the spatially discrete properties inherent of the 
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  Fig. 1.     Illustration of example 3 × 3 median and 5 × 5 hybrid median fi lters (HMFs). ( A ) Elements representing both common 3 × 3 median 
and average fi lters, where the median is obtained from the rank order of all 9 elements and the average is the arithmetic mean of the same 
elements, are shown. ( B ) For the bidirectional 5 × 5 HMF, the median values are extracted from neighborhood diagonals (gray), cross 
(black), and center value (red) and are used to generate a rank-ordered 3-number list from which a fi nal hybrid median value is determined 
for each data element in a microtiter plate (MTP) array.    
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assay data. The nonlinear and inherently spatially digital/discrete 
properties of the HMF enable more complete insensitivity to hits/
outliers and it can be applied to raw data arrays systematically 
and automatically without plate-by-plate operator input, which 
may improve consistency. 

 Other median-based methods have been previously introduced 
that make corrections to the systemic variations of MTP.  8   Some 
prominent cases are the median polish  9   and the B-score  10   meth-
ods that estimate a residual value by employing a 2-way fit to 
the columns and rows of the target value. Through iterations, 
the row and then column medians are removed to minimize the 
residual value to the user-defined minimum or present number of 
iterations. Because of their iterative nature, these methods can be 
more computationally intensive than the single-pass HMF. Both 
iterative methods also require a user decision to stop iteration 
when the residual has reached a minimum value or a preset num-
ber of iterations have been completed. The HMF method, on the 
other hand, requires no input or decision making from the user. 

 In preliminary experiments, we tested various local back-
ground estimators on MTP data for their respective capacity 
to diminish spatial distortion while preserving hit amplitudes, 
and found the bidirectional HMF promising.  11   ,   12   We then adapted 
the HMF for better operation at MTP edges and compared it to 
a recently described Small Laboratory Information Management 
System (SLIMS) DFT technique.  2   ,   3   The strengths and weaknesses 
of the algorithms were evaluated by the reduction of back-
ground distortion and overall variations in MTP values (with hits 
removed), preservation of hit amplitudes, and/or hit:background 
dynamic range.  

  MATERIALS AND METHODS 
   Median-Based Array Correction  

 MTP data can be written in the matrix notation: 

 

MTP

MTP MTP MTP
MTP MTP

MTP MTP

1,1 1,2 1,C
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(2)

 where  R  and  C  represent the maximum number of rows and col-
umns, respectively, in the MTP (eg,  R  =16,  C  = 24 for a 384-well 
MTP). Here, each element of the matrix represents the measure-
ment originating from a well. In index notation, this can be sim-
ply expressed as MTP  i,j  , where  i  = [1, 2, 3, …,  R ] and  j  = [1, 2, 3, 
…,  C ] are the row and column indices. 

 A square local neighborhood of the size  d  ×  d  (eg, 3 × 3 and 5 
× 5 in   Figure 1A   and  1B , respectively) is explicitly described with 
odd values of  d  for symmetry. The half-size of the filter, using 
integer math, is defined as  h  =  d /2 (eg,  h  = 5/2 = 2 for  d  = 5). 

A local background  L   i,j   within each  d  ×  d  neighborhood around 
MTP  i,j   is estimated by the HMF such that the center element of the 
neighborhood falls on MTP  i,j  . The medians of the diagonal and 
axial elements of each neighborhood are defined as 

 

Axial Elements Median

   MEDIAN H V H MTP ,V MTP ;k 1,i, j k i k, j

�

� � �� � 22, ,h

Diagonal Elements Median

   MEDIAN D D MTP ;k 1,i k, j k

…[ ]
�

� �� � 22, ,h…[ ]  

(3)

 Note that since  k  is a nonzero index, the central element is 
excluded from these median calculations. Moreover, when the 
neighborhood is close to the periphery of the MTP, the filter ele-
ments that fall outside of the defined range of MTP  i,j   are simply 
ignored by dynamically shrinking the neighborhood size at the 
edges. Finally, the estimate of the local background is 

 L MEDIAN Axial Elements Median, Diagonal Elements Median, MTPi, j i� ,, j⎢⎣ ⎥⎦  
 (4)

 Using the global background  G  of the entire MTP and this local 
background estimate, each data point MTP  i,j   is then scaled to a 
corrected value  C   i,j   using a more specific version of  Equation 1 , 
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(5)

 For the more common median and average filters, each ele-
ment was also scaled in the manner described in  Equations 1 and 
4 , with  L  defined as the median and average of the neighbor-
hoods (  Fig. 1A  ), respectively, and  G  defined as the MTP median 
(  Fig. 1  ). 

 The kernel sizes of 3 × 3 and 5 × 5 for the HMF were chosen 
empirically. In preliminary experiments (data not shown), the 5 
× 5 size appeared to be optimum for 384-well MTP arrays; how-
ever, application to higher density formats may require additional 
testing to confirm an optimal kernel size and it is possible that 
larger kernel sizes (eg, 7 × 7, 9 × 9, etc.) might perform better in 
higher density formats where, for example, edge artifacts might 
also extend inward over a larger number of wells. Since the local 
background estimation depends heavily on obtaining a represen-
tative sample population from the MTP, kernel size is important 
particularly at the MTP edges. An alternative to ignoring the ker-
nel elements outside the array when operating at the edges (see 
 Equation 3 ) is to keep the kernel size constant and move the tar-
get pixel within the kernel and appropriately alter the subregions 
for calculations of the intermediate medians. Alternatives from 
image processing are also available.  13–15   

 Applications of the common median and average filters (see 
  Fig. 1A  ), and the bidirectional HMF (see   Fig. 1B  ), are described as 
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follows. For the example 5 × 5 neighborhood in   Figure 1A   (left), 
the median and average filters used all 25 of the elements to obtain 
local backgrounds of 12 and 12.96, respectively. Application of 
the bidirectional HMF in   Figure 1B   to the same neighborhood 
gave a median of the diagonal elements of 11 and a median of the 
axial elements of 13. With a central data element of 19, the final 
rank ordered list yields a hybrid median of 13. 

 The operation of the HMF is illustrated in more detail in the 
diagram of an example MTP (  Fig. 2  ) created using Microsoft Excel 
by weighting array values appropriately to create a uniform con-
tour with a pronounced edge artifact. The HMF with kernel (or 
neighborhood) size  d  = 5 was applied to the MTP and the medians 
of the diagonal (gray) and axial (black) elements are noted in the 
table (  Fig. 2  , bottom), along with the original and scaled value 
of the center MTP  i,j   position (red). Note that elements of the HMF 

outside of the MTP array are ignored when they overhang the 
plate edge at the peripheral wells. The total number of contribut-
ing elements ( N ) is listed for each of the masks, which are located 
at center coordinates “ID  i,j  .” 

 For the example targeting well A-01 for correction in   Figure 2  , 
there is no hit, but the modeled edge effect decreases the values 
toward the edge and  Equation 5  scales MTP1,1 = 25 to the cor-
rected value  C 1,1 = 50. At well D-16, MTP4,16 is a down hit, there 
are 2 up hits in the 5 × 5 neighborhood (95 in the diagonal and 
75 on the vertical axis), and the well value is unchanged at  C 4,16 
= 10. At H-24, there is an up hit distorted by the edge effect and 
MTP8,24 = 95 is scaled up to  C 8,24 = 113. At well K-10, MTP11,10 
= 50 is the same as the global estimate, resulting in no change for 
 C 11,10 = 50. Well O-03 is a down hit of MTP15,3 = 4 that is dis-
torted by the edge effect and is corrected up to  C 15,3 = 7. A pro-

gram for implementing the bidirectional HMF can 
be downloaded at http://bccg.burnham.org/HTS/
HMF_Download_Page.aspx (password pbushway).  

  Discrete Fourier Transform-Based Data 
Correction 

 DFT calculations of biological array 
experiments  2   ,   3   can be used to create a periodogram 
of the array data.  16   ,   17   The periodogram describes 
the degree of distortions that can be modeled by 
“patterning” in the original array data. In a MTP, 
plate-wide, well-by-well random variations includ-
ing point noise (outliers; hits) represents low peri-
odogram amplitudes and composes the bulk of the 
array data in a screen. Localized spatial distortion 
and patterning appears as high-magnitude signal 
on a periodogram due to spatial agreement in array 
values. 

 Our MTP data were processed with the Small 
Laboratory Information Management System 
(SLIMS) DFT software (downloaded from http://
slims.sourceforge.net/) for comparison with the 
HMF. The  VisTa  standalone was used to confirm 
SLIMS-implemented DFT and DFT corrections 
(see http://www.columbia.edu/cu/biology/faculty/
stockwell/StockwellLab/index/ to download).  2    

  MIN6 eGFP/DsRED Cells 
 The MIN6 mouse insulinoma cell line  18   was 

stably modified following lentiviral infection to 
express eGFP under the control of the human insu-
lin promoter  19   and DsRED under control of the phos-
phoglycerate kinase (PGK) minimal promoter.  20   ,   21   

384-Well Microtiter Plate Bioarray Data Format:   Plate Median = 50

Date Table - Properties of Highlighted Filter Mask and Raw Data Scale

  Fig. 2.     Application of the 5 × 5 bidirectional hybrid median fi lter (HMF) to a microti-
ter plate (MTP) array. Various placements of the HMF on an example array illustrate 
the function of the fi lter and the effect of peripheral wells on fi lter size and the total 
number ( N ) of sampled elements. As the 5 × 5 HMF passes over the array, it returns 
a unique value estimating the local neighborhood ( L   i,j  ) corresponding to the raw 
data element at its center (MTP  i,j  ). A linear transform is then applied to the raw data 
center element. The linear transform divides the dataset global median ( G ) (50 as 
indicated in top left corner) by the fi lter hybrid median ( L   i,j  ) to produce a simple sca-
lar that is multiplied by MTP  i,j   to yield the corrected value ( C   i,j  ). The table (bottom) 
tracks MTP  i,j   and  C   i,j   for the illustrated operations.    
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The dual promoter system allows a direct comparison of insulin 
and PGK promoter activities.  

  Experimental Array Data 
 Our comparative analysis of correction methods used a com-

bination of 3 computationally derived (“synthetic,” created 
in Microsoft Excel) and 4 experimentally derived cell-based 
(“experimental,” MIN6 eGFP/DsRED cells) MTP array data, which 
are summarized in   Table 1  . In the 3 synthetic arrays, a model 
384-well MTP was created to mimic the edge artifact commonly 
observed in real-world assay data. Synthetic1 (  Fig. 3  ) edge distor-
tion was created in the outer wells (a distance of 3 or less from the 
edge), spanning the range 0.25–0.5 (out of 0.0–1.0). The Synthetic1 
background values were generated randomly around a mean of 
0.5 with a 5% deviation (using a uniform distribution) to mimic 
noise. Synthetic1 hits were inserted randomly with magnitudes 
0.6 and 1.0 (  Fig. 3A  ). Synthetic2 was created with edge effects 
within 3 wells of the edge but without background noise or hits 
(  Fig. 4A  ). Sythethic3 is similar to Synthetic2 but with hits created 
by a random multiplier or divisor in the range 1–10 (  Fig. 5A  ). 

 The 4 “experimental” datasets were created from 2 different 
MIN6 MTPs that were prepared to mimic minor edge distortion 
and hits (Experimental1 in   Fig. 4D  , Experimental2 in  Figs. 6  and 
 7 ) MIN6 cells were seeded into a black-wall, clear-bottom 384-
well MTP, using a Hamilton STAR fluid handler (Hamilton, NV) 
mounted with a 96 channel head, and incubated to achieve 60% 
confluence 24 h after seeding. Four image fields per well were 
acquired for both MTPs using a Nikon 10×, NA 0.45 objective at 12 
bits/pixel binned 4 × 4 using the following filters: 360/40, 460/40 
(DAPI), 475/20, 535/50 (eGFP), 535/50, 620/60 (DsRED) excitation/

bandpass, emission/bandpass, respectively. TIFF images were ana-
lyzed using the IN Cell Analyzer 1000 Developer Toolbox. First, 
the eGFP image channel was flat-field corrected from previously 
acquired blank reference images and then an “isotropic diffusion 
filter” was passed over the image for 5 iterations to smooth image 
noise in image areas devoid of significant signal variation (terms 
and algorithms from INCell 1000 Developer Toolbox). Images were 
then segmented using threshold  T  = 1.04 × Mean_Image_Intensity 
for the eGFP channel. The well readouts were the density multi-
plied by the area under the segmented masks produced as a stan-
dard metric ( D  ×  A  measurement) in the GE Developer Toolbox. 
The first plate was incubated for a total of 3 days at 37°C and 
10% CO 2  until cells achieved 90%–100% confluence, then fixed 
in 5% paraformaldehyde (FLUKA) and imaged on the INCell 1,000 
to generate the Experimental1 dataset. Then randomly positioned 
wells were incubated with 0.04% Phalloidin-Alexa488 (Invitrogen/
Molecular Probes) in PBS to simulate up hits and the MTP was re-
imaged to generate the Experimental2 dataset. 

 The second MIN6 MTP for datasets Experimental3 and 
Experimental4 was created to mimic more severe edge distortion 
and hits with decreased fluorescence intensity. Cells were seeded 
to achieve 40% confluence the day after seeding and maintained 
in culture for an extended incubation time of 5 days to maximize 
edge distortions, fixed, and read using the EnVision plate-reader 
(PerkinElmer, MA). Methanol was then added to randomly selected 
wells and groups of wells, to decrease fluorescence and thereby 
mimic down hits or toxic compounds for the Experimental4 data-
set, which was also read on the Envision instrument. Both eGFP 
and DsRed spectra data were collected. This diverse collection of 
datasets helped delineate the differences in performance.  

  Table 1.      Description of Datasets Used in the Experiments   

MTP Dataset Name Data Source

Synthetic1
Synthetic data created in Microsoft Excel with a background SD of 5%, containing hits less than or equal to 

5 × SD (  Fig. 3A  ) 

Synthetic2 Synthetic data created in Microsoft Excel to represent edge effects in the 3 most peripheral wells (  Fig. 4A  ) 

Synthetic3
Synthetic data created in Microsoft Excel to represent edge effects in the most peripheral wells (within 3 

from the edge), with hits created by a random multiplier or divisor in the range 1–10 (  Fig. 5A  )

Experimental1
eGFP Readout of MIN6 cells incubated for 2 days and imaged on an INCell1000 imager (  Fig. 4D  ) with no hits 

implemented

Experimental2
eGFP Readout of MIN6 cells incubated for 2 days and imaged on an INCell1000 imager. Up hits were 

simulated using phalloidin-FITC for illustration in   Figure 6   and analysis presented in   Figure 7   

Experimental3
Data are eGFP or DsRED (2 colors, same MTP) readout of MIN6 cells on an Envision plate-reader after 

incubation for 5 days 

Experimental4
eGFP or DsRED readout of MIN6 cells on an Envision plate-reader (  Fig. 5D   and   5G  , respectively) after 

incubation for 5 days. Down hits were simulated by addition of methanol as described in Methods. 

  The datasets listed are created and used for gauging the performance of the correction methods as described in the Methods.  

adt.2009.0242.indd   242 4/19/2010   3:39:22 PM



 CORRECTION OF ARRAY DATA 

© MARY ANN LIEBERT, INC. • VOL. 8 NO. 2 • APRIL 2010 ASSAY and Drug Development Technologies 243

  Calculations 
 The measurements used to gauge the performance of arrays are 

described as follows. The coefficient of variation of the background 
(CV = 100 × SD/mean) was used to describe the variation in the 
MTP data array background values. In arrays with hits, the hits 
were removed prior to calculating the CV, unless otherwise noted. 

 Over each MTP dataset, we define 

 
Average hit amplitude

Hit - Mean

Number of hits
Background

�
∑

  
(6)

 and 

 
Dynamic range

Average hit amplitude
SDBackground

�
  

(7)

 where SD Background  is the SD of the plate with the hits excluded. 
Dynamic range and CV both distinguish array corrections that 
improve assay performance by decreasing background variation 
and/or increasing hit amplitudes, rather than by a simple multi-
plication that increases the amplitudes of both the hits and the 
background. The data are objectively improved—hit magnitudes 
increased and/or background variations decreased—with smaller 
background CV and larger dynamic range.  
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  Fig. 3.     Comparison of local background estimators. The performances of the average, median, and bidirectional hybrid median fi lters (HMFs) 
are compared using the Synthetic1 dataset. The raw data are shown in ( A ) and the array corrections are shown in ( B ) for the 5 × 5 HMF, ( C ) 
for the 3 × 3 median fi lter, and ( D ) for the average fi lter. A data table ( E ) statistically summarizes the capacity of each fi lter to smooth local-
ized background distortion while preserving hit amplitudes in the Excel array. Mean, standard deviation, and coeffi cient of variation (CV) 
were calculated with the simulated hits removed. Dynamic range was calculated according to  Equation 7 . The table breaks down corrective 
performance at the edges and central region of the array. Edge regions are defi ned by a 2-element wide border plus 1 element nested at each 
corner. The 5 × 5 median and average fi lters are not shown in surface plots because of reduced correction effi ciency and method redun-
dancy, but are summarized in ( E ). The scale and color codes are identical, with each color corresponding to 12.5% of the total range.    
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  HMF Performance Vs. Hit Density 
 The HMF assumes that hits are relatively rare in the neigh-

borhood. As hit density increases, the probability increases that 
enough hits reside within a given neighborhood to cause errors 
in the local background estimate. To investigate the sensitivity 
of the HMF to the number of hits in an MTP, we mathematically 
introduced increasing numbers of hits into the synthetic and 
experimental datasets and measured the corresponding changes 
in the CV and minimum dynamic range (which is defined by a 
variation of  Equation 7  wherein the “average hit amplitude” is 

replaced by the minimum hit amplitude). For 
this experiment, variations of the Synthetic2 
(  Fig. 4A  ) and Experimental1 (  Fig. 4D  ) MTPs 
were used. Originally, neither of these datasets 
contained any hits. To mimic a relatively weak 
hit, we chose a hit signal magnitude of mean 
plus 3 × SD, where SD is the standard devia-
tion of the MTP without hits. 

 Hits were randomly positioned in the MTP 
and dynamic range and CV were measured with 
and without correction by the 5 × 5 HMF. This 
experiment was performed with number of hits 
varying from 1 to 381 in increments of 5.   

  RESULTS 
  Comparisons of Average, Median, and 
Bidirectional Hybrid Median Filter 
Corrections on a Synthetic MTP 

 In the first experiment, the background 
estimates provided by HMF were directly com-
pared to those from the median and average 
filters (see   Fig. 1  ) for their ability to correct 
localized distortions in the Synthetic1 dataset, 
which contains simulated hits (  Fig. 3  ). All filters 
improved the dynamic range in Synthetic1 to 
some degree, but the HMF achieved the great-
est reduction in CVs (  Fig. 3E  ). The 5 × 5 HMF 
(  Fig. 3B  ) and the 3 × 3 median filters (  Fig. 3C  ) 
corrected the edge distortion and retained the 
amplitude of simulated hits. In contrast, the 
smoothing effects of the 3 × 3 average filter 
(  Fig. 3D  ) reduced simulated hit magnitudes and 
demonstrated a diminished capacity to correct 
edge distortions (  Fig. 3B   and  3C ). 

 Background smoothing was compared via 
the CVs as shown in   Fig. 3E  ; a lower MTP 
background CV indicates a more uniform 
background. The 3 × 3 median filter (  Fig. 3E  ) 

reduced the whole background CV to 8.2% from 24.9% for raw 
MTP and increased the dynamic range (see  Equation 7 ) by 7.1-
fold, while the 5 × 5 median filter decreased the whole back-
ground CV to 13.8% and increased dynamic range by 3.1-fold. 
The 3 × 3 average filter resulted in less improvement, with a 
whole background CV of 11.2% and dynamic range 3.3-fold bet-
ter. The 5 × 5 average filter decreased the whole background CV 
to 16.7% and increased the dynamic range by 2.1-fold. The 3 × 
3 median filter increased the dynamic range the most (7.1-fold), 
with the HMF next best (6.5-fold), whereas the HMF reduced the 
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whole background CV the most (to 7.9%) and the 3 × 3 median 
next best (to 8.2%). At the edges, the HMF also reduced the CV 
the most (from 14.2% to 8.8%), with the 3 × 3 median filter next 
with a reduction to 9.7%. Inspection of the corrections along the 
2-well-wide edges of the MTP in   Figure 3C   vs.  3A  shows the dif-
ferences. The 3 × 3 median filter results in   Figure 3C   demonstrate 
more corruption in at the edges (eg, regions A-15, A-09, D-02, and 
O-23 in   Fig. 3C   vs.  3A ). Thus, the HMF enhanced dynamic range 
less than the 3 × 3 median filter, but created a lower background 
CV and left hit amplitudes closer to RAW data values. Also nota-
ble is how differently the HMF correction effected the CV of the 
peripheral wells compared to the central wells. HMF reduced the 
CV of the peripheral wells the most (14.2% in raw vs. 8.8% in 
corrected) while changing the CV of the center region the least 
(6.6% in raw vs. 6.8% in corrected). This shows the effectiveness 

of the HMF correction, especially 
for edge effects.  

  Performance Comparison 
of the 5 × 5 HMF and DFT 
Corrections on Spatially 
Distorted MTP Array Data 

 We compared the performances 
of the 5 × 5 HMF and DFT (as 
applied in the SLIMS software 
package) on synthetic and experi-
mental datasets, both with and 
without simulated hits as described 
in the Methods. Example images 
from the Experimental2 dataset 
are shown in   Figure 6   and include: 
(1) a negative control central 
well (  Fig. 6A  ); (2) a dim negative 
control edge well (  Fig. 6B  ) that 
resulted from long-term cell cul-
ture; and (3) a very bright simu-
lated hit positioned at the MTP 
edge (  Fig. 6C  , note higher contrast 
vs.  6A  and  6B ) that were artifi-
cially brightened to visualize the 
cells. 

   Figure 4A   and  4D  denotes sur-
face plots of the Synthetic2 and 
Experimental1 datasets, respec-
tively. These datasets did not 
contain simulated hits.   Figure 
4B   illustrates the Synthetic2 
MTP treated with the SLIMS DFT 

method. The waves in the surface plots that are especially promi-
nent at the edges in   Figure 4B   (and present but less prominent 
in  4E ) are the typical “ringing” artifacts of DFT methods, which 
are often a by-product of transforming the image data to the 
discrete frequency domain and back to the spatial domain.  22   By 
inspection, the HMF produced a flatter 3D plot overall (  Fig. 4F  ) 
vs. the DFT correction (  Fig. 4E  , compare, eg, areas M-J/13-16). 
Neither method completely corrected areas near corner wells A-1 
and A-22 (  Fig. 4E   and  4F ), where more prominent noise might be 
mistaken for hits. 

 The Synthetic2, Synthetic3, Experimental1, Experimental2 
and both eGFP and DsRed datasets of Experimental3 and 
Experimental4 were corrected using the DFT, 3 × 3 median, 5 × 5 
median, and 5 × 5 HMF correction methods. The CVs were calcu-
lated and plotted in   Figure 7A   for datasets with no simulated hits 
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  Fig. 5.     Panel of surface maps comparing corrections to arrays with nested outliers. Surface maps 
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and 6B for data arrays with simulated hits. In data arrays without 
hits (  Fig. 7A  ), the 5 × 5 median background estimator performed 
the worst (decreased the CVs the least) on the eGFP and DsRed 
Experimental3 and Synthetic2 datasets, and the DFT performed 
the worst on the eGFP and DsRed Experimental3 dataset. The 5 × 5 
HMF lowered the CVs the most on all datasets, with DFT second 
best on the Experimental3 eGFP dataset (4.2% vs. 4.5%), and tied 
with HMF in the Experimental3 DsRed dataset (both 4.3%). The 
3 × 3 median was second to HMF on both the Experimental1 
(2.7% vs. 2.8%) and the Synthetic2 (2.6% vs. 4.1%) datasets. For 
analogous corrections of the arrays with simulated hits included 

(  Fig. 7B  ), the DFT performed the worst on all datasets, except for 
Experimental4 DsRed, and actually increased the CVs compared 
to the raw data on the Experimental2 and Synthetic3 datasets (to 
36.0% from 14.4% and to 33.1% vs. 23.8%, respectively). The 5 × 
5 HMF again performed the best on all datasets, with the 3 × 3 
median second best on the Experimental4 eGFP dataset (5.1% vs. 
5.9%), the DFT second best on the Experimental4 DsRed dataset 
(6.5% vs. 8.8%), and the 3 × 3 median second best on both the 
Experimental2 (4.5% vs. 4.9%) and Synthetic3 datasets (3.9% vs. 
5.7%). 

 In   Table 2  , the data of   Figure 7A   and  7B  were further averaged 
across all datasets into 2 groups—with and without simulated 
hits—for comparison. Without simulated hits, the improvements 
in CV to an average of 0.2–0.3× of raw are similar except for 
the 5 × 5 median, which improved the CVs to an average of only 
0.6× of raw. The differences are more dramatic with simulated 
hits, where the 5 × 5 HMF and 3 × 3 median average corrections 
were again similar at 0.3× and 0.4×, respectively, but the 5 × 
5 median corrected by an average of 0.6× and the DFT actually 
made the average CV worse than the raw data by 1.3×. Thus, for 
the results in   Figure 7A   and  7B  and averages shown in   Table 2  , the 
CV was decreased most consistently by the HMF method, and the 
DFT correction performed especially poorly on the Experimental2 
and Synethetic3 datasets as a result of including simulated hits. 
That is, the presence of hits substantially compromised the ability 
of the DFT to correct background distortions. 

 We next evaluated the dynamic ranges (see  Equation 7 ) and 
average hit amplitudes after corrections by the median, HMF 
and DFT (both normalized to the raw data) methods. As shown 
in   Figure 7C  , the dynamic ranges increased most after correction 
by the HMF in all datasets, with the 3 × 3 median performing 
second best in the Experimental4 eGFP dataset (1.4 vs. 1.6), the 
DFT performing second best in the Experimental4 DsRed dataset 
(1.7 vs. 3.2), and the 3 × 3 median performing second best in both 
the Experimental2 (3.0 vs. 3.2) and Synthetic3 (3.6 vs. 5.2) data-
sets. The DFT method  decreased  the dynamic range in all datasets 
except in Experimental4 DsRed dataset. 

 Correction methods should preserve hit amplitudes, as with 
the HMF in   Figure 7D  , rather than blunt them as with the DFT. 
Interestingly, while the DFT blunted the hit amplitudes the most 
in the Experimental4 DsRed dataset (0.69×), it apparently also 
decreased the CV even more to still improve the dynamic range, 
second only to the HMF (  Fig. 7C  ). Overall, the median-based back-
ground estimation methods ( Equation 1 ) retained hit amplitudes 
most representative of the raw ones (0.99× to 1.06×). The preser-
vation of raw data hit amplitudes was independent of median filter 
type and contrasted sharply with DFT corrections that consis-
tently reduced hit amplitudes over all of the datasets. In addition, 
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  Fig. 6.     Example microtiter plate (MTP) edge distortion in the cell-
based fl uorescent assay. The example eGFP raw images from MTP 
used in the Experimental2 dataset are shown. Panel ( A ) from a cen-
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demonstrating an edge effect. ( C ) Shows an example simulated 
hit. Brightness was increased artifi cially in ( A ) and ( B ), relative to 
( C ) for display, resulting in higher backgrounds—note the resulting 
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all of the background estimation methods ( Equation 1 ) improved 
the dynamic ranges (  Fig. 7C  ), whereas the DFT decreased them in 
3 out of the 4 datasets. 

 The DFT and HMF corrective effects on simulated hit ampli-
tudes are further illustrated in 3D surface plots of the Synthetic3 
and Experimental4 eGFP and DsRed datasets in   Figure 5A–5I  . 
Note that artifacts in different channels in the same wells (eg, 
eGFP and DsRED) are independent from each other (see   Fig. 
5D–5F   vs.   5G–5I  ), indicating that a background estimate derived 
from one reporter protein cannot be used to correct the distortion 

of another. The performance differences between these 2 methods 
can be viewed by comparing   Figure 5B  ,   Figure 5E  , and   Figure 5H   
with  5C ,  5F , and  5I , respectively. In each case, the DFT largely 
blunts the hits more and decreases the background variations less 
than the HMF background estimator.  

  Effect of Hit Density on HMF Correction Performance 
 The HMF background estimation method was found to better 

retain hits than the other background estimators. This ability to 
ignore hits in the background estimate was expected to decrease 
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as the hit densities increased. High hit density experiments, such 
as secondary screens, should be excluded from HMF correction, 
as should the regions with contiguous control wells. To determine 
at what hit densities HMF should no longer be used, simulated hits 
were randomly positioned in the Synthetic2 and Experimental1 
datasets 100 times each for hit densities of 1 to 382 in 384 wells 
with the magnitude of 3 × SD as described in the methods. The 
resulting CV (  Fig. 8A  ) and signal-to-noise ratio (SNR) (  Fig. 8B  ) 
plots were created from the averages of each set of 100 trials at 
each density and the SD envelopes are also shown. The HMF 
reduced the CVs at all hit densities and as shown by the SNR, 
began blunting the hits as the hit densities increased. The SNRs 
improved by more than 50% at hit densities lower than 20% for 
the Synthetic2 dataset and lower than 25% for the Experimental1 
dataset. Thus, the HMF decreased the CV and improved the SNR 
at hit densities an order of magnitude or more than are typical for 
primary screens.   

  DISCUSSION 
 One variable in the HMF that might be further optimized, 

especially for different (larger or smaller) MTP plate sizes, is the 
kernel size. The 5 × 5 size was empirically determined to be opti-
mum for 384-well MTP arrays; however, for application to denser 
formats (eg, 1,536) it would be useful to test different kernel sizes 
such as 7 × 7 and 9 × 9. Since the local background estimation 
depends heavily on obtaining a representative sample population 
from the MTP, kernel size becomes a significant concern at the 
MTP edges. Although the total number of elements sampled by 
the kernel filter is reduced at the MTP periphery because a portion 

of the mask overhangs the MTP edge, the 5 × 5 HMF was robust 
enough to maintain a tight correlation between the obtained 
median value and the local sampling area in the 384-well MTP. 
Alternative ways to address array edges are well-documented for 
image processing.  13–15   

 HMFs, like all automated methods for correcting systematic 
errors, require spatially random MTP data without clustering of 
wells that have high or low magnitudes. As shown in   Figure 8  , the 
effectiveness of the filter diminishes as the hit density increases, 
with CVs significantly diminished at hit rates above 20%. High 
densities or clustering of positive wells, or organizing MTPs with 
dose series or controls positioned in rows or columns, would result 
in misrepresentation of the control values as background in the 
kernel and compromises filter function. One way to circumvent 
this problem is by nesting controls or dilution series within the 
MTP in such a way as to avoid having a low- or high-value clusters 

  Table 2.      Performance of Correction Methods Without Hits 

Vs. With Hits Averaged for all Datasets   

Correction 

Method

No Hits With Hits

CV (%) CV/Raw CV (%) CV/Raw

Raw Data 16.2 1.0 17.0 1.0

5 × 5 HMF 3.5 0.2 5.0 0.3

3 × 3 median 5.4 0.3 7.3 0.4

SLIMS DFT 5.5 0.3 22.0 1.3

5 × 5 median 9.2 0.6 10.4 0.6

  The average CVs for the datasets are tabulated for experiments without and 

with simulated hits in the arrays, to further compare the performances of the 

DFT, 3 × 3 median, 5 × 5 median, and 5 × 5 HMF fi lters in the experiments of 

  Figure 7A   and   7B  . CVs with hits were calculated only on non-hit wells. 

 Abbreviations: CV, coeffi cient of variation; HMF, hybrid median fi lter; DFT, 

Discrete Fourier Transform; SLIMS, Small Laboratory Information Management 

System.  
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  Fig. 8.     Effect of hit density on 5 × 5 hybrid median fi lter (HMF) func-
tion. Simulated hits were positioned randomly into the Synthetic2 
and Experimental1 (  Fig. 4A   and   4D  , respectively) and the effect on 
coeffi cient of variation (CV) and signal-to-noise ratio (SNR) were 
determined for increasing numbers of hits (from 1 to 382 in incre-
ments of 5) along with standard deviation obtained over 100 trials. 
( A ) Effect on CV: a negative value in the vertical axis signifi es an 
improvement (reduction) in CV. ( B ) Effect on SNR: a positive value 
in the vertical axis signifi es an improvement in SNR. Note that the 
5 × 5 HMF improves CV and SNR at all hit densities; however, the 
magnitude of the effect diminishes as the hit density increases.    
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disturb the function of the filter (ie, by randomizing well posi-
tions). Also, in the case of controls positioned in rows or columns, 
the filter can be programmed to exclude the control wells from 
analysis. The SLIMS interface used in the DFT corrections offers 
such an option.  2   ,   3   Alternatively, the HMF kernel could be cus-
tomized by excluding axial elements (column or row) that might 
contain control wells and we are exploring this further. 

 In comparing MTPs before and after correction with DFT, the 
correction largely restored background values to the mean value 
range (compare   Fig. 5G   and   5H  ). With rare exceptions, however, 
the DFT corrections also reduced the amplitude of simulated hits 
(compare hits in   Fig. 5E   vs.   5D   and   5H   vs.  5G ). For example, in the 
corners of the Experimental4 DsRed array, the DFT method failed 
to preserve simulated hits altogether and instead reduced the hit 
to background levels. This tendency to blunt hits is also common 
to the averaging correction methods (compare   Fig. 3D   with   3B   
and   3C  ). In contrast, the 5 × 5 HMF retained all simulated hits 
in our datasets, scaling them in agreement with local wells (eg, 
compare region A-1 in   Fig. 5G–5I  ). 

 The case of Experimental4 DsRed illustrates an interesting 
point in the comparison of the DFT and median-based correction 
methods. The background CV measurements for Experimental4 
DsRed (  Fig. 7B  ) are higher in arrays corrected with 3 × 3 and 5 
× 5 median as compared to the DFT. However, viewing   Figure 
7D   reveals that while the DFT reduced the background CV more, 
it did so at the cost of blunting hits. The DFT correction is also 
accompanied with a reduction in dynamic range that is apparent 
in   Figure 7C  . The lower CVs, blunted hits, and reduced dynamic 
range after DFT treatment can be explained by a gross flattening 
of the array contour without regard to discrete hits. For example, 
the MTP edge correction appears extensive after treatment with 
the DFT-based method in the Experimental DsRed (compare data 
in the range 37.5%–50% in   Fig. 5G   vs.   5H  ), but the corrections 
also reduced the magnitude of many of the hits (eg, well A-13). 

 Further, correction of corner wells by the DFT was more 
aggressive than the correction of the other edge-proximal wells. 
The DFT also blunted the hits in MTP corners more aggressively 
than other edge-proximal wells (eg, compare corrections to A-1 
and P-1 to M-1 and A-13 in   Fig. 5G   and   5H  ). This correction is 
unusual and suggests a DFT correction artifact based on highly 
conserved array symmetry (4 corners). The correction made by 
the HMF to MTP corner wells, however, appears to be consistent 
with that made to other edge-proximal wells (eg, compare correc-
tions with A-1 and A-13 in   Fig. 5H   and   5I  ). 

 Although the DFT reduced the background CVs statistically 
over the entire MTP for both Synthetic2 and experimental arrays 
(  Fig. 7B   and   Table 2  ), it introduced waves or “ringing artifacts” 
in   Figure 4B   and   4E   (eg, area J-17) in the corrected Synthetic2 

dataset. The DFT is based on continuous functions that require 
special treatment to deal with finite data arrays. That is, how does 
one model the region at the edge where the data ends? In order 
for continuous functions to work at the edges, assumptions have 
to be made to create “data” outside the original array. For exam-
ple, if one produces an artificially larger plate where the “out-
side” values are zero, a step function is produced that generates 
distinctive ripple patterns.  22   Various “windowing functions” have 
been designed to reduce this ripple. Primary screening data have 
hits that are fundamentally discrete on a background that can be 
modeled as continuous (a single mean with noise). Because of this, 
it may be possible to remove the ripple by iteratively refining the 
estimate of the data “outside” the MTP array to match the mean 
and noise of the background. 

 Median filters (  Fig. 4C  ), which are nonlinear and natively spa-
tially discrete, do not generate ringing artifacts. However, the 
HMF-corrected array   Figure 4C   exhibits symmetric artifacts in the 
corners of the plate due to the small sample size of the HMF kernel 
in the corners. This resulted in insufficient sampling of the back-
ground and in turn reduced the efficacy of the correction. The cor-
ner correction failures in the HMF correction had a much smaller 
effect than the DFT ringing on the CVs (  Fig. 7A  ). One possible solu-
tion to this problem is to adaptively increase the kernel area at 
the corners. The kernel size could also be held constant by moving 
the target pixel. Alternatively, we have adjusted the kernel pat-
tern to make it more or less sensitive to outliers as the sample size 
decreases.  23   In addition, we have found that the serial application of 
multiple discrete filters tuned to common MTP array patterns mini-
mizes the introduction of artifacts at the MTP corner regions, while 
also having an additive beneficial effect on error correction.  23   

 The DFT method transforms MTP data into the Fourier space 
by fitting sinusoidal functions to the data.  2   Since sinusoidal func-
tions are by definition continuous, this transformation assumes 
that the data are also continuous. For MTPs, this means that the 
DFT correction expects a hit, which by definition has an extreme 
magnitude, to resemble its surrounding background wells. 
However, MTP screening uses discrete wells, oftentimes each with 
diverse reagents (eg, library compounds) being tested, thus the 
datasets are discontinuous. Therefore, the magnitude of a signal 
from any one well is unrelated to that of surrounding wells and 
the piecewise continuity assumption of the DFT method is inap-
propriate. Fitting of a continuous function to discontinuous data 
reduces the hits toward background levels, that is, blunts them. 
The HMF method, on the other hand, is based on nonlinear rank 
order calculations for each neighborhood (ie, finding the median) 
and does not assume spatial continuity in the dataset. This inher-
ently discrete method essentially ignores rare extreme values 
(hits) in its estimation of the background. 
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 In summary, the 5 × 5 HMF performed best overall with regard 
to statistical improvement of the various datasets tested. The DFT 
method may benefit from case by case fine-tuning in the frequency 
domain. The bidirectional HMF might also be further tuned by opti-
mizing the neighborhood size and subregions, but the easily imple-
mented and computationally cheap 5 × 5 HMF performed well on 
all of the datasets tested here. We conclude that median-based array 
correction methods best-reduced localized data distortion and assay 
noise while preserving hit amplitudes, and that discrete background 
smoothing approaches are superior to ones based on continuous 
functions for this data type—rare hits in data arrays.             
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