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Abstract

Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and
variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze
differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between
mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known.
Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were
imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in
some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real
biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with
the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive
genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both
means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of
assuming a specific parametric relationship between mean and variance. The source code written in R is available from the
authors on request.
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Introduction

Microarray has become a powerful tool for biological and

medical science to monitor transcriptome changes under different

treatments. However, because of high price of microarray

experiments, replicates for each experiment are restricted in most

cases. The feature of small replicates and large gene numbers, e.g.,

about 6,000 in yeast and 23,000 in Arabidopsis, in microarray

data usually results in poor estimation of gene-specific variances.

Several methods have been suggested for modification of gene

specific variances or covariances to improve the estimation. For

example, Efron et al. [1] suggested modifying the denominator of

the t-statistic to allow estimation less sensitive to gene-specific

variances. Smyth [2] proposed smoothing gene-specific variances

to a common value. Cui et al. [3] and Tong and Wang [4]

developed shrinkage estimators for gene specific variances using

Stein-type estimation under squared error loss function which

were used to construct traditional t- type and F - type statistics. In

all the above estimators, gene specific means were assumed to be

independent of variances. It has been observed that means are

related to variances in microarray experiments; usually genes with

high expression level show high variances, while genes with low

expression level display small variances (Figure 1).

Recently, Hu and Wright [5] suggested a linear model to

estimate gene-specific variances based on means. However, the

relationship between mean and variance is not always linear.

Figure 1 shows real biological datasets from Arabidopsis thaliana in

Gene Expression Omnibus database (GSE5566, GSE9955, and

GSE5520 for dataset 1, 2, and 3, respectively) and clearly suggests

a non-linear relationship between mean and variance. Here, we

propose NPMVS (Non-Parametric Mean Variance Smoothing), a

method to estimate the mean and variance relationship, which is

more general and can capture a wider range of non-linear

relationships that exist in microarray experiments (Figure 1). We

explore the mean-variance relationship by fitting a nonlinear curve

using penalized splines [6,7]. In addition, inference is made upon

shrinkage estimation of posterior means from Empirical Bayesian

perspectives in our model, instead of t-statistic, which was used by

Hu and Wright to test differential expression. Therefore, our

approach has shrinkage estimation of both means and variances.

First variances are smoothed using means, then means are

smoothed assuming the variances are known. The simulation

results showed that, under different mean-variance relationships,

our method outperformed or was competitive with the other two

popular shrinkage estimation methods, limma [2] and Gottardo

et al. [8] generalized Bayesian statistic model B4, which assumes

separate means and variances under different treatments for a

given dataset. We also applied the three methods to a real

biological dataset [9] to identify genes in cold stress regulatory

pathways. With NPMVS, we detected more genes in the pathways
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and uniquely identified transcriptional changes in cell wall

metabolism-related components under overexpression of a key

transcription factor for freezing tolerance, CBF2.

Results and Discussion

Analysis of simulated data
To evaluate the performance of NPMVS, we compared it to the

other two established methods, limma [2] (http://bioconductor.

org/packages/2.5/bioc/html/limma.html), a linear model ap-

proach with variance shrinkage, and the B4 statistic from a

Bayesian method [8]. We compared the performance of the three

methods using simulated datasets. For each simulated dataset, a

pair of data for control and treatment was generated with 10,000

genes. For the control data, we assumed that all genes expression

level has a normal distribution with mean at 8 and standard

deviation of 1. For the treatment data, 200 (p~0:02), 500

(p~0:05), and 1000 (p~0:1) genes were assigned as differentially

expressed (DE) ones in different data designs. The up- and down-

regulated DE genes were created with uniform distributions with

different mean ranges. For up-regulated genes, 25% out of the

total DE ones were assigned with mean from 8.1 to 11, another

25% from 11.1 to 14; For down-reulated genes, 25% were

assigned with mean from 5 to 7.9 and another 25% from 2 to 4.9.

Figure 1. Relationship between sample mean and sample variance. Sample mean versus log sample variance plots of three different
datasets from either control or treatment conditions. Smoothed variances using a non-paramteric method [6,7] is displayed with green lines. Sample
size n is indicated for each dataset. The data sets were normalized with RMA method.
doi:10.1371/journal.pone.0019640.g001
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Samples for each genes were simulated as independent normal

observations with four mean (mg) and variance (s2
g ) relationships

(Figure 2A) (see methods for details). We simulated datasets with 3

replicates. For each dataset design, different DE gene percentage

and mean-variance relationship were imposed. One hundred

simulated datasets were generated per design.

A plot of type I and type II error curve was used to compare the

performance of the three methods (Figure 2B). For datasets with

different percentage of DE genes, we had similar results. Here, we

showed a representative result when the DE gene rate p~0:02.

Figure 2B shows the performance of the three methods in different

mean-variance relationships. NPMVS and limma are competitive

in the three mean-variance scenarios except case 0, in which

limma displayed higher type I and II error rate than the other two

methods. Compared with B4 statistic, NPMVS had better

performance. In three cases (case 1 to 3), NPMVS outperformed

the B4 statistic. In case 0, where non-linear relationship was

displayed for variance and mean, NPMVS has better performance

than B4 given a false positive rate less than 40% (Figure 2B).

Analysis of CBF2 overexpression line data
Higher plants have complex regulatory mechanisms to

temperature changes. Cold acclimation is a process by which

plants increase their freezing tolerance in response to low, non-

freezing temperatures. Previous studies have demonstrated that in

Arabidopsis cold acclimation rapidly induces the expression of

CBF genes, key transcription factors in response to low

temperature. CBFs can increase freezing tolerance through

activating downstream target genes (the CBF regulons) by binding

to the target genes promoter region. To gain a better

understanding of the CBF regulatory network, gene expression

profiles were generated between CBF2 overexpression lines

(CBF2_OX), which constitutively overexpresses CBF2 and can

tolerance freezing without prior cold acclimation, and wild type

(wt) [9,10]. The microarray data was analyzed by limma, B4 and

NPMVS methods, respectively.

We retrieved DE genes with an adjusted cut-off p value less than

0.01 from limma, and a cut-off posterior probability greater than

0.99 from both B4 and NPMVS. The DE genes were further

filtered with gene’s average log 2 fold change greater than 1 or less

than -1. As a result, NPMVS discovered more DE genes in both

up- and down-regulated gene sets than limma and B4 (Figure 3)

did. Limma identified 105 up-regulated genes, while B4 and

NPMVS identified 191 and 238 up-regulated genes, respectively.

In the down-regulated genes, limma only identified 17 genes, while

B4 and NPMVS retrieved 48 and 88 genes, respectively. In

addition, all genes identified by NPMVS were also found in the

gene set identified by B4 and limma. Some genes discovered by

NPMVS but not limma, like transcription factor RAV1, sugar

related genes and cell wall synthesis genes, have been identified as

CBF and cold responsive genes previously [9,11].

To evaluate the DE genes identified by the three methods, we

accessed DE gene functions by gene ontology and cis-regulatory

elements analysis to see if they are related to CBF and cold

responsive pathway. Gene ontology enrichment analysis was

performed on the three DE gene sets produced by the three

methods (Table 1). Genes response to stress are enriched in all

three up-regulated gene sets discovered by the different methods.

The above result is consistent with the function of CBFs, which

activates cold responsive genes as well as other abiotic stress

Figure 2. Simulation results from four mean-variance relationships. (A) The plots display mean versus log variance relationship in the four
simulated data from case 0 to case 4. Simulated control data are presented on the left, and differentially expressed data are on the right. Smoothed
variances using a non-paramteric method is displayed with green lines. (B) The plot displays false negative versus false positive rate for identifying DE
genes in the simulated data using different methods. The false positive and false negative rate are the average rate from 100 simulated datasets. They
were estimated over a range of cut-off values for each method. Dashed line, solid line, and dotted line represent Gottardo et al. [8] Bayseian (B4)
method, NPMVS and limma, respectively. Four mean and variance relationships, case 0, case 1, case 2, and case 3 are represented by black, red, green
and blue colours, respectively.
doi:10.1371/journal.pone.0019640.g002
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responsive genes [12]. The gene set from NPMVS showed the

most significant enrichment with the smallest p value compared to

the gene sets identified by the other two methods (Table 1). Some

important CBF2 target genes, such as RAV1, were missed when

using limma but identified by NPMVS. Other genes like

RCI2A(Rare Cold Inducible 2A), which is induced under various

stress conditions [13], was also uniquely discovered by NPMVS. In

the down-regulated gene set, limma did not find any enriched GO

terms. From NPMVS and B4, the GO term respond to stress was

also enriched in the down-regulated gene sets.

Enrichment of cell wall components has been uniquely

discovered by NPMVS in the down-regulated genes. Most of

these genes are involved in cell wall metabolism (Table S1). This

result is in agreement with the previous report that cell wall

related genes were down-regulated in the later time points (8 hour

to 168 hour) under cold stress [11]. It has also been reported that

cold acclimation resulted in increase of cell wall weight and a

change in cell wall composition [14]. All above suggest CBF

mediated cold responsive pathway is involved in the cell wall re-

organization.

We also investigated enrichment of cis-regulatory elements in

the up- and down-regulated genes identified from the three

methods (Table 2). A cis-regulatory element usually is a 4-12

word nucleotide motif in a gene promoter region. Transcription

factors activate/repress expression of their regulons by binding to

cis-regulatory elements in the promoter of their target genes. The

transcription factor CBF2 binds to a conserved cis-regulatory

element, the CRT/DRE, which contains a CCGAC core motif,

presented in CBF target gene promoter regions, and thus

activates transcription of the CBF regulons. We expected that

the CRT/DRE cis-element would be enriched in the up- and/or

down-regulated gene sets, assuming that the direct CBF target

genes were in the discovered gene sets. As a result, the most

highly enriched cis-element is the CRT/DRE CCGAC core

motif, which has been discovered in all up-regulated gene sets

from the three methods. NPMVS identified 24 and 59 more

genes containing CCGAC than B4 and limma did, respectively

(Table 2). There are another two motifs identified in all three up-

regulated gene sets with a cut-off p value less 0.0001 (Table 2).

The NPMVS gene set also showed the most significant p value of

the second motif, ACGTG, which is an ABRE-like element that

has been found in the promoter regions of cold, high-salinity and

drought stress regulated genes [12]. Two additional enriched

motifs have been identified by NPMVS and B4 but not limma.

Three motifs have been uniquely discovered by NPMVS in the

up-regulated dataset. Two out of three motifs, CCACG and

CACGTG, which contain the BOXII and CACGTGMOTIF

core elements, respectively, are related to light response [15,16].

The two motifs have not been reported in the previous CBF

regulon motif studies [9]. No significant cis-acting elements have

been found in all three down-regulated gene sets. The gene

ontology and cis-regulatory element analysis indicated that

NPMVS identified more stress responsive genes than limma

and B4 did.

Figure 3. Identification of CBF2_OX differentially expressed genes. Up- and down-regulated genes greater than 2 fold changes are
uncovered by three different methods with cut-off p (adjusted by Benjamini & Hochberg method) value less than 0.01 for limma, and a cut-off
posterior probability greater than 0.99 for B4 and NPMVS, respectively.
doi:10.1371/journal.pone.0019640.g003

Table 1. Gene ontology enrichment analysis for CBF2_OX up- and down-regulated genes.

limma B4 NPMVS

Enriched GO in up-regulated genes response to stress (8.39E-09) response to stress (2.82E-10) response to stress (2.83E-12)

Enriched GO in down-regulated genes N.A. response to stress (0.034) response to stress (0.00016)

N.A. cell wall (0.034) cell wall (8.91E-06)

P values, which are indicated in parentheses, were adjusted by Benjamini & Hochberg method.
doi:10.1371/journal.pone.0019640.t001
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Conclusions
In this paper we compared the three shrinkage estimation

methods, limma, B4, and NPMVS. Limma and B4 only have

shrinkage estimation on variances, while our method NPMVS has

shrinkage estimation on both means and variances. The

simulation study showed that NPMSV performed better than

limma in case 0, and the two methods were competitive in other

mean-variance relationships. NPMSV outperformed B4 in case 1,

2, 3 and a competitor in case 0. The real microarray data from an

overexpression line CBF2, which is a major regulator in cold and

abiotic stress responsive pathways, was explored by the three

methods. NPMVS identified more genes than both limma and B4
did. In addition, the gene set discovered by NPMVS included all

genes identified by the other two methods. The gene ontology

analysis showed that genes additionally identified by NPMVS are

also related to stress response, which is consistent with previous

findings for CBF2 targeted genes, implying that the NPMVS

method makes a considerable improvement for gene detection. In

agreement with gene ontology analysis, search of cis-acting

elements in the up- and down-regulated gene sets showed that

NPMVS identified more genes containing the core CBF response

element, CCACG. NPMVS uniquely discovered genes involved in

cell wall re-organization, which is consistent with previous cold

stress microarray data [11]. Cis-acting elements, Box II and

CACGTGMOTIF, which are light responsive components, were

also uniquely discovered by NPMVS.

The good performance of NPMVS is mainly due to its

shrinkage estimation for both means and variances. Our model

used ‘‘smoothed’’ estimation of variances, which combines

information from other genes. In addition, our method exploits

mean and variance relationship, which is generally not considered

in standard procedure. There is no specific type of relationship

assumed for mean and variance; instead a nonparametric

regression has been used. All above features contribute to the

robustness of NPMVS. However, we should be aware that our

NPMVS is based on the assumption that there is a relationship

between mean and variance. Application of NPMVS will not be

justified well if the assumption does not hold, namely, means are

independent of variances. Mean and variance relationship should

be investigated before the application of NPMVS.

Methods

For shrinkage estimation of both means and variances, our

objective first is to obtain smooth estimation of gene specific

variances and then to use estimated variances in a hierarchical

model assuming it is known. Therefore, our approach has two

steps. First, variances are smoothed using means. Second, means

were smoothed by a hierarchical model assuming their variances

(improved estimated variances) are known. Here, we first present a

general hierarchical model and how to make inferences about DE

genes based on the Bayes rule. Then we propose non-parametric

estimation of variances and a new hierarchical model, which

assumes that smoothed variances are known and takes more

general form of a prior. Finally, we present a multiple sample case

hierarchical model with smoothed variances.

Hierarchical model for one sample case
Let Ig*B(1,p),g~1, � � � ,G, be the Bernoulli random variable

indicating whether the gene g is differentially expressed (mg=0),
i.e., Prob(Ig~1)~p, where

Ig~
0 if Ig~0

1 if Ig =0

�
ð1Þ

and mg denotes the mean expression level for the gene g. For each

gene g we are interested in knowing if the gene is differentially

expressed given the data.

ygj D(mg,s2
g) *ind

N(mg,s2
g)

mg Dd
2,Ig~0 *ind

N(0,d2
0)

mg Dm,d2,Ig~1 *ind
N(m,d2)

ð2Þ

Then one can make inference on the basis of posterior

probability

Prob Ig~1Ddata
� �

~
pProb g DIg~1

� �
pProb g DIg~1

� �
z 1{pð ÞProb g DIg~0

� � ð3Þ
where yg is the vector of measurement for gene g. It is easy to see

that the posterior mean of mg is cg�yygz(1{cg)m, where

cg~
d2

d2zs2
g=n

. This type of hierarchical model was considered

by Baldi et al. [17], Lonnstedt et al. [18,19] and Gottardo et al. [8].

Moreover, in some of the above papers, d2 was taken in the form

of ks2
g in which case the posterior mean does not even depend on

Table 2. Enriched cis-regulatory elements in CBF2_OX up-regulated genes.

Limma B4 NPMVS PLACE[20] Annotation

word p value counts p value counts p value counts

CCGAC 7.45E-35 78 1.06E-43 113 1.36E-43 137 DRE

ACGTG 6.02E-06 69 2.48E-09 104 1.42E-11 133 ABRE

ATGTCG 9.30E-26 47 2.04E-33 65 6.64E-31 77 N.A.

CCACG 4.01E-06 73 1.09E-05 89 BOXIIPCCHS

CGGCA 9.04E-06 59 2.79E-06 71 N.A.

ACACG 9.95E-07 133 GADOWNAT

CACGTG 6.68E-05 55 CACGTMOTIF

CGTGTC 1.44E-05 51 N.A.

doi:10.1371/journal.pone.0019640.t002
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gene specific variances and the shrinkage factors (cg) are constants.

Although the estimators preserve the shrinkage, the assumption

d2~ks2
g is hard to justify. In the case of d2~ks2

g, the posterior

mean has a closed form expression. For example, the structure of

the B4 estimator is c�yygz(1{c)m, the shrinkage factor c is constant

over all genes. The only advantage of this is that the Bayesian

computations get easier.

Proposed Hierarchical Model and Smoothing Variances
We examined Arabidopsis Affymetrix microarray data and

plotted the log variances with their mean (Figure 1). The plot

immediately suggested no linear relationship is appropriate. Thus

we fitted a nonlinear curve using penalized spline [6,7]. Clearly,

the spline did a very good fitting. Thus our objective is to first

obtain the smooth estimate of the gene specific variances and

then use them into a hierarchical model assuming they are

known.

Smoothing variances:

We assume that the gene expressions ygj for gth gene and jth

replicate are normally distributed with mean mg and variance s2
g;

g~1, � � � ,G; j~1, � � � ,n, and define s2
g~

1

n{1

X
j

ygj{�yyg

� �2

,

�yyg~
1

n

X
g

ygj , where n is the sample size in the given data.

We assume the following two level model

log s2
g

� �
~log s2

g

� �
zeg

log s2
g

� �
~ Xg�bzZgug

ð4Þ

where the Xg ans Zg are constructed from sample means and

their quantiles [7]. It is easy to obtain the best linear unbiased

predictor of log(s2
g) as Xgb̂bzZgûug. Note that all G genes are

being used in this smoothing process. Let Ag be the estimated

values. To estimate the probability of differential expression, we

modified (2) in the hierarchical model (1)-(3) as described

below.

ygk Dmg *ind
N(mg,Ag),k~1, � � � ,n Ag known

mg Dd
2,Ig~0 *ind

N(0,d2
0)

mg Dm,d2,Ig~1 *ind
N(m,d2

1)

ð5Þ

Lonnstedt and Speed [18], Gottardo et al. [8] and Lonnstedt and

Britton [19] took d2
0~d2

1~constant|A. The above structure

facilitates the posterior calculations in a closed form. However, we

do not see much of reasoning that the between variance would be

a constant multiple of the within variance. Therefore, our model is

more general.

Identifying the posterior distribution of mg DIg~0 as

N(0,Agzd2
0) and mg DIg~1 as N(m,Agzd2

1), one can find

f ( g DIg~0)~

ð
P
n

k~1
N(0,Agzd2

0)p(d2
0)dd2

0

f ( g DIg~1)~

ð
P
n

k~1
N(m,Agzd2

1)p(d2
1)dd2

1

ð6Þ

where p(d2) is the prior distribution of d2. Previous works used

Inverse gamma as a natural choice and the hyperparameter values

were supplied. Note that again, unless d2 is a multiple of Ag, closed

form expression does not exist even with IG prior distribution.

Without any other prior information, we propose the uniform

prior p d2
� �

~
Ag

Agzd2ð Þ2
. In case of IG(a,b) prior distribution, the

above two conditional distribution takes the form

f ygjIg~0
� �

~
AgC n=2ð Þ

pn=2
P

k y2
gk

� � n=2ð Þ

ð?
Ag

IG
nza

2
,
bz

P
k y2

gk

2

 !
dt

f ygjIg~1
� �

~
AgC n=2ð Þ

pn=2
P

k ygk{m
� �2

� �(n=2)

ð?
Ag

IG
nzc

2
,
dz

P
k ygk{m
� �2

2

 !
dt

ð7Þ

Choose a,b,c and d arbitrary positive number, say 0.5 or 0.01.

They only involve evaluating the cumulative distribution function

of inverse gamma distribution. Instead of using any prior

distribution about m, we shall use some pre-assigned quantity.

The natural choice is to use grand mean expression value over all

the genes.

If we use the uniform prior p(d2), then the conditional

distributions take the form

f yg DIg~0
� �

~

ð exp {

P
k y2

gk

2 Agzd2
0

� �
 !

2pð Þ
n
2 Agzd2

0

� �n
2

Ag

Agzd2
0

� �2
dd2

0 ð8Þ

f yg DIg~1
� �

~

ð exp {

P
k (ygk{m)2

2 Agzd2
1

� �
 !

2pð Þ
n
2 Agzd2

1

� �n
2

Ag

Agzd2
1

� �2
dd2

1 ð9Þ

This is what we have used in our study.

Multiple Sample Case

ygjk Dmgj *ind
N (mgj,Agj), Agj ,j~1, � � � ,J: known

mgj Dd
2,Ig~0 *ind

N(m,d2
0)

mgj Dm,d2,Ig~1 *ind
N(mj ,d

2
j )

ð10Þ

Using the similar prior distribution for variance parameters d2

used in (7), we can easily shown that the distributions are

f ygj jIg~0
� �

~ P
J

j~1

AgjC nj=2
� �

pnj=2P
k y2

gjk

� �nj=2

ð?
Agj

IG
njza

2
,
1

2

X
k

y2
gjk

� �
zb

  !
dt
ð11Þ
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f ygj jIg~1
� �

~ P
J

j~1

AgjC nj=2
� �

pnj=2 P
k ygjk{mj

� �2
� �nj=2

ð?
Agj

IG
njzc

2
,
1

2
dz

X
k

ygjk{mj

� �2

 ! !
dt

ð12Þ

If we use the uniform prior p(d2) then the above conditional

distributions are

f ygj DIg~0
� �

~

ð
P
J

j~1

exp {

P
k y2

gjk

2 Agjzd2
0

� �
 !

2pð Þ
nj
2 Agjzd2

0

� �nj
2

Agj

Agjzd2
0

� �2
dd2

0 ð13Þ

f (ygj DIg~1)~

ð
P
J

j~1

exp {

P
k

(ygjk{m)2

2(Agjzd2
j

)

 !

(2p)
nj
2 (Agjzd2

j )
nj
2

Agj

(Agjzd2
j )2

dd2
j ð14Þ

Note that apriori the dj ’s are assumed to be independent. There is

a number of possible modifications can be easily done. For example,

one might assume same variance for all the conditions for non

regular gene means or different variances for regular gene means.

We evaluated the one dimensional integral in (13) and (14) using

20 point Gauss-Hermite procedure.

Method Evaluation
To evaluate the performance of NPMVS, we compared it to

other two established methods, limma [2] (http://bioconductor.

org/packages/2.5/bioc/html/limma.html) and Gottardo et al. [8]

Bayesian method. We compared the performance of the three

methods using simulated datasets and a real biological dataset, in

which an overexpression line CBF2_OX was compared with wild

type control.
Simulated Data. We applied different mean-variance

relationships for the simulated data. First, expression means

were generated from normal distribution for non-differentially

expressed genes, mg *
ind

N(8,1); For DE genes, mg *
ind

U(a,b), where

a~8:1,b~11 or a~11:1,b~14 for up-regulated and highly up-

regulated genes, respectively, and a~5,b~7:9 or a~2,b~4:9 for

down-regulated and deeply down-regulated genes, respectively.

Secondly, variance s2
g was generated, s2

g *
ind

f (mg Db). The plots of

four mean-variance relationships are displayed in Figure 2A. Last,

expression data yg was generated from normal with mean and

variance produced in the first two steps, ygk *
ind

N(mg,sg), where

k = 3 is for three replicates. The most non-linear relationship is

symbolized as case 0. In the simulation data, the choice of

parameters b was based on the variance range observed from real

datasets. The variance range produced in the simulation data was

closed to the one surveyed from four real datasets (GSE9955,

GSE5520, GSE5536, and GSE5727). Note that, since we used a

nonparametric method, there is no need to estimate the beta

parameters in real data application.

Real Biological Data. The CBF2 data (GEO series number:

GSE5566) includes two genotypes, two independent CBF2

overexpression lines and its corresponding Arabidopsis thaliana

wild type, and two samples for each genotype. The microarray

platform is Affymetrix ATH1 GeneChip. The raw CEL files were

normalized by RMA. Fisher’s exact test for one-tail (over-

presented) was applied to the Gene Ontology enrichment

analysis. The p value for over-presented GO terms i is

Pk
x~r f rDN,M,kð Þ~

M

r

� �
N{M

k{r

� �
N

k

� � , where M is the total

DE gene number; N is the total gene number in the genome; k is

the gene number in GO term i; and r is the number of genes

which belong to DE gene list in GO term i. Benjamini and

Hochberg false discovery rate correction was used for adjusting p
values. Five hundred base pair promoter region sequence for each

gene was used for cis-regulatory element analysis via a de novo motif

searching tool ELEMENT (http://element.cgrb.oregonstate.edu/).

An enumerative method in ELEMENT was used for counting 4-8

mer DNA words. By comparing a word frequency for a given gene

set to samples from the whole Arabidopsis genome sequence (a

bootstrap procedure), a corresponding Z score and p value (adjusted

by Benjamin and Hochberg FDR method) were calculated in

ELEMENT to estimate if the word is over-presented in the given

gene set.
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