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Abstract

Next-generation sequencing technologies enable the rapid cost-effective production of sequence data. To evaluate the
performance of these sequencing technologies, investigation of the quality of sequence reads obtained from these
methods is important. In this study, we analyzed the quality of sequence reads and SNP detection performance using three
commercially available next-generation sequencers, i.e., Roche Genome Sequencer FLX System (FLX), Illumina Genome
Analyzer (GA), and Applied Biosystems SOLiD system (SOLiD). A common genomic DNA sample obtained from Escherichia
coli strain DH1 was applied to these sequencers. The obtained sequence reads were aligned to the complete genome
sequence of E. coli DH1, to evaluate the accuracy and sequence bias of these sequence methods. We found that the fraction
of ‘‘junk’’ data, which could not be aligned to the reference genome, was largest in the data set of SOLiD, in which about
half of reads could not be aligned. Among data sets after alignment to the reference, sequence accuracy was poorest in GA
data sets, suggesting relatively low fidelity of the elongation reaction in the GA method. Furthermore, by aligning the
sequence reads to the E. coli strain W3110, we screened sequence differences between two E. coli strains using data sets of
three different next-generation platforms. The results revealed that the detected sequence differences were similar among
these three methods, while the sequence coverage required for the detection was significantly small in the FLX data set.
These results provided valuable information on the quality of short sequence reads and the performance of SNP detection
in three next-generation sequencing platforms.
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Introduction

Three next-generation sequencing (NGS) technologies—Roche

Genome Sequencer FLX System (FLX), Illumina Genome

Analyzer (GA), and Applied Biosystems SOLiD system (SOL-

iD)—enable the rapid and cost-effective production of high-quality

genome sequence data. These new technologies have demonstrat-

ed advantages over classical Sanger sequencing by capillary

electrophoresis, such as the production of an enormous volume of

sequence data inexpensively [1]. These new technologies have

been successfully applied to whole-genome re-sequencing, de novo

sequencing, transcriptomics, DNA methylation analysis, and

metagenomics [2].

A significant feature of NGS is that it produces millions of short

sequence reads for its analysis. The total amounts of data for each

analysis are 450 Mbp for FLX, 18–35 Gbp for GA, and 30–

50 Gbp for SOLiD, respectively, while the average lengths of each

sequence read are 330 bp for FLA, 75–100 bp for GA, and

currently 50 bp for SOLiD [1]. For the analysis of NGS data, it is

necessary to assemble these millions of short sequence data to

extract sequence features of DNA samples, such as detection of

single nucleotide polymorphisms (SNPs) and de novo sequencing

[3]. For such analysis, not only the total amounts of data, but also

the quality of sequencing reads, such as error rate and systematic

sequence bias in the obtained short reads, markedly impact the

assembly results [4]. Thus, to evaluate the performance of NGS

analysis, the quality of sequence reads should be investigated.

In this study, we evaluated the statistical nature of sequence

reads and SNP detection performance using three commercially

available NGS platforms, i.e., FLX, GA, and SOLiD. A common

genomic DNA sample obtained from E. coli strain DH1 [5] was

applied to three NGS platforms. The obtained short sequence

reads were aligned to the complete genome sequence of DH1,

which enabled us to evaluate the accuracy and systematic bias of

sequence reads obtained from these three NGS platforms.

Furthermore, we aligned the obtained sequence read to the

complete genome of another E. coli strain, W3110 [6], to detect

sequence differences between the genomes of two different E. coli

strains. The results of these analyses revealed that, for example,

about half of the sequence reads obtained by SOLiD could not be

aligned to the reference genome, which suggested the fraction of

‘‘junk’’ data is significantly large in SOLiD. Among the data sets

after alignment to the DH1 reference genome, the accuracy of

sequence matching was significantly low in the data set of GA,

suggesting a high error rate in GA data. The performance of SNP

detection was similar among the three NGS platforms, while the

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e19534



coverage required for the SNP detection was significantly small in

the data set of FLX, as expected from its relatively long sequence

and high accuracy of FLX reads. These analyses provided

valuable information on the quality of short sequence reads and

the performance of SNP detection.

Results and Discussion

Determination of complete genome of E. coli DH1
ME856̀train using data of three next-generation
sequencers

To investigate the quality of sequencing reads provided by NGS

platforms, we analyzed whole-genome sequencing data of E. coli DH1

ME8569 strain. E. coli DH1 is a commonly used laboratory strain,

which was constructed by serial genetic manipulations [5], and a

finished version of the genome sequence of DH1 ATCC 33849 strain

has recently been published (GenBank CP001637.1, submitted 2009).

To determine the complete genome of the E. coli DH1 ME8569

strain used, we obtained sequence data using three different NGS

platforms, i.e., FLX, GA, and SOLiD. Table 1 summarizes the

volume of data from three NGS platforms. For SOLiD, we

sequenced the DH1 ME8569 stain under different conditions using

SOLiD including 25-base read data from a 3-kb mate pair library,

two replicates of 50-base read data from fragment library, and two

replicates of 50-base read data from a 3-kb mate pair library.

To compare the quality of sequence reads obtained from three

NGS platforms, first we determined the complete genome of DH1

ME8569 by an appropriate mix of these sequencing data, with

Sanger sequencing for the uncovered genome sequences by three

NGS methods (see Supplementary Text S1 for details). The obtained

genome sequence of DH1 ME8569 had differences at 19 locations

from that of DH1 ATCC33849 (GenBank CP001637.1, submitted

2009). The differences included three single-base substitutions, 8

short nucleotide insertions and deletions, and 8 structural differences.

The complete information on the differences between two genomes

of DH1 is presented in Supplementary Text S2.

Comparison of accuracy of sequence reads
Using the complete genome sequence of E. coli DH1 ME8569 as

a reference, we evaluated the accuracy of sequence reads obtained

from three NGS platforms by aligning these reads to the reference

genome sequence. The same genomic DNA sample of E. coli strain

DH1 ME8569 was sequenced using these three sequencing

methods, and aligned to the reference. Although we had five data

sets for ABI SOLiD (25-base mate pair, two replicates of 50-base

fragments, and two replicates of 50-base mate pair libraries), we

chose one data set (50-base mate pair library) for the comparison.

For all analyses, we used the Bowtie [7] program and the same

parameters to align these reads (see Materials and Methods for

details), in which we allowed up to three mismatches in each

alignment. On mapping of the reads of GA, mismatch ratio

increased with the base position along the reads, which can be due

to decrease of fluorescent signal intensities and quality of base calls.

Since the Solexa base caller reports the quality of each base call as

an estimated Quality Value (QV) similar to the phred score based

on the image output [8], in order to filter out the affect of the

errors due to these low quality base calls we trimmed the bases for

which QV was lower than 0, and filtered out the trimmed reads

with lengths shorter than 32 bases. Table 2 summarizes the results

of these alignments of sequence reads. Here, ‘‘Ratio of mapped

reads’’ represents the ratio of the number of reads mapped to DH1

ME8569 genome within three mismatches to the number of total

reads, while ‘‘Accuracy’’ was defined as the ratio of the number of

bases consistent with the reference sequence to the total number of

mapped reads. The results showed that only around half of the

reads were mapped to the reference in the data sets of SOLiD,

indicating that half of the reads were not related to the genome

sequence, i.e., ‘‘junk’’ data, which was the poorest quality among

the three next-generation sequencers. Similar observations were

reported previously [9–11]. There are several possible reasons for

the many ‘‘junk’’ data derived from SOLiD. First, the adapters

from sequencing chemistry would be read due to failure of the

nick-translation step. Further, polyclonal beads containing multi-

ple templates and fluorescence leakage of adjacent beads would

result in ‘‘junk’’ data. In contrast, the FLX data set exhibited the

highest ratio of mapped reads. As the average read length of the

FLX data set was much larger than the others and the alignment

was performed allowing up to three mismatches for all data sets,

this result indicated that the quality of the FLX data set was much

better than the other two methods. The accuracy of mapped

sequence reads in the GA data set was significant lower than the

other data sets. As shown in Figure 1, the inconsistent bases found

in GA data sets were concentrated around the 39 end of sequence

reads. The concentration of inconsistencies at the 39 end of

sequence reads has been suggested to be due to accumulation of

failures in incorporation of fluorescent dNTPs [8]. We could not

find such position dependency of mismatch bases in mapped reads

of the two other NGS methods.

Comparison of uncovered regions
To gain a better understanding of systematic biases of each

NGS platform, we analyzed the sequence composition of

uncovered bases to which no reads were aligned. Table 3 shows

the number of uncovered bases to which no reads were aligned in

each data set. To identify the systematic biases in the uncovered

bases, we removed the common 71334 uncovered bases from the

uncovered bases by each platform. In the uncovered bases of

Table 1. Volume of data from three next-generation
sequencing technologies.

Method Read length Number of reads Total bases Redundancy

FLX 260.7 475,819 124,042,803 26.8

GA 36 9,624,599 346,485,564 75

SOLiD M25 25 125,399,243 3,134,981,075 678.4

SOLiD M50 50 226,945,098 11,347,254,900 2455.4

SOLiD F50 50 100,015,475 5,000,773,750 1082.1

The read length of FLX was mean read length including adapters.
The SOLiD M25 was the data set of 25-base mate library.
The SOLiD M50 and F50 data sets were expressed as the sum of two replicates
of 50-base mate pair and two replicates of 50-base fragment libraries,
respectively.
doi:10.1371/journal.pone.0019534.t001

Table 2. Comparison of mapping.

Method Ratio of mapped reads Accuracy per base

FLX 89.0 99.9

GA 63.7 96.7

SOLiD 47.3 99.8

Filtered data set of GA was shown.
doi:10.1371/journal.pone.0019534.t002

Comparison of Three Next-Generation Sequencers
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Illumina GA, we found that the GC content was higher than that

of the genome of E. coli DH1 ME8569 strain (50.8%). In Illumina

GA, most of the uncovered bases were not concentrated in specific

regions or did not span tens of base pairs, but one or a few

uncovered bases were scattered over the whole genome. These

observations suggested that G and C may increase the rate of

sequence error in Illumina GA. We found no such tendency in the

other two NGS methods.

Comparison of detection of single-base substitutions
We evaluated detection of single-base substitutions using data

sets obtained from three NGS platforms. The DH1 ME8569

genome determined here had 259 single-base substitutions with

respect to the genome of the standard strain of E. coli W3110. To

evaluate the performance of three NGS in detection of single-base

substitutions, we mapped sequence reads obtained from the DH1

ME8569 genome to the W3110 genome as a reference, and

screened substitutions using same method (see Materials and

Methods for the details of the detection algorithm). Table 4 shows

the number of detected substitutions using data sets of FLX, GA,

and SOLiD. As shown in the table, the detection performances of

single-base substitutions were similar in the data sets of FLX and

SOLiD, while false positive and false negative rates were slightly

higher in the data sets of GA. This difference may have been due

to insufficient coverage of the GA data set for re-sequencing

analysis, as discussed below. There were 15 substitutions that

could not be detected by any of these methods; 12 of these 15

undetected substitutions were found in the regions of rRNA

operons. The E. coli genome possesses 7 copies of the rRNA

operon that show high degrees of identity to each other [6], and

therefore reads in these regions were difficult to align correctly to

the reference. The detected substitutions, the number of counted

bases, and the quality values based on each method are listed in

Supplementary Table S1.

Next, we evaluated how the true positive and false positive/

negative rates depend on the number of sequence reads. In this

analysis, we randomly resampled 1/32 to 1/2 (increasing by

twofold) of total reads and using these resampled data sets with

smaller size we screened for single-base substitutions using the

identical algorithm as used in Table 4. Figure 2 shows true positive

and false positive/negative rates as functions of mean coverage. As

shown in the figures, the true positive and false negative rates were

saturated around 10-fold coverage for FLX and 100- to 200-fold

coverage for SOLiD, respectively. For the data set of GA, the true

positive and false negative rates were not saturated, indicated that

the coverage of GA data sets was insufficient for the detection of

single-gene substitutions. The extrapolating curves of the true

positive and false negative rates suggested that these were

saturated around 50- to 100-fold coverage but the saturated false

negative rate was slightly larger than for the other two methods.

To evaluate how the number of TP depends on the coverage n for

each method, we approximated it as a function of the coverage n
by the following formulation,

fTP(n)~NTP 1{An{B
� �

,

where fTP(n) shows the number of detected TP and NTP

represents the total number of TP. Here, we assumed that the

fraction of undetected substitution decreases as a power of the

coverage n, where A and B are fitting parameters.

Methods

Culture conditions, media, and genomic DNA
preparation

E. coli DH1 [5] was obtained from the National BioResource

Project at the National Institute of Genetics, Shizuoka, Japan.

Glycerol stocked cells were inoculated into mM63 medium [12]

and grown until OD600 = 0.5 with shaking at 130 rpm. The cell

cultures were subsequently diluted to OD600 = 0.05 with fresh

medium, and grown to stationary phase. Rifampicin (final

concentration 300 (mg/mL) was subsequently added and culture

was continued for a further 3 h to block initiation of DNA

replication [13]. The cells were collected by centrifugation at 25uC
at 160006g for 5 min, and the pelleted cells were stored at 280uC
prior to use. Genomic DNA was isolated and purified using an

Aqua Pure Genomic DNA Isolation kit (Bio-Rad) in accordance

with the manufacturer’s instructions.

Genome sequence analyses using Roche Genome
Sequencer FLX System and Illumina Genome Analyzer

Sequence analyses were performed by Roche Diagnostic Japan

for the Roche Genome Sequencer FLX System. Paired-end
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Figure 1. Error ratio in GA reads depending on the base
position of the read. Ratio of mismatch between mapped reads and
reference sequence to the total number of mapped reads was plotted
against base position in the reads. The mismatch ratio increases along
with the base position indicating decrease of accuracy of base calls.
doi:10.1371/journal.pone.0019534.g001

Table 3. Comparison of uncovered regions.

Method
Uncovered bases
(Uncommon) GC contents

FLX 4,799 51.3

GA 58,367 56.1

SOLiD 27,986 50.4

The common 71334 uncovered bases not covered by any reads of the three
methods were removed. Most were uncovered due to duplicated sequences,
such as ribosomal RNA, insertion sequences, and highly preserved homologs.
doi:10.1371/journal.pone.0019534.t003

Comparison of Three Next-Generation Sequencers
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Table 4. Detection of single-base substitutions.

Method Coverage False positive True positive False negative (Uncovered)

FLX 23.5 8 239 20 (14)

GA 16.8 46 223 36 (17)

SOLiD 609.3 18 243 16 (12)

doi:10.1371/journal.pone.0019534.t004

Figure 2. Numbers of true and false detection as a function of the mean coverage. (A) Magnification of the low coverage range. (B) Whole
range. The circle, triangle and cross symbols indicate the number of True Positive (TP), False Negative (FN) and False Positive (FP), respectively. Black,
red and green represent FLX, GA and SOLiD, respectively. The extrapolated lines for the saturation of TP using FLX and GA were added in (B).
doi:10.1371/journal.pone.0019534.g002

Comparison of Three Next-Generation Sequencers
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library preparation, sequencing, and base calling were performed

according to the manufacturer’s recommendations. The sequenc-

ing run was performed with an Illumina Genome Analyzer by Post

Genome Institute. Two channels of a fragment flow cell were used.

Fragment library preparation, sequencing, and base calling were

performed according to the manufacturer’s recommendations.

Genome sequence by Applied Biosystems SOLiD system
The sequencing run with Applied Biosystems SOLiD 2 system

was performed by Applied Biosystems Japan for the 25-base mate

pair library. The other sequencing analyses for two replicates of

50-base fragment (two quarters of a slide) and two replicates of 50-

base mate pair libraries (two quarters of a slide) were performed

with an Applied Biosystems SOLiD 3 system. Library preparation,

sequencing and base calling were performed according to the

manufacturer’s recommendations.

Method for mutation detection
1) Mapping to the assembled genome. We mapped all

reads obtained by each three NGS method to the assembled DH1

genome sequence. To avoid issues related to the differences in

mapping quality, we used the same mapping tool (Bowtie 0.12.3,

http://bowtie-bio.sourceforge.net/index.shtml) for all data sets.

All reads were mapped to the reference allowing up to three

mismatches. Quality values of each sequence method were ignored

in this mapping analysis. Adapter sequences were removed from

the FLX reads. All reads were mapped regardless of mate pairs. In

this mapping analysis, when a read could be mapped to multiple

positions on the reference sequence, the one where the number of

mismatches was the smallest was chosen; if there were multiple

candidates for the least mismatch, the read was mapped to every

position as if it was multiplied.
2) Comparison of mutation detection. In this analysis, all

reads of each NGS method were mapped to the genome sequence

of E. coli W3110 as a reference by Bowtie allowing up to three

mismatches. In this analysis, the reads that were mapped to

multiple positions on the genome were excluded. The number of

bases on the mapped reads was counted for each base position on

the genome sequence. First, we estimated error rates of each

sequencing methods by comparing the base types of the reference

sequence and that of the mapped reads. Let M(b’Db) be the total

number of bases b’ appearing at all positions where the reference

base is b. The read probability P(b’Db) was defined as follows:

P b’Dbð Þ~ M b’Dbð ÞP
b’’[ A,C,G,Tf g

M b’’Dbð Þ ð1Þ

Next, for each base position i, we estimated the probability of

base calling, i.e., what bases were in the read genome, from the

counts of the mapped reads using this read probability. Let n(i,b)
represent the number of bases b at position i. When the base

counts a position n(i)~ n(i,A),n(i,C),n(i,G),n(i,T)ð Þ is given, the

probability of the observation n(i) under the conditions that the

base of the read genome is b is defined by multinomial distribution,

as follows:

P n ið ÞDbð Þ~ N ið Þ!
P

b’[ A,C,G,Tf g
n i,b’ð Þ!f g P

b’[ A,C,G,Tf g
P b’Dbð Þn i,b’ð Þ
n o

, ð2Þ

where N ið Þ~
P

b’[ A,C,G,Tf g
n i,b’ð Þ.

Assuming that the prior probability distribution is uniform, the

posterior probability of the read base is b under the given

observation n(i) is given by Bayes’ theorem as follows:

P bDn ið Þð Þ~ P n ið ÞDbð ÞP
b’[ A,C,G,Tf g

P n ið ÞDb’ð Þ : ð3Þ

Among the four possible base types, we chose the one with the

largest posterior probability as the consensus base at that position.

Finally, we filtered the bases where the consensus base was

different from the reference base, and if the posterior probability of

that consensus base was larger than 161028, it was called a

significant substitution.

Data deposition
The complete genome sequence of E. coli DH1 ME856 strain

has been submitted to GenBank under accession number

AP012030.
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Text S1 Supplementary Methods.

(XLS)
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