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Abstract
Background—Cancers of the urinary bladder are the fifth most commonly diagnosed
malignancy in the US. Early clinical diagnosis of bladder cancer remains a major challenge and
the development of non-invasive methods for detection and surveillance is desirable for both
patients and health care providers.

Approach—In order to identify urinary proteins with potential clinical utility we enriched and
profiled the glycoprotein component of urine samples using a dual-lectin affinity chromatography
and LC-MS/MS platform.

Results—From a primary sample set obtained from 54 cancer patients and 46 controls a total of
265 distinct glycoproteins were identified with high confidence, and changes in glycoprotein
abundance between groups were quantified by a label-free spectral counting method. Validation of
candidate biomarker alpha-1-antitrypsin (A1AT) for disease association was performed on an
independent set of 70 samples (35 cancer cases) using an ELISA. Increased levels of urinary
alpha-1-antitrypsin (A1AT) glycoprotein were indicative of the presence of bladder cancer (p
value < 0.0001) and augmented voided urine cytology results. A1AT detection classified bladder
cancer patients with a sensitivity of 74% and specificity of 80%.

Summary—The described strategy can enable higher resolution profiling of the proteome in
biological fluids by reducing complexity. Application of glycoprotein enrichment provided novel
candidates for further investigation as biomarkers for the non-invasive detection of bladder cancer.
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1. Introduction
With an estimated 70,980 newly diagnosed cases and 14,330 associated deaths in 2009,
urinary bladder cancer is the second most common genitourinary malignant disease in the
U.S. and among the five most common malignancies worldwide (1). Transitional cell
carcinoma (TCC), the most prevalent subtype, accounts for 90% of bladder cancers, while
two other forms, squamous cell carcinomas and adenocarcinomas, constitute 5% and 2%
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respectively (2). When detected early, the 5-year survival rate is approximately 94%, thus
timely intervention dramatically increases patient outcome. At presentation, more than 80%
of bladder tumors are non-muscle invasive papillary tumors (Ta or T1) and these superficial
lesions are treated conservatively by transurethral resection. However, more than 70% of
patients with these lesions will have disease recurrence during the first two years. If left
untreated these initially superficial lesions can progress to being muscle-invasive, thus
patients are under continued surveillance by expensive and invasive cystoscopic
examination for early detection of new tumor developments.

Voided urine cytology (VUC) remains the method of choice for the noninvasive detection of
bladder cancer. This method microscopically examines the morphology of the cells of the
bladder lining which are collected from the urine. The method is subjective and is open to
considerable inter-observer variation, and so accuracy is a problem, especially for low-grade
and low-stage tumors. Furthermore, results are not available rapidly, it is prone to inter-
observer variation, and it is relatively expensive. However, the diagnostic accuracy of
voided urine cytology (VUC) is limited (3, 4). While VUC has specificities up to 98% (5),
its utility as a primary detection tool is reduced because of sensitivities ranging from 40% to
76% (6). In a recent paper, we found the sensitivity of urinary cytology to be 33% (7). The
major problem with urine cytology is the fact that results are operator dependent, meaning
that the skill of the cytologist can result in variable results across institutions (8). This
variation in accuracy is reflected in the fact that voided urine cytology is rarely the single
test performed during a clinical workup to investigate potential bladder cancers (9).

A number of molecular tests have been developed to detect putative tumor-associated
molecules that are released into the urine from malignant lesions. Tests include the bladder
tumor antigen (BTA) (10), nuclear matrix protein 22 (NMP-22) (11, 12), BLCA-4,
cytokeratin (13), psoriasin (S100A7) (14), fibronectin (FG)/degradation products (FDPs)
(15, 16), zinc-alpha2-glycoprotein (17). However, these markers have limited sensitivity, so
alone they are not yet sufficient to replace the gold standards of urine cytology or
cystoscopy (18, 19). The search for more sensitive, non-invasive urine tests for more reliable
detection and surveillance is warranted.

Proteomic profiling approaches provide an unbiased and systematic survey of the proteome,
and technologies continue to be developed to address problems of biological variation and
proteome complexity. In our own work we have focused on analyzing the glycoprotein
component of the proteome. As much as half of the mammalian proteome is composed of
glycoproteins that are involved in essential cellular and biological functions, and many of
the biomarkers currently used for cancer detection in body fluids are glycoproteins,
including PSA (20), and CA-125 (21). Analytical tools for glycoprotein separation have
been developed based upon chemical reaction, gel-binding and lectin affinity
chromatography. The latter has become a powerful tool for the purification and
concentration of glycoproteins. Lectins constitute a group of proteins with unique affinities
for carbohydrate structures. Widely used lectins include concanavalin A (ConA) and wheat
germ agglutinin (WGA). ConA recognizes alpha-linked mannose, which is very common in
N-linked glycans, and WGA selectively binds to N-acetyl-glucosamine (GlcNAc) groups
and sialic acid residues.

The aim of this study was to design and apply a comprehensive strategy for the
identification of glycoprotein biomarkers in urine for potential utility in bladder cancer
detection. We employed dual-lectin affinity (ConA and WGA) chromatography to isolate a
wide range of N-linked glycoproteins from urine samples, and incorporated a LC-MS/MS
based label-free shotgun method to identify glycoproteins that were differentially expressed
according to disease status. One of the most discriminatory novel candidate biomarkers
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(A1AT) was validated in an independent sample cohort using ELISA. The strategy
identified specific glycoprotein biomarkers with potential utility in non-invasive bladder
cancer detection.

2. Material and Methods
2.1 Clinical sampling and processing

Under IRB approval and informed consent, urothelial samples and associated clinical
information were prospectively collected from individuals with no previous history of
urothelia carcinoma. Patients were undergoing complete hematuria workup including office
cystoscopy and upper tract imaging by computed tomography of the abdomen and pelvis
(without and with intravenous contrast). Urine cytology was performed by standard
Papanicolaou staining. All slides were evaluated by a cytopathologist. Urothelial carcinoma
grading and staging were performed according to the World Health Organization criteria.
Two different clinical cohorts were analyzed in this study. The first group (experimental)
consisted of 46 subjects with either a negative evaluation (i.e., normal imaging of upper tract
and normal cystoscopy) or asymptomatic donors, and 54 subjects with a visible bladder
tumor detected by upper tract imaging and/or cystoscopy, and which was later proven by
evaluation of a biopsy to be urothelial carcinoma. The second group (validation) comprised
35 subjects with a negative evaluation and 35 cases of confirmed bladder cancer. A
summary of clinical data is given in Table 1. Each sample consisted of 30–50 mL of
midstream urine collected in a sterile cup, stored immediately at 4°C, and processed for
storage within one hour of collection. Specimens with clearly visible hematuria were
excluded from analysis. Urinary creatinine, blood, leukocytes, nitrite, glucose, pH, ketone
and bilirubin were measured for all samples prior to processing using MULTISTIX PRO
Reagent Strips (Bayer HealthCare, Elkhart, IN). Cells and debris were removed from each
urine sample by centrifugation at 500 g and 5000 g for 5 min and 10 min at 4 °C
respectively and supernatant was stored at −80°C until processing for proteomic analysis.
For chromatography, supernatant was subjected to total protein precipitation by adding four
times the sample volumes of cold acetone (−20 °C). We found by testing replicate samples
that cold acetone gave a yield of ~90% protein recovery. The sample was left at −20 °C
overnight followed by centrifugation at 12000 g for 15 min at 4 °C. The supernatant was
removed, and the centrifuge tube was left open in the fume hood to remove the remaining
solvent. The pellet was resuspended in binding buffer (20 mM Tris, 0.15 M NaCl, 1 mM
MnCl2, and 1 mM CaCl2, pH 7.4) and vortexed vigorously to completely dissolve the pellet.
The protein concentration in the sample was determined by the Bradford protein assay (Bio-
Rad, Hercules, CA). Throughout the study, all samples were processed and analyzed
individually, no pooling of samples was performed.

2.2 Con A and WGA lectin affinity chromatography
A 700 µL resin slurry of agarose-bound concanavalin A (Con A) and 800 µL resin slurry of
wheat germ agglutinin (WGA) (Vector Laboratories, Burlingame, CA) was packed into a 2
mL disposable centrifuge column (Thermo Scientific, Rockford, IL). The resin was first
washed three times by binding buffer. 450 µg diluted protein sample (1:4) was then added to
the column and incubated for 30 min. The flow-through was discarded. The non specific
binding was removed by washing resin four times with 1ml of binding buffer each time. 1ml
of elution buffer (20 mM Tris, 0.5 M NaCl, 1 mM MnCl2, 1 mM CaCl2, 0.3 M methyl-α-D-
mannopyroside and 0.3 M N-acetyl-D-glucosamine, pH 7.0) was added and mixed for 10
min. The eluate was collected and the elution step was repeated once.
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2.3 Tryptic Digestion / PNGase F Treatment
The protein sample eluates were concentrated using a Microcon YM-10 column (Millipore
Corp., Bradford, MA) according to the manufacturer’s protocol. Approximately 10 µL of
sample was obtained from the filter device. A 1µL portion of 100 mM DTT (Sigma) was
added and the resulting mixture was incubated at 45 °C for 30 min. A 1 µL portion of
trypsin (Sigma) was added afterwards at 37 °C. The overnight digestion and reduction
reaction was terminated by adding 0.1µL of TFA to the digest. The tryptic digestion mixture
was completely dried using a SpeedVac concentrator (Labconco Corp., Kansas City, MO)
operated at 45 °C. The digest was reconstituted with 20 µL of 50 mM ammonium
bicarbonate and 5 unit of PNGase F (Sigma) was added. The deglycosylation reaction was
incubated for 24 h in a water bath set at 37 °C. The reaction was stopped by incubating the
digest mixture at 75 °C for 20 min. The sample was dried by SpeedVac concentrator (22).

2.4 Nano-RPLC-ESI MS
A Paradigm MG4 micropump (Michrom Biosciences Inc., Auburn, CA) was used to deliver
the mobile phase. The pump flow rate was split to achieve a column flow rate of 300 nL/
min. The separation column (0.1mm×150mm, C18 AQ particles, 5 µm, 120 Å) was from
Michrom BioResources (Auburn, CA, USA). The resolved peptides were analyzed on a
linear ion trap mass spectrometer with a nano-LC-ESI source (LTQ, Thermo Finnigan, San
Jose, CA). A mobile phase system of two solvents was used, where solvents A and B were
composed of 0.1% formic acid and 2% acetonitrile or water in HPLC-grade water and
acetonitrile, respectively. A 60 min acetonitrile/water gradient method was used, starting
with 5% acetonitrile which was ramped to 40% in 55 min and to 95% in another 5min. The
LTQ instrument was operated in positive ion mode. The capillary transfer tube was set at
200 °C, the ESI spray voltage at 2.5 kV, and the capillary voltage at 30 V. Ion activation
was achieved by utilizing helium at a normalized collision energy of 35%. The data
acquisition and generation of peak list files were automatically done by Xcaliber software
(2.1.0.1139). For each cycle of one full mass scan (range of m/z 400–2000), the three most
intense ions in the spectrum were selected for tandem MS analysis, unless they appeared in
the dynamic or mass exclusion lists.

2.5 Database Queries and Manual Validation
All MS/MS spectra were analyzed using the SEQUEST algorithm, version 27 incorporated
in Bioworks software, version 3.1 SR1 (Thermo Finnigan). Peptide fragment lists were
generated and submitted to the Swiss-Prot database. The search parameters were as follows:
[1] protein database, Uniprot/Swiss-Prot Release version 54.6 of 17-Dec-2007, downloaded
from NCBI; [2] allowing two missed cleavages; [3] variable modification, oxidation of M;
N+1, the +1 Da was allowed owing to hydrolysis of the amide of the asparagine side chain
to release the asparagine-linked oligosaccharides from glycopeptides; [4] peptide ion mass
tolerance 1.50 Da; [5] fragment ion mass tolerance 0.0 Da; [6] peptide charges +1, +2, and
+3. To further validate data obtained from SEQUEST, Trans-Proteomic Pipeline (TPP)
software was used where the threshold score was set at 0.9 for ProteinProphet probability
(overall false positive rate below 1%) (23, 24). Only the proteins that passed the threshold
and contained NXS/T motif in their peptide sequences were sorted as glycoproteins.

2.6 Data Normalization and Spectral Counting Quantification
Spectral counts were parsed from TPP (Trans Proteomics Pipeline) xml files after
processing the SEQUEST data. Global normalization with protein length was used to reduce
technical bias when acquiring spectral count data from different runs between and across
samples. It is important to take into consideration the length of a protein when determining
protein abundances using spectral counting, since small proteins tend to have fewer peptides
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identified per protein. If Cij is the raw spectral count for protein i in subject j, and Li is the
length of protein i, then the first step in data processing is to calculate Xij using the formula

which adjusts for the total spectral count observed per sample, and for the effects of protein
length. To eliminate the discontinuity in the count ratios when the spectral count for a
protein is zero, the Xij data were transformed following an approach similar to that used in
Old et al (25), as originally proposed by Beissbarth et al (26) for serial analysis of gene
expression (SAGE). The transformation uses the logarithmic quantity

where Tj is the total of the Xij for subject j, and f is a positive constant. The value of f was
set as the maximizer of the average Pearson correlation coefficient between pairs of replicate
measures for the same subject, which was determined to be 0.7 (Figure S6). Finally, the data
was filtered based on a minimum standard deviation threshold of 0.01, to exclude proteins
with very low variability between cancer and normal groups.

2.7 Western Blotting
For Western blot analyses, urine samples from three individual patients from each
independent experimental group (non-cancer and bladder cancer) were applied. 20 µg of
protein was resolved on 4−20% Tris-SDS gels and transferred to PVDF membranes.
Membranes were blocked with 1% BSA in PBST for 2 h at room temperature and incubated
with primary antibody (mouse alpha-1-antitrypsin, mouse uromodulin from Abcam,
Cambridge, MA, rabbit cell adhesion molecule 1 from Abnova, Walnut, CA) overnight at
4°C. All primary antibodies were diluted 1:1000. After three 10-min washes with PBST,
membranes were incubated with anti-mouse/anti-rabbit IgG-HRP secondary antibody
(Invitrogen, Carlsbad, CA) at a dilution of 1:5000 for 1 h, washed and visualized with the
SuperSignal West Pico chemiluminescent substrate system (Pierce, Rockford, IL). The
average time for image development was 15 seconds. Chemiluminescence was scanned on a
LAS-3000 instrument using LAS-3000 Lite software, and scanned images were visualized
and quantified using MultiGauge v.3.1 software (FujiFilm Life Science, Inc., Stamford, CT).

2.8 Enzyme-Linked Immunosorbent Assay (ELISA)
The level of human alpha1-antitrypsin (A1AT) was monitored in urine samples using the
AssayMax Human Alpha1-Antitrypsin (A1AT) ELISA kit (Assaypro, MO). The A1AT
present in standards and samples is measured by competition with a biotyinylated A1AT and
detected using a streptavidin-peroxidase conjugate. 25 µl of A1AT standard or urine sample
was added to each well, followed by addition of 25 µl of biotinylated A1AT. The assay was
conducted according to the manufacturer’s instructions. The absorbance values were read on
a microplate reader (Bio-tek, Synergy™ HT, VT) at a wavelength of 450 nm.

2.9 Statistics and Data Analysis
For the differential expression analysis of profile data we used linear mixed effects models
to identify proteins that were differentially expressed between cancer and normal samples
while reducing the effects of experimental batches. The mixed effects models used
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transformed glycoprotein abundance as the outcome variable, and included random
intercepts for the batches and a fixed effect for disease status. The Z-score for the disease
status variable was used to identify differentially expressed proteins, based on the False
Discovery Rate (FDR) values and the Bonferroni-adjusted p-values. For ELISA data
analysis, a standard curve prepared using purified A1AT was generated by regression
analysis using four-parameter logistic curve-fit. Signal intensities of the A1AT disease
marker were converted to concentration values by reference to the standard curve. To
normalize for unknown total urine volume these values were reported as a ratio relative to
urinary creatinine values (27–29). ELISA data were plotted as a scatter plot and a receiver
operating characteristic (ROC) curve. The Student t-test for paired samples was used to
perform pairwise comparison of AUC for A1AT signal intensities calibrated using urinary
creatinine. A ROC curve is obtained by varying a decision threshold provides a direct view
on how a predictive approach performs at different sensitivity and specificity levels (30, 31).
In the case of a diagonal line on the ROC curve, an area under the curve (AUC) value of 0.5
is obtained, indicating that prediction between positive and negative cases is random. The
other end of the scale is represented by an AUC value of 1.0, indicating perfect separation.
The AUC represents an overall measure of a particular biomarker’s discriminatory potential
across all thresholds. The ROC curve also allows the relationship between sensitivity and
specificity to be estimated at any given point. Here, sensitivity (or true-positive rate) is the
probability that a subject with bladder cancer is correctly classified as having cancer, and
specificity (or false-positive rate) is the probability that a subject with bladder cancer is
incorrectly classified as having cancer (specificity can be defined as one minus the false-
positive rate). Differences in all analyses were regarded as significant at a p-value <0.05.
Statistical analyses were performed by SPSS 13.0., and by MedCalc version 8.0 (MedCalc
Software, Mariakerke, Belgium) for ROC curve analysis.

3. RESULTS
3.1 Identification of Urinary Glycoproteins by LC-MS/MS

Glycoproteins from 54 bladder cancer and 46 non-cancer specimens were enriched by dual-
lectins, ConA and WGA, and digested with trypsin (see workflow diagram Figure 1). After
N-glycans were removed from tryptic peptide mixtures using PNGase F, they were analyzed
by nanoHPLC-ESI-MS/MS using LTQ mass spectrometry and Trans-Proteomics Pipeline
(TPP) software to identify glycosylated proteins. Figure S1 (supplemental data) shows a
typical MS/MS spectrum of an N-glycosylated peptide from a glycoprotein, A1AT,
identified in one cancer urine sample. After non-specific binding proteins and any
processing artifacts were removed (such as trypsin and keratin), a total of 421 urinary
proteins were identified with high confidence (ProteinProphet probability scores >= 0.9 and
a false-positive rate below 1% (32)). After manual validation using the Swiss-Prot database
we identified a total of 267 distinct glycoproteins. To further exclude proteins with low
variability between cancer and non-cancer groups, we compiled a list of 100 unique
glycoproteins with a variance standard (S.D.) > 0.01. A heat map was prepared in order to
visualize the abundance of these glycoproteins across all specimens in the two groups (see
supplemental Figure S2).

3.2 Assessment of Reproducibility and Correlation of LC-MS/MS Data
To assess the technical variation resulting from the nanoLC-MS/MS instrument, the
transformed spectral counting data from technical replicates were compared. This
comparison revealed that the same proteins from duplicate runs exhibited nearly identical
retention time, confirming a high level of reproducibility for the LTQ instrument. An
example comparison is depicted in supplemental Figure S3. Scatter plots were constructed to
display the LTQ reproducibility of two consecutive analyses across all of the urinary
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samples from the non-cancer and the cancer groups (Figure 2). The linear regression
coefficient r2 was 0.91 and 0.82 for control and cancer samples, respectively, indicating that
reproducibility was high across the entire sample set. To further evaluate MS data reliability
and variance among different biological samples and batches, we investigated the Pearson
correlation between transformed data for all proteins, within pairs of samples. A batch
analysis scatter plot (Figure S4) shows that the technical replicates were highly correlated to
each other, confirming our LTQ reproducibility findings. When compared within a batch,
the N/N pairs (non-cancer) and the T/T pairs (tumor-bearing) are slightly better correlated
than the N/T pairs, reflecting a reasonable biological variation relationship between non-
cancer and cancer specimen groups. The three pair-type comparisons are similar when
compared either across different batches or within-batches. These findings show that no
major LTQ analysis batch effect was evident. However, we did observe some batch variance
when comparing protein extraction data (Figure S5). Therefore, our subsequent differential
analyses were based on within-batch comparisons and the significance level was evaluated
using a statistical model incorporating a batch factor.

3.3 Identification of Differentially Expressed Glycoproteins
In order to find urinary glycoproteins that exhibit differential abundance between the non-
cancer and cancer groups, MS data were analyzed by a label-free quantification method
based on spectral counts. After protein sequence normalization and variance standard
application, the quantity of each protein was transformed into a log scale. The correction
factor f was determined for technical replicates to achieve the maximal correlation value
(Figure S6). After transformation, statistical significance levels between the two groups
were analyzed by multiple comparisons adjustment using a stringent local false discovery
rate (locFDR), and considering the batch factor. To be qualified as a potential biomarker, a
glycoprotein must be present in at least half of the cancer or non-cancer samples. As a result,
a list of glycoproteins was found to be significantly differentially expressed with respect to
the presence of bladder cancer, with a FDR value < 0.1 (Table 2). Three of the glycoproteins
were expressed at significantly higher levels in urine from bladder cancer patients. A heat
map was constructed to display the transformed spectral counts of these differentially
expressed glycoproteins for all samples (Figure 3). Consistent with the results of spectral
counting, analysis of six randomly selected urine samples (3 non-cancer, 3 bladder cancer
cases) by Western-blotting showed that the levels of A1AT were elevated in the bladder
cancer cases while UROM, CADM1 were found to decrease (data not shown).

3.4 Validation of urinary A1AT abundance by ELISA
To verify the observed differential levels of the A1AT glycoprotein in bladder cancer patient
samples, we measured the abundance of this target in urine samples obtained from an
independent cohort (35 bladder cancer cases and 35 non-cancer controls) using a
commercially available ELISA. Analyses revealed a significant association of elevated
A1AT in urine samples obtained from patients with bladder cancer (Figure 4). The
differential levels between groups was statistically significant (p value < 0.0001), and
construction of an ROC curve illustrates the ability of A1AT to distinguish cancer and non-
cancer cases (Figure 4). The area under the ROC curve (AUROC) was 0.82. From the ROC
plot we can estimate the relationship between sensitivity and specificity of the assay at any
given point. At a sensitivity of 74%, A1AT detection classified bladder cancer patients with
a specificity of 80%. These values compare favorably with the gold standard of urine
cytology, which has high specificity but a range of sensitivity from 11% to 76% (3,4). In the
validation cohort, 11 of 35 (31%) of the cancer cases were positive by cytology. If we set
arbitrary thresholds for the pilot A1AT ELISA data, we can estimate whether the ELISA
data would have augmented the cytology data in some cases. Using a threshold of 3.2 from
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the data illustrated in Figure 4, the ELISA assay detected 10 cancer cases and no false-
positives. Of these 10 confirmed cancer cases, 7 had a negative cytology.

4. Discussion
Two-dimensional electrophoresis (2-DE) of proteins has been the conventional method for
biomarker assessment in urological proteomics (33, 34). Irmak et al identified two proteins,
orosomucoid (ORM) and zinc-alpha glycoprotein (ZAG) which were increased in urine
samples of tumor-bearing patients in comparison with samples from a few healthy
volunteers (17), and Pinero et al used 2D-DIGE coupled with mass spectrometry to identify
regenerating protein-1 (Reg-1) and keratin 10 as being associated with bladder cancer (35).
Saito et al. (36) used a 2-D PAGE approach, but focused specifically on proteins of the
extracellular matrix and matrix metalloproteinases in urine. Samples enriched with gelatin-
affinity beads revealed that MMP-2, MMP-9, and fibronectin (FN) fragments were present
in cancer patients, but not in healthy individuals (36). To date, a limited number of
proteomic studies have utilized MS technologies for the analysis of urological cancers,
largely because of the lack of defined methodologies that can reduce the complexity of the
sample and rapidly and accurately identify specific proteins. A number of studies have used
SELDI-TOF to identify peptide signatures associated with bladder cancer, but validation of
specific targets has not been forthcoming. Theodorescu et al. employed online coupling of
capillary electrophoresis (CE) to an electrospray time-of-flight mass spectrometer (ESI-
TOF-MS) to identify a 22-peptide signature that could discriminate between samples of
bladder cancer and healthy subjects (37). The signature was able to correctly classify 31
bladder cancer patients from a cohort that included 149 samples from healthy or non-
malignant urological diseases. A recent study used an iTRAQ (isobaric tag for relative and
absolute quantitation) technique to discover proteins that were differentially expressed
between pooled urine samples and non-tumor controls. This strategy identified 55 candidate
biomarker proteins. Orthologous techniques confirmed that the level of apolipoprotein A–I
(APOA1) was significantly elevated in urine samples from bladder cancer patients. Using a
commercial ELISA assay, APOA1 was confirmed to have high diagnostic potential in an
extended sample set (38). Collectively, these studies show the promise of MS-based urinary
analysis for the discovery of biomarker panels.

The majority of reported proteomic urine profile studies have used large amounts of sample
material. Hundreds of milliliters of urine are typically used for gel-based analysis, and the
pooling of samples from different individuals are typically observed in the published gel
analysis of normal urine proteome studies in order to increase the amount of proteins (39).
Thus, a reliable and accurate profiling technique requiring only a small amount of urine is
essential for investigating urinary proteomes and for marker identification in minimal
samples. In order to improve efficiency and to make the glycoprotein enrichment strategy
applicable to minimal sample material, we developed a nano-scale chelating Concanavalin
A (Con A) monolithic capillary prepared using GMA-EDMA (glycidyl methacrylate–co-
ethylene dimethacrylate) as polymeric support (40). We used this technique to identify 186
distinct N-linked glycoproteins in as little as 10ml of naturally micturated human urine.
Utility for analysis of minimal biological samples was confirmed by the successful
elucidation of glycoprotein profiles in mouse urine samples at the microliter scale (40). As
advances in proteomics technologies continue, and findings are collated in established and
curated publicly available databases, the future for the discovery and validation of urinary
biomarkers of multiple diseases is encouraging.

In this study, we specifically investigated the glycoprotein component of the naturally
micturated urinary proteome, and compared the profiles obtained from analysis of urine
samples obtained from 54 patients with bladder cancer and form 46 non-cancer controls. We
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utilized a dual lectin affinity strategy to enrich N-linked glycoproteins, and incorporated a
LC-MS/MS based label-free shotgun method to identify and compare glycoproteins present
in the clinical sample panel. A total of 256 distinct glycoproteins were identified with high
confidence, and comparative analysis confirmed that differential urinary glycoprotein
profiles exist that can distinguish bladder cancer-bearing patients from individuals with no
evidence of bladder cancer.

Quantitative shotgun proteomics, including both stable isotope labeled and label-free
techniques has emerged as a major platform for investigating large-scale protein expression
and characterization in complex biological systems (41, 42). Stable isotope labeling
approaches, such as Isotope-Coded Affinity Tags (ICAT), Isobaric Tags for Relative and
Absolute Quantification (iTRAQ), and other metabolic and enzymatic labeling (43, 44), can
provide accurate quantitative results. However, these methods are not ideal for the initial
large-scale discovery phase, due to high-cost, incomplete labeling, and artificial introduction
of chemical derivatization. In recent years, an alternative shotgun proteomics strategy based
on spectral counting has been developed. With this method, relative protein quantification is
achieved by comparing the number of identified MS/MS spectra for a given protein species
across samples (45). Previous studies have demonstrated that spectral counting has a strong
linear correlation with relative protein abundance (r2= 0.9997), with a dynamic range over 2
orders of magnitude compared with sequence coverage and number of peptide (46). It was
also proved to have higher reproducibility and a larger dynamic range than ion-peptide
chromatogram (47). Spectral counting has the advantage of achieving cleaner, faster and
simpler quantification results when it comes to large and global protein change studies (25,
48, 49).

Herein, the spectral counting method was employed for quantitative analysis in the present
work, and rigorous statistical analysis and subsequent validation were designed to evaluate
specific aspects of the method. Figures S3 and S4 show the high reproducibility between
technical replicates observed for both non-cancer and cancer sets. In addition, to evaluate the
correlation among different batches based on LTQ runs, we also examined the batch effect
between protein extraction sets (Figure S5), revealing a high correlation between technical
replicates. When compared within a batch, the N/N pairs were most strongly correlated,
followed by the T/T pairs and the N/T pairs in order, reflecting interesting relationships
between different disease stages. However, when compared across different batches, the N/
N or T/T pairs were not more correlated than the N/T pairs. This suggested that some batch
effect was causing variation across different batches based on sample preparation.
Therefore, our differential expression analysis was grounded on mixed-effect models to
reduce the effects of experimental batches. The most promising glycoprotein biomarkers had
significant differential expression value when batch factor was accounted for. The
subsequent validation results supported this consideration.

While a number of biomarkers identified for bladder cancer diagnosis may have utility in
solid tissue or patient’s serum, urinalysis has obvious advantages for the detection of
urological cancer. Most importantly, it is available for collection non-invasively. This
enables patient compliance, copious sample collection and repeat sampling. The problem of
protein complex formation is reduced in urine relative to serum, urinary peptides and low
molecular weight proteins are generally soluble, and problems of degradation during
collecting and processing experienced with other tissue and fluid analyses is avoided due to
the fact that most proteolytic degradation events have already occurred before voiding (27).
A limitation of urinalysis is the large dynamic range in protein and peptide concentration
resulting from variations in the intake of fluid and voiding frequency. Appropriate
normalization methods have to be selected to counter this problem. For MS data
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normalization, we applied total spectral count normalization considering protein length to
adjust data deficiency and also to prevent abundant proteins from dominating the analysis.

Another challenge in urinalysis is the potential presence of blood proteins since hematuria is
a common occurrence in patients with bladder cancer. With blood incursion, serum
glycoproteins may be detectable during profiling in some cases. We addressed this problem
in a number of ways. We excluded any visibly bloody urine samples and samples defined as
having >0.010 mg/dl hemoglobin by urinalysis strip testing (normal levels, see methods).
However, to confirm that candidate biomarkers were not associated with trace serum
incursion we also examined the potential correlation between the glycoprotein hemoglobin
and the target protein from our spectral counting data for each case. We observed no such
association (see supplemental Figure S7 for scatter plot of A1AT and hemoglobin).

As in our previous study (50), we did identify a number of expected glycoproteins, including
some which are under investigation as biomarkers for bladder cancer, but many
glycoproteins will not have been selected by the lectin affinity approach used in this study.
Specifically, we used ConA and WGA which bind alpha-linked mannose, and N-acetyl-
glucosamine (GlcNAc) groups respectively. However, the strategy can be expanded to
include additional lectins that are now routinely available in order to broaden the captured
glycoprotein profile. The most discriminatory protein identified as being associated with
bladder cancer in this study was alpha-1-antitrypsin (A1AT), also known as SERPINA1,
which describes it as a member of a family of inhibitor of serine proteases. A1AT
irreversibly inhibits trypsin, chymotrypsin and plasminogen activator. In humans, serpins
play crucial roles in the maintenance of homeostasis, controlling multiple processes from
cellular survival to blood clotting. There are a number of known serpin diseases, including
emphysema and liver disease, but relatively little is known of its potential role in cancer.
Genetic aberrations of A1AT have been found in some malignancies, including colorectal
cancer (51). In a 2-DE and MS proteomics based analysis, Hamrita et al identified A1AT as
upregulated in sera from breast cancer patients with various stages in comparison with
healthy women (52). The progression from localized tumor to invasive metastasis involves
matrix proteolysis. The balance between proteases and their inhibitors play a key role in this
process. Thus, as well as a diagnostic biomarker, A1AT may be a useful indicator for tumor
classification e.g. invasive versus superficial bladder cancer, or prognostication. A recent
study in tumor tissues identified SERPINA1 expression as being correlated with malignant
potential of ovarian cancer (53).

The impetus for our search for bladder cancer biomarkers comes from the idea that an
accurate biomarker can reduce the number of cystoscopies performed each year, and thus,
cut down the frequency of this invasive procedure. We have been able to establish a
comprehensive proteomics strategy for discovery of urinary glycoproteins associated with
bladder cancer using dual lectin-affinity enrichment and LC-MS/MS analysis, and
performed the first comprehensive study employing the glycoprotein profiling of non-
invasively obtained urine samples. Clearly, larger, confirmatory studies will be required to
validate the candidate biomarkers identified in this study and to compare them with cytology
and commercial assays, but the data presented here show that it is possible to detect and
characterize bladder cancer based upon urinary glycoprotein profiles. In combination with
other approaches, this strategy will provide targets for inclusion in multiplex biomarker
panels that can be used for diagnosis, surveillance and asymptomatic screening.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Workflow of LC-MS/MS based identification, and immunoassay based validation.
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Figure 2.
Scatter plots of LTQ replicates across all urine samples based on transformed spectral
counts. A) Non-cancer group, B) Cancer group.
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Figure 3.
Heat map of differentially expressed urinary glycoproteins identified in duplicate analyses of
103 samples. The heat map displays the transformed spectral counts data. Each column
represents an independent analysis for each sample. Each row represents a specific
glycoprotein identified by LC-MS/MS.
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Figure 4.
ELISA analysis of urinary A1AT. Left panel shows a scatter-plot of creatinine-normalized
urinary A1AT concentration (logarithm M) in study subjects with (Cancer), and without
(Control) bladder cancer. Differential levels were significant (p < 0.0001). Error bars denote
standard deviation. Right panel shows ROC curve of A1AT data; area under the ROC
(AUROC) of 0.82.
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Table 1

Demographic and clinicopathologic characteristics of discovery (Phase I) and validation study cohorts

Phase I Validation

Noncancer (%)* Cancer (%) Noncancer (%)* Cancer (%)

N=46 N=54 N=35 N=35

Median Age (range, y) 56 (20–77) 71 (48–89) 58 (19–85) 67 (20–87)

Male/Female ratio 35:11 47:7 28:13 34:7

Race

      White 35 (76) 53 (98) 34 (83) 41 (100)

  African American 6 (13) 1 (2) 3 (7) 0 (4)

      Other 5 (11) 0 (0) 4 (10) 0 (0)

Positive/suspicious cytology 0 (0) 16 (30) 0 (0) 11 (31)

Clinical stage

Tis n/a 4 (7) n/a 0 (0)

Ta n/a 9 (17) n/a 14 (34)

T1 n/a 11* (20) n/a 9 (22)^

T2 n/a 22(41) n/a 17 (41)^

T3 n/a 2 (4) n/a 1 (2)

T4 3 (6) 1 (2)

Tx 1 (2) 0

Grade

1/2 n/a 9 (17) n/a 10 (24)

3 n/a 45 (83) n/a 31 (76)
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