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Background. Tuberculosis (TB) often occurs among household contacts of people with active TB. It is unclear

whether clustering of cases represents household transmission or shared household risk factors for TB.

Methods. We used cross-sectional data from 764 households in Lima, Peru, to estimate the relative contributions

of household and community transmission, the average time between cases, and the immunity afforded by a previous

TB infection.

Results. The distribution of cases per household suggests that almost 7 of 10 nonindex household cases were

infected in the community rather than in the household. The average interval between household cases was 3.5 years.

We observed a saturation effect in the number of cases per household and estimated that protective immunity

conferred up to 35% reduction in the risk of disease.

Conclusions. Cross-sectional household data can elucidate the natural history and transmission dynamics of

TB. In this high-incidence setting, we found that the majority of cases were attributable to community transmission

and that household contacts of case patients derive some immunity from household exposures. Screening of

household contacts may be an effective method of detecting new TB cases if carried out over several years.

Tuberculosis (TB) is a debilitating infectious disease

that is responsible for �2 million deaths worldwide

annually [1, 2]. Infection occurs through the trans-

mission of respiratory droplets from individuals with

TB; therefore persons in close and sustained proximity

to TB cases are at high risk of infection. Accordingly,

much of our basic understanding of TB epidemiology

is based on household studies of disease transmission

that typically measure the risk of infection [3–5] or

disease [6–8] among those living with an index case.

Such studies have estimated the burden of TB among

close contacts of TB cases [9], the effects of putative

risk factors for infection and disease conditional on

exposure [10–12], and the time course over which

secondary cases arise [9, 13]. Epidemiologic inference

from household studies of TB, however, is complicated

by the need to differentiate between transmission that

occurs within the household of an index case and

transmission from community exposure [14, 15]. In

addition, exposure to Mycobacterium tuberculosis that

does not result in disease may provide protective im-

munity from future infection or disease [16–18], fur-

ther complicating the measurement of risk in exposed

contacts. Researchers have addressed such methodo-

logic issues by using molecular fingerprinting to

identify transmission chains [15] and by nesting

household studies within prospective studies that as-

certain infection status at baseline [9, 19]. Although

these studies have helped to elucidate TB transmission

dynamics, they can be costly and take years to com-

plete. We propose that program data may inform es-

timates of the relative risks of infection from household

and community exposures, the degree of partial im-

munity conferred by a past infection, and the time

between cases within households. This type of easily

available data could be routinely collected and would

provide alternative, cost-efficient methods to improve
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our understanding of disease dynamics and our ability to select

disease control strategies.

The cross-sectional distribution of infection within households

has been used to study the dynamics of acute respiratory diseases,

such as influenza [20–23] and other diseases [24, 25]. Despite the

limitations of cross-sectional data, they are more readily obtained

than those from prospective studies of exposed cohorts. In the

absence of household transmission, the number of cases within

a household should reflect a random sample of community

prevalence. Deviations from this pattern may be associated with

household structure resulting from, for example, clustering of risk

factors or household transmission. In this study, we extend the

methods of Longini et al [20, 21] to study the distribution of cases

of chronic infectious TB occurring in households in Lima, Peru,

an area of high disease burden and a growing epidemic of highly

drug-resistant disease [1, 26]. We use data from household con-

tacts of index cases with multidrug-resistant TB (disease resistant

to at least isoniazid and rifampin, the 2 most powerful antibiotics

used to treat TB) to estimate the risk and time course of nonindex

cases given a household exposure, the risk of disease acquired

through community rather than household transmission, and the

protective effect of previous exposure to TB.

METHODS

Study Population
We assessed the pattern of TB cases (persons with active

disease) within households that were included in a retrospec-

tive cohort study conducted within metropolitan Lima, Peru

[27]. Study households were identified by a household

member who had been diagnosed and initiated treatment

for laboratory-confirmed multidrug-resistant or extensively

drug-resistant TB between 1996 and 2002. On enrollment,

households were visited and basic demographic and clinical

data for household members were collected, including birth-

dates, relationships between household members, and de-

tailed histories of prior TB disease episodes and treatments

received. Coprevalent TB cases were identified by sputum

microscopic screening of household contacts. For the pur-

poses of this analysis, the index case in a household will be

defined as the first TB diagnosis among the people residing in

a household. All subsequent cases will be defined as nonindex

cases. We assume that all members of the study cohort have

been exposed to TB by living with someone with active dis-

ease. We note that the index case in the household is not

necessarily the drug-resistant TB case that prompted the

household to be enrolled into the study, which we term the

enrollment case for clarity.

Peru had an estimated incidence of 150 cases per 100,000

persons between 2004 and 2006 [1, 2] with a strong national TB

program with high detection rates (�93%) and high levels of BCG

vaccination at birth. The prevalence of human immunodeficiency

virus (HIV) infection was low in Lima and in our study pop-

ulation, with HIV coinfection in ,.9% of enrollment cases. No-

tably, adult household contacts of known TB cases do not receive

treatment for latent infection.

Data Analysis: Age-Specific Risks and Intrinsic Time Scales
We estimated the proportion of participants diagnosed with

TB by age, and the distribution of ages at first diagnosis for the

pooled participant data (irrespective of household affiliation). In

household of %7 adults adults with .1 case, we estimated the

generation time of cases within households from the distribution

of times between the first and second diagnoses within house-

holds. The generation time within households provides only

a crude estimate of the true serial interval, given that nonindex

cases in the household may have been infected from an external

source. Nevertheless, this quantity provides information for

minimum lengths of time for increased symptom monitoring of

household contacts once an index case has been diagnosed. We

used the secondary attack rate (SAR) within households,

calculated as 100 3 ðcumulative incidence 2 1 Þ=ðtotal adults in

household 2 1Þ, as a first approximation of transmission risk [20].

Model
In each household, we measured the total number of adults (k)

and the cumulative incidence of adults with disease (j). We used

the date that TB treatment was started as a proxy for the disease

onset, justified by the high detection rate and strong national TB

program in Peru [1, 2]. For each household member, we defined

a risk of community-acquired disease ð12BÞ and a risk of

household-acquired disease from a single infectious household

contact ð12QÞ, as described in [21]. Implicit in the model is the

assumption that the transmission process began with the first

diagnosed case.

We computed the unconditional probabilities pjk of having j

cases in a household of k adults, using the recursive formulae

from Longini et al [21], as follows:

pjk5

�
k
j

�
Bk 2 jQ jðk 2 jÞpjj for 0 % j , k ð1aÞ

pjj 512
Xj 21

r 5 0

prj otherwise: ð1bÞ

Then, we condition on the probability that there was $ 1 case

in the household, because this was a condition for entry into the

study. The probabilities for the model are as follows:

p̂jk5 P ð j casesj1 % casesÞ 5 pjk

12p0k
for1 % j % k ð2Þ

The SAR within a household (the probability that each

household contact develops disease) increases with household size
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if the probability for within-household transmission ð12QÞ is

non-zero [21, 28] (for comparison, see [29]).

We estimated the community and household transmission

parameters (B and Q, respectively) using Markov Chain Monte

Carlo (MCMC) with Metropolis-Hastings sampling [23]. For

each set of proposed parameters, the probability of observing

the data given the model was computed for a log-likelihood

function, such that LðB;QÞ5
P764

i51

HiðB;QÞ, where HiðB;QÞ is the

logarithm of the likelihood of observing household number i,

given parameters B and Q. The proposed parameters were

accepted with a tolerance that ensured good mixing. Two mil-

lion MCMC samples were taken to approximate the posterior

density, with a burn-in of 100,000 samples. We used a v2-test to

measure goodness of fit.

Parameter Interpretation
The parameter B corresponds to the average probability of

community-acquired disease during a person’s adult life in this

study setting and time period. The median age of all participants

was 30.9 years, and the age distributions did not differ signifi-

cantly between households of different sizes or with different

numbers of cases. In addition to estimating B and Q for all

diagnosed cases, we also estimated B and Q for cases diagnosed

since 1996 to investigate the effect of including different time

periods in the analysis.

Protective Immunity
The baseline model above includes the assumption that the

probability of disease after a single exposure is independent of

previous exposures to disease, and so does not account for any

associated protective immunity. We looked for evidence of

protective immunity by allowing the probability of disease to

vary with the number of previous exposures. The baseline model

was fitted to subcollections of households with at least a specified

number of cases, thereby measuring the change in risk of disease

in households as the cumulative number of cases increased.

For each number of cases m $ 1, we restricted our attention

to the collection Cm of households within the study cohort

that had at least m cases. For example, C4 is the collection of

all households with $4 cumulative TB cases and C1 is the

entire data set (because households were entered in the study

only after the enrollment case was identified). The probability

that a household with k adults has j cases in the restricted

collection Cm is

p̃jkm5Pð j casesjat least m casesÞ5 pjk

12
Pm21

r 5 0
prk

ð3Þ

From equation (3), we inferred the transmission parameters

ðBm;QmÞ in the restricted group Cm, using MCMC as above. We

used the probabilities p̂jk and p̃jkm to predict the expected

number of cases in households with at least m cases for the

2 models. Given that the restricted model is conditioned on

there being at least m prior household cases, we estimated the

efficacy of any protective effect of prior exposure by taking the

ratio of expected number of cases under each model:

immunityðmÞ512

P
Cm

Pk
i 5 m 1 1 p̃ikm

�
i 2 m

�
P

Cm

Pk
i 5 m 1 1 p̂ik

�
i 2 m

�

where k is the number of adults in a household in Cm.

RESULTS

In the 764 participant households, the mean number of

individuals per household was 7, with a range between 1 and 27

household members.

Age-Specific Risks
Of individuals in the cohort with previous diagnoses of TB, 78%

were between 14 and 35 years of age at first diagnosis (Figure

1a). The cumulative incidence of TB increased by 1% per year of

life between the ages of 0 and 20 years, to an average cumulative

incidence of �35% (R2 5 .80, Figue.1b). There was no clear

pattern of disease associated with age for older age groups in the

cohort.

Time Between Diagnoses in Households
The mean waiting time between first and second diagnoses in

households with %7 adults was 3.5 years, and the distribution

was skewed toward shorter times, with a median interval

between cases of 1.65 years (Figure 1c).

Modeling Chains of Infection Within Households
The data suggest that the SAR within households increased with

the number of adults for households of %7 adults (Figure 1d).

The median age of adults within households did not vary with

household size, suggesting that the increase in SAR was associ-

ated with transmission. For larger households, rates of pair-wise

contacts between individuals presumably decreased. Therefore,

for parameter inference, we used only households containing

%7 adults.

There was good agreement between distributions of cases per

household produced using the baseline model and the data for

households containing 2–7 adults (Figure 2). The median of the

posterior density provided the best point estimate, yielding the

lowest v2 fit, with v25f0:83; 0:64; 2:69; 5:78; 0:58; 5:95g and

P values5f0:36; 0:73; 0:44; 0:22; 0:99; 0:43g with 1–6 degrees of

freedom. A visual comparison between the model and the data

for households with 2–7 adults is shown in Figure 2. In general,

the model overestimated the proportion of larger households

with intermediate levels of infection.
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Probability of Community Versus Household Infection
The expected value for the probability of community-acquired

disease using all cases was ð12BÞ50:19, and for the probability

of acquiring disease from a single infectious household member

it was ð12QÞ50:1, illustrating that most household contacts did

not develop disease (Figure 3). On average, in households with

multiple cases, we estimate that 7 of 10 nonindex cases were

actually infected in the community rather than by their

infectious household contact. The marginal posterior density for

household transmission has a tighter distribution (variance,

.004) than the marginal posterior density for community

transmission (variance, .008) indicating that the probability of

household transmission is better described by the data than the

probability of community transmission (Figure 3a).

Restricting the analysis to cases diagnosed since 1996 reduces

the expected risk of community- and household-acquired dis-

ease to ð12BÞ50:12 and ð12QÞ50:07, respectively, and the

percentage of nonindex cases that acquired disease in the

community to 65%.

The joint posterior density demonstrates that both household

and community transmission contributed to the observed dis-

tributions of cases within households located in this high-

incidence area (Figure 3b). The joint posterior density is most

consistent with a higher risk of community acquisition than

household acquisition among household contacts (62% of the

best-fit region), but the posterior density also suggests that

household transmission is important (8% of the best-fit region

where there is an equal role of community and household

transmission and 30% of the best-fit region where household

transmission is actually more important than community

transmission). Although we estimate a similar risk of trans-

mission from the community and from within the household to

the contacts living with only a single TB case patient, nearly half

of the households in this study (49.4%) had a documented

presence of $2 infectious cases. In these households, the in-

creased exposure within the house increased the probability that

subsequent cases were due to household transmission. In the

most extreme example, a household where TB had been di-

agnosed in 11 of 16 adults, the model predicted that .4 of 5

subsequent cases in the home would have been due to household

transmission.

Multiple Reinfections and Immunity
The goodness of fit improved when we allowed the probability

of disease to vary with the number of cumulative cases

within a household (ratio of v2 values between the restricted

model equation (3) and the baseline model equation

(2): ðm 5 2Þ0:99; ðm 5 3Þ0:87; ðm 5 4Þ0:61). By comparing

the expected number of future cases in each model, we measured

a protective effect associated with exposure that increased with

the number of previous cases within a household. We estimated

a maximum efficacy of ,35% (table 1).
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Figure 1. Characteristics of cohort study. A, Distribution of ages at first diagnosis. B, Proportion of participants by age (as of 31 December 2005) who
had been treated for active tuberculosis (TB); x's toward right end of horizontal axis denote ages for which there were no data; dashed horizontal line,
mean cumulative incidence in persons aged $20 years. C, Time lag between diagnoses in the first 2 individuals in the same household with active
disease, among households with %7 adults; data are binned in 6-month intervals. D, Secondary attack rate, calculated as (average no. of cases in
household 2 1)/(household size 2 1). Sizes of markers are proportional to numbers of households of each size.
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DISCUSSION

In this study, we analyzed the cross-sectional distribution of TB

cases within households in urban Lima, Peru, to estimate the

relative contributions of household and community trans-

mission, the average time between household cases, and the

protective immunity conferred by a previous exposure. Our

findings rely on data that are often routinely collected within

well-functioning TB programs, and our parameter estimates are

consistent with previous estimates derived from more labor-

intensive approaches such as cohort studies and molecular ep-

idemiology studies. The results of this study will contribute to

the practical design of case-finding strategies and help elucidate

TB transmission dynamics and parameterize more accurate

epidemic models.

Consistent with findings from other high burden settings, we

find that for the time covered by this analysis a high proportion of

nonindex case patients in households with a previously identified

case were probably infected in the community rather than through

household transmission. Our finding that .65% of the nonindex

cases were due to community transmission is comparable with the

results of a recent molecular epidemiologic study in Cape Town,

South Africa, which compared DNA fingerprints of M. tubercu-

losis isolates from households with $2 cases of TB. This study

found that 61% of paired isolates had mismatching fingerprints,

indicating that at least 61% of secondary cases were due to

community transmission [15]. This result would underestimate

the true proportion of cases due to community transmission if

some community transmission events involved the same strain

that infected a household index case.

One of the challenges in TB epidemiology is the long time

scales of transmission, infection, and disease during which other

factors such as disease prevalence or household composition

may have changed. The methods presented here, like other

techniques for quantifying TB epidemiology (such as [15]),

therefore result in parameter estimates that represent averages
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Figure 2. Comparison between data and models for households with 2–7 adults. Point estimates for B and Q were taken as median values from
posterior densities. Num., number of; Prop., proportion.
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over the time period of the analysis. In Peru, the estimated

incidence of all forms of TB has fallen by �60% since 1990 [2];

this decreasing incidence is expected to result in decreases in the

risk of community-acquired disease. By restricting the time

period of the analysis, we observed a decrease in both the risk of

community- and household-acquired disease, as well as a small

decrease in the percentage of cases resulting from community

transmission, from 70% to 65%. We note that the percentage of

community-acquired cases may also have been overestimated if

household members with active TB died before the study.

The elevated risk of TB disease in household contacts of index

cases did not scale proportionately with the number of cases in

the household. This is consistent with the idea that previous TB

exposure provides some protection against future disease with

rechallenge [30–32]. By using residence with a single case as

a unit of exposure, we were able to estimate the degree of

protection afforded by a previous exposure. In future studies,

additionally collecting the infection status of household mem-

bers would allow more detailed conclusions about the role of

latent infection in the development of disease. Our estimate of

35% protection is lower than that of Sutherland and colleagues,

who used trends in population level estimates of infection and

disease in the Netherlands to estimate that previous exposure

afforded 65% protection [30, 31], but our results are consistent

with data from England and Wales in the early part of the 20th

century [32]. Similarly, the incidence rate of disease in in-

dividuals who had positive skin test results at baseline in the

control arm of a BCG vaccine trial suggested a 50% protective

effect associated with infection [33, 34]. The reduced protection

found in our study might reflect a biologic difference due to

multiple reinfections in this high-burden area, or the difference

between protective immunity conferred by exposure to drug-

Figure 3. Posterior probability densities for household and community disease parameters. A, Marginal posterior densities for probabilities of
community-acquired disease (solid line), ð12BÞ, and household-acquired disease (dashed line), ð12QÞ. B, Joint posterior density for household and
community transmission. Vertical axis indicates probability of observing a particular combination of household ð12QÞ and community ð12BÞ
transmission. Color of the surface indicates the percentage of nonindex cases in a household that are due to community transmission, rather than
household transmission, for each parameter combination; darker colors indicate majority household transmission, and lighter colors, majority community
transmission. Both figure parts were produced using 2 million samples for the posterior density.

Table 1. Number of Subsequent Cases After the First m Cases in the Data and in the Baseline and Restricted Models

Preexisting cases

in household, no.

Subsequent

cases, no.

Subsequent cases in baseline

model, expected no.

Subsequent cases in restricted

model, expected no. Protective effect

1 704 705.04 705.04 0

2 333 339.88 330.12 .03

3 155 170.79 156.96 .08

4 75 74.46 64.89 .17

5 30 46.09 32.10 .32

6 12 19.44 13.23 .35

NOTE. The baseline model assumption was that the probability of disease was independent of number of previous exposures; in the restricted model, the

probability of disease was allowed to vary with the number of previous exposures. The protective effect of m exposures was calculated by comparing the baseline

and restricted models.
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sensitive and drug-resistant disease. Observed a saturation effect

in the number of cases per household, suggesting that even with

high levels of exposure some individuals do not develop disease.

We propose that these types of household data may be used to

inform the minimum duration that household contacts should be

monitored and actively assessed for disease after the discovery of

an infectious household case. We estimated a median time be-

tween diagnoses within households of 3.5 years, although the wide

variance in time between successive cases indicates that secondary

cases may occur many years after the primary case. This estimate

lies on the upper end of population-wide estimates of 1–7 years

calculated by Blower et al [35]. The extended tail of our distri-

bution is quantitatively similar to previous estimates from pop-

ulation-level data in Europe [35–37] and South Africa [38] and

reflects a small number of secondary cases occurring decades after

an index case. In these situations, molecular fingerprinting can

distinguish between reinfection and reactivation.

The model used in this study necessitated a number of sim-

plifying assumptions. First, we modeled the transmission pro-

cess as if it began with the first case of active disease in the

household. In reality, household contacts may have had a prior

infection from community exposure that provided some

immunity to infection from their household contact. This

assumption may alter our estimate of within household

transmission by overestimating the impact of the first case, al-

though the effect of this assumption is reduced if there is

widespread and uniform exposure in the community. The effect

of immunity was estimated from a ratio of 2 models with the

same assumption, and therefore it should also be robust.

In this analysis, we used the cumulative number of cases

among adults within a household to infer transmission

parameters. We excluded persons ,15 years of age because of

the different natural history of disease in children. A potential

extension of the model could include children to understand the

relative risks faced by children in households with TB cases and

their role in transmission [39]. Additionally, stratifying adults by

age could provide more detailed estimates of community

transmission over time.

We parameterized our model with data from a cohort study of

households living with multidrug-resistant patients. This means

that our estimate of community-acquired disease will not reflect

community prevalence and will be greater than population-wide

estimates. Repeating this type of analysis among household

contacts of patients with drug-sensitive TB would lead to im-

proved estimates of prevalence and an increased understanding

of the mechanisms involved in the development and trans-

mission of drug-resistant strains.
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