Cloning and analysis of the human S13 ribosomal protein cDNA

Corinne Chadéneau, Béatrice LeMoullac and Marc G.Denis*

Department of Medical Biochemistry, INSERM CJF 90-11, Institut de Biologie, 9 Quai Moncousu, F-44035 Nantes, France

Received May 5, 1993; Accepted May 10, 1993

GenBank accession no. L01124

In a hope to isolate genes whose expression was elevated in colon cancer cells, we used a plus/minus screening of a rat colon carcinoma cDNA library. We were thus able to isolate a cDNA clone (B9) encoding the rat S13 ribosomal protein (1). The corresponding mRNA is \sim 30-fold more abundant in the cancer cells than in normal colon, and \sim 50-fold more important in lung metastasis than in normal lung. The expression level of this gene was found to be closely correlated with the growth rate of rat cell lines (1).

Unfortunately, the B9 probe was short, and did not hybridize to RNA prepared from human tissues. In order to obtain longer clones encoding the rat S13 ribosomal protein we first rescreened the PROb cDNA library. A longer insert was then used to screen a cDNA library prepared from the T-84 colonic epithelial cell line constructed in the Uni-ZAP XR vector (Stratagene, La Jolla, CA). Inserts were excised with helper phage R408 to generate subclones in the pBluescript plasmid and sequenced by the dideoxy-chain termination method (2) using T7 DNA polymerase. The final sequences were determined from both strands.

This cDNA contains 548 nucleotides and includes a 5' noncoding sequence of 32 nucleotides, an open reading frame of 456 nucleotides, a 3' noncoding sequence of 60 nucleotides, followed by a 19 bp polyA tail (Figure 1). The presumed polyadenylation signal, AATAAA, is located at bases 509-514. The nucleotide sequence in the coding region differs from the rat S13 ribosomal protein sequence (3) in the first position in 6 codons and in the third position in 52 codons. It encodes a sequence of 151 aminoacids which is identical to the rat protein. This highly conserved primary structure of ribosomal proteins across species has been observed for other ribosomal proteins (4, 5).

Northern blot analysis revealed that the size of the human S13 ribosomal protein mRNA is approximately 600 bp. This probe hybridized to 8-10 genomic DNA fragments, probably representing one (or a few) functional S13 gene and a family of nonfunctional pseudogenes, as it has been shown for many other ribosomal protein genes (6, 7).

ACKNOWLEDGEMENTS

This work was supported by grant 415-92 from the Association pour la Recherche contre le Cancer. C.C. is recipient of a research fellowship from the Ligue Nationale Française contre le Cancer.

REFERENCES

- 1. Denis, M.G., Chadeneau, C., LeMoullac, B., LeMevel, B., Meflah, K. and Lustenberger, P. *Int. J. Cancer* submitted.
- Sanger, F., Niklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74 5463-5467.
- Suzuki, K., Olvera, J. and Wool, I.G. (1990) Biochem. Biophys. Res. Commun. 171 519-524.
- 4. Wool, I.G. (1979) Annu. Rev. Biochem. 48 755-782.
- 5. Zaman, G.J.R. (1993) Nucleic Acids Res. 21 1673.
- Batra, S.K., Metzgar, R.S. and Hollingsworth, M.A. (1991) J. Biol. Chem. 266 6830 – 6833.
- Suzuki,K., Olvera,J. and Wool,I.G. (1991) J. Biol. Chem. 266 20007-20010.

hS13								ссто	יייר כי	ኮጥጥር	ድምጥር (тсте	ATCGO	cece	CATC
rS13		CGCTCTCCTTTCGTTGCCTGATCGCCGCCATC -TCT-C-TAC-T													
hS13	ATG	GGT	CGC	ATG	CAT	GCT	CCC	GGG	AAG	GGC	CTG	TCC	CAG	TCG	GCT
rS13															
	Met	Gly	Arg	Met	His	Ala	Pro	Gly	Lys	Gly	Leu	Ser	Gln	Ser	Ala
hS13	TTA	ccc	TAT	CGA	CGC	AGC	GTC	ccc	ACT	TGG	TTG	AAG	TTG	ACA	TCT
rS13	C-G		c	C	T		G		G		C			G	
	Leu	Pro	Tyr	Arg	Arg	Ser	Val	Pro	Thr	Trp	Leu	Lys	Leu	Thr	Ser
hS13	GAC	GAC	GTG	AAG	GAG	CAG	ATT	TAC	AAA	CTG	GCC	AAG	AAG	GGC	CTT
rS13					A	A			G	T			A		G
	Asp	Asp	Val	Lys	Glu	Gln	Ile	Tyr	Lys	Leu	Ala	Lys	Lys	Gly	Leu
hS13	ACT	ССТ	TCA	CAG	ATC	GGT	GTA	ATC	CTG	AGA	GAT	TCA	CAT	GGT	GTT
rS13			c		A		G	T		G	c				G
	Thr	Pro	Ser	Gln	Ile	Gly	Val	Ile	Leu	Arg	Asp	Ser	His	Gly	Val
hS13	GCA	CAA	GTA	ССТ	ттт	GTG	ACA	GGC	аат	AAA	АТТ	тта	AGA	АТТ	СТТ
rS13															
	Ala	Gln	Val	Arg	Phe	Val	Thr	Gly	Asn	Lys	Ile	Leu	Arg	Ile	Leu
hS13	AAG	тст	AAG	GGA	СТТ	GCT	ССТ	GAT	СТТ	ССТ	GAA	GAT	СТС	TAC	CAT
rS13															
	Lys	Ser	Lys	Gly	Leu	Ala	Pro	Asp	Leu	Pro	Glu	Asp	Leu	Tyr	His
hS13	тта	АТТ	AAG	222	GCA	СТТ	ССТ	СТТ	CGA	AAG	САТ	СТТ	GAG	AGG	AAC
rS13	G	c						c	A		c				
	Leu	Ile	Lys	Lys	Ala	Val	Ala	Val	Arg	Lys	His	Leu	Glu	Arg	Asn
hS13	AGA	AAG	GAT	AAG	GAT	CCT	444	ጥጥር	ССТ	СТС	атт	СТА	ATA	GAG	AGC
rS13		A							c				T		
	Arg	Lys	Asp	Lys	Asp	Ala	Lys	Phe	Arg	Leu	Ile	Leu	Ile	Glu	Ser
hS13	CGG	ATT	CAC	CGT	TTG	GCT	CGA	TAT	TAT	AAG	ACC	AAG	CGA	GTC	CTC
hS13 rS13	A-A			G	c			c			T		G	G	
	Arg	Ile	His	Arg	Leu	Ala	Arg	Tyr	Tyr	Lys	Thr	Lys	Arg	Val	Leu
hS13	ССТ	ccc	AAT	TGG	AAA	TAT	GAA	TCA	TCT	ACA	GCC	TCT	GCC	CTG	GTC
rS13	A		c				G		c				T		G
	Pro	Pro	Asn	Trp	Lys	Tyr	Glu	Ser	Ser	Thr	Ala	Ser	Ala	Leu	Val
hS13	GCA	TAA	ATTT	STCT	STGT	ACTC	AAGC	ATA	AAAT	GATT	STTT	AACG!	Γ(A),		
rS13			GC	rgt-	-c	A				C-C-	r-GA	GTAA	Α	•	
	Ala														

Figure 1. Comparison between the cDNA sequences of human and rat S13 ribosomal protein. The top lane indicates the determined sequence of the cDNA coding for the human S13 ribosomal protein. The second lane indicates positions at which the nucleotide sequence of the rat cDNA differs. The third lane indicates the amino-acid sequence. The probable polyadenylation signal is underlined.

^{*} To whom correspondence should be addressed