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Abstract

Introduction: Multi-marker molecular assays have impacted management of early stage breast cancer, facilitating
adjuvant chemotherapy decisions. We generated prognostic models that incorporate protein-based molecular
markers and clinico-pathological variables to improve survival prediction.

Methods: We used a quantitative immunofluorescence method to study protein expression of 14 markers
included in the Oncotype DX™ assay on a 638 breast cancer patient cohort with 15-year follow-up. We performed
cross-validation analyses to assess performance of multivariate Cox models consisting of these markers and
standard clinico-pathological covariates, using an average time-dependent Area Under the Receiver Operating
Characteristic curves and compared it to nested Cox models obtained by robust backward selection procedures.

Results: A prognostic index derived from of a multivariate Cox regression model incorporating molecular and
clinico-pathological covariates (nodal status, tumor size, nuclear grade, and age) is superior to models based on
molecular studies alone or clinico-pathological covariates alone. Performance of this composite model can be
further improved using feature selection techniques to prune variables. When stratifying patients by Nottingham
Prognostic Index (NPI), the most prognostic markers in high and low NPI groups differed. Similarly, for the node-
negative, hormone receptor-positive sub-population, we derived a compact model with three clinico-pathological

variables and two protein markers that was superior to the full model.

Conclusions: Prognostic models that include both molecular and clinico-pathological covariates can be more
accurate than models based on either set of features alone. Furthermore, feature selection can decrease the
number of molecular variables needed to predict outcome, potentially resulting in less expensive assays.

Introduction

Adjuvant systemic therapy for patients with breast can-
cer includes chemotherapy, anti-hormonal therapy and
molecular targeted therapy. Selection of anti-hormonal
and molecular targeted therapy is based on biological
factors of individual tumors (presence/absence of hor-
mone receptors and amplification/over-expression of
human epidermal growth factor receptor (HER) 2). The
decision whether to give chemotherapy and specifics of
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the chemotherapy regimens used are typically based on
standard clinical and pathologic criteria (primarily
tumor grade, tumor size, nodal involvement, patient
age), in addition to receptor status. Given the variability
in outcome in each risk category, much effort has been
made to improve risk assessment strategies [1].

Assays that provide prognostic information to early
stage breast cancer patients to eliminate unnecessary
use of chemotherapy have been developed and validated.
Among the breast cancer multi-marker predictors, two
are fully commercialized; the RT-PCR-based Oncotype
DX™ assay (Genomic Health, Redwood City, CA, USA)
[2-6] and the 70-gene microarray based MammaPrint
assay [7,8] (Agendia BV, Amsterdam, The Netherlands).
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The RT-PCR-based Oncotype DX™ assay is the most
widely used in the USA. It has been validated in several
studies, was recently endorsed by the American Society
of Clinical Oncology (ASCO), and its cost is covered by
third party payers, including Medicaid and Medicare.
Samples are sent to a centralized location at Genomic
Health for testing at a current cost of $3,460 per sample.

The Oncotype assay uses mRNA extracted from paraf-
fin-embedded tumors to measure levels of 16 markers
[9]. It has been validated in different cohorts [1]. Our
purpose was to evaluate incorporation of standard clin-
ico-pathological variables into models that include the
Oncotype markers. To obtain a simplified protein-based
assay, we employed a method of automated, quantitative
analysis (AQUA) for these studies. This method has
been used and validated in numerous prior breast can-
cer studies [10-12]. We derived models that were super-
ior in outcome prediction to morphology alone or
marker expression alone.

Materials and methods

Tissue microarray construction

Breast cancer tissue microarrays (TMAs) were con-
structed as previously described [13]. A cohort of 319
sequentially collected node-negative specimens and a
separate cohort of 319 sequentially collected specimens
from node-positive breast cancer patients from the Yale
Department of Pathology Archives were cored. Speci-
mens and clinical information were collected with Insti-
tutional Review Board approval.

By standard immunohistochemistry (IHC), estrogen
receptor (ER) was positive in 52%, progesterone receptor
(PR) in 46% and HER2 in 14% of specimens. Of those
sampled, 26% were nuclear grade 3/3, 48% were nuclear
grade 2/3, 18% were nuclear grade 1/3 and for 8% of
the specimens nuclear grade score was missing. The
mean tumor size was 2.9 cm and 59% were larger than
2 cm. A total of 72% were invasive ductal carcinoma,
14% were lobular carcinoma, and 14% had mixed or
other histology. Specimens were resected between 1962
and 1983, and follow-up was between 4 months and 53
years (mean 12.6 years). Age at diagnosis was 24 to 88
years (mean 58 years).

Complete treatment history was not available for all
patients. Most were treated with local irradiation. Node-
negative patients were not given adjuvant systemic ther-
apy. A minority of node-positive patients (about 15%)
received chemotherapy, and about 5.6% received tamoxi-
fen (ER-positive, post-menopausal, after 1978).

Immunofluorescent staining

Staining was performed for AQUA analysis as previously
described [10]. Primary antibodies are detailed in Table 1.
All antibodies were carefully validated, as described
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Table 1 Primary antibodies and the company that

supplied them

Protein (species)

Company

BCL2 (mouse)
BAG1 (mouse)
BIRCS5 (rabbit)
MKI67 (mouse)
CD68 (Cd68)
MYBL2 (rabbit)
MMP11 (mouse)
GRB7 (GRB7 rabbit)
AURKA (rabbit)
GSTM1 (mouse)
CCNB1 (mouse)
CTSL2 (mouse)
ESRT (mouse)
PGR (mouse)

Dako, Carpinteria, CA, USA

Chemicon, Millipore, Billerica, MA, USA
Novos Biological, Littleton, CO, USA
BD pharmingen, San Jose, CA, USA
GeneTex, Irvine, CA, USA

GeneTex, Irvine, CA, USA

Chemicon, Millipore, Billerica, MA, USA
Santa Cruz, Santa Cruz, CA, USA

Cell signaling,Danvers, MA, USA
Novus Biologicals, Littleton, CO, USA
Novus Biologicals, Littleton, CO, USA
R&D, Minneapolis, MN, USA

Dako, Carpinteria, CA, USA

Dako, Carpinteria, CA, USA

ERBB2 (rabbit) Dako, Carpinteria, CA, USA

previously [14-16]. Goat anti-mouse (or anti-rabbit) horse-
radish peroxidase-decorated polymer backbone (Envision;
Dako, Carpinteria, CA, USA) was used as a secondary
reagent, and Cy5-tyramide (Perkin Elmer Life Science,
Waltham, MA, USA) was used to visualize the target.
Anti-cytokeratin antibodies conjugated to Alexa-488 were
used to create a tumor mask, to distinguish malignant
cells from stroma. Nuclei were visualized using 4’,6-diami-
dino-2-phenylindole. Staining of representative histospots
for ER, PR and HER?2 have been published elsewhere [17].
Staining for ER and PR was uniformly nuclear, and stain-
ing for HER2 was uniformly membranous, as seen with
routine IHC.

Automated image acquisition and analysis

Images were acquired for AQUA, as extensively
described previously [13]. Briefly, multiple monochro-
matic, high-resolution (1,024 x 1,024 pixels, 0.5 pm)
grayscale images were obtained for each histospot, using
the 10x objective of an Olympus AX-51 epifluorescence
microscope (Olympus, Center Valley, PA, USA) with an
automated microscope stage and digital image-acquisi-
tion driven by custom program and macro-based inter-
faces with IPLabs software (Scanalytics Inc., Fairfax, VA,
USA). Images were analyzed using algorithms that have
been previously described [10]. Data were expressed as
the average signal intensity per unit area of tumor mask
on a scale of 0 to 255.

Statistical analysis

We measured protein levels of 14 of the 16 oncotype
markers. Strong correlations were found between ER,
PR and HER2 scores generated by pathologist IHC-
based scoring. The significance for the Spearman
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correlations for ER, PR and HER2 are P < 10°° for all
three variables, (P = 0.7264, 0.6353 and 0.7148, respec-
tively). As pathologic values for ER, PR and HER2 by
IHC are typically readily available at the time of initial
diagnosis of breast cancer at no additional cost, the
results described in this paper use the pathologist scores
only. We constructed multivariate Cox proportional
hazards models to analyze this set of protein markers in
addition to standard clinical markers, which included
ER, PR and HER2 obtained using standard IHC.
We derived models predictive of 15-year breast cancer-
specific survival. We performed these analyses for three
different marker sets: the set of 14 markers, where the
levels of ER, PR and HER2 were obtained using standard
IHC and other markers by AQUA; the combination of
these 14 protein markers (11 measured by AQUA and
ER, PR and HER2 by IHC) with the remaining four clin-
ico-pathological variables - nodal status, tumor size,
nuclear grade, and age; and the seven clinico-pathologi-
cal variables - nodal status, tumor size, nuclear grade,
age, ER, PR and HER2. We binarized patient age at
50 years.

The AQUA scores and IHC variables were not nor-
mally distributed, as expected. For example, HER2 IHC
scores were predominantly negative, and the AQUA
scores for the HER2 adaptor protein GRB7 were predo-
minantly low. This is consistent with what is known
about the biology of these markers, and we therefore
used the raw average of scores for all markers.

Incorporation of the Nottingham Prognostic Index

The number of cases (with no missing AQUA values) in
the standard, clinically-used low, intermediate and high
Nottingham Prognostic Index (NPI) groups of our
cohort is 124, 265, and 120, respectively. To increase
sample size we split the cohort binarizing patients by an
NPI of 4.4. We performed Cox proportional hazards
analyses on these two subpopulations using the 18 pro-
tein and clinico-pathological variables.

Nested cross-validation for model selection and model
assessment

To accomplish model size reduction via feature selection
and assess performance of models in an unbiased fash-
ion, we employed a nested cross-validation procedure
[18-20]. Specifically, we performed 100 times 10-fold
cross-validation for model validation, using a nested
10-fold cross-validation procedure for feature and model
selection. A pseudocode is provided in Table 2.

Partitioning of data for nested cross-validation

To prevent overfitting, we effectively partitioned the
data into three: a feature extraction training subset
(inner training set); a model size selection and variable
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stability evaluation subset (inner testing set); and an
outer test set for performance estimation of models
trained on the outer training set, which comprised the
inner training and testing sets. Specifically, we parti-
tioned the data into 10 non-overlapping, balanced sub-
sets of cases (outer folds). Following a standard n-fold
cross-validation approach, each fold was used once as
the outer testing set where the remaining folds were
used as the outer training set. Similarly, at each iteration
of the outer 10-fold cross-validation we partitioned the
data of the outer training folds (90% of the overall data)
into 10 folds to be used in an inner 10-fold cross valida-
tion loop.

Variable and model size selection

We used the inner training set to train reduced nested
Cox models with decreasing numbers of variables from
n-1 variables to one variable. These nested models were
determined by a backward feature elimination procedure
that iteratively removed variables with the smallest con-
tribution to the model likelihood. We then used the
inner test fold to compute the inner performance score
for each of the nested models trained on the inner train-
ing folds and selected the reduced model with the high-
est score. The performance score of these Cox models
was evaluated using the area under the staircase receiver
operator characteristic curves (AUCROC) at the time of
each event in the testing set and we averaged these
AUCROC:s across all these events. We refer to this mea-
sure as the average time-dependent AUCROCSs across
all death events. The average time-dependent AUCROC
measure is a variant of the weighted average of time-
dependent ROC curve approaches [21-23]. We compute
the AUCROC from the staircase ROC curve to avoid
overestimation associated with convex hull or trapezoi-
dal interpolation procedures.

Each iteration of the inner 10-fold cross-validation
returns one reduced model. We used these 10 reduced
models to compute the expected model size. The
expected model size is the weighted average of the size of
these models using as weights their respective inner aver-
age time-dependent AUCROC:. Similarly, the stability of
each variable was determined as the fraction of reduced
models containing the variable; to take performance into
account we defined an alternative variable stability score
by summing the average time-dependent AUCROCs of
the reduced models that include the variable.

Model selection and validation

For each iteration of the outer 10-fold cross-validation
we used the outer training set to train: a reduced Cox
model consisting of the expected model size number of
variables with the largest variable stability score; and a
full Cox model comprising all variables. Finally, the full



Parisi et al. Breast Cancer Research 2010, 12:R66
http://breast-cancer-research.com/content/12/5/R66

Page 4 of 11

Table 2 Pseudocode of nested cross-validation for model selection and model assessment

Repeat 100 times:

Divide the data into 10 outer folds
Repeat 10 times:

Keep 1 outer fold for testing

Select the remaining 9 outer folds for training
Divide the 9 outer training folds into 10 inner folds
Repeat 10 times:

Keep 1 inner fold for testing

Select the remaining 9 inner folds for training
Move all variables into the list of available variables
Create an empty list of nested model variables

[terate this backward selection procedure until only 1 variable is left in the list of available variables:

Train Cox models on the inner training set. Each Cox model contains all available variables except of 1 variable at a time

Select the variable that contributes the least to the model likelihood

Move the selected variable from the list of available variables to the top of the list of nested model variables

Move the last available variable to the top of the list of nested model variables

[terate over the list of nested variables:

Train the Cox model containing the present variable and the variables above it in the list of nested variables using the inner training set.

Evaluate the average time-dependent area under the receiver operating characteristic curve (ATD-AUCROCQ) h of the present Cox model

using the 1 inner testing fold.

Record the variable usage U in the present Cox model and the size n of the model. Ux(vy,) = 1 if vy, is in model X, O otherwise.

Estimate:
- the expected model size <n> = Zy(hy ny)/Zx(hy)

- the (inner) variable stability score for each variable vy,: <vin> = Zx(hy Ux(Vin))/Zx(hy)

Train the Cox model containing the most stable <n> variables using the outer training set.
Evaluate the ATD-AUCROC k of the present Cox model using the 1 outer testing fold.
Record the variable usage T in the present Cox model and the size s of the model.

Tx(Vm) = 1 if vy, is in model X, 0 otherwise.

and reduced models are assessed both on the outer train-
ing and testing sets (training and testing performances
are shown in red and black respectively in Figure 1).

Statistical comparison of models

To compare the distributions of Cox model average
time-dependent AUCROCs of the 100 times 10-fold
cross-validation (e.g. full or reduced models) we applied
two-sided Mann-Whitney U-tests.

Results

Risk of death models that incorporate both protein
markers and clinical/pathological variables

We employed a method of quantitative immunofluores-
cence to derive multivariate Cox proportional hazards

models for 15-year survival. We had a total of 18 vari-
ables; 14 protein markers from the Oncotype panel
(SCUBE2 and CTSL2 were omitted due to a lack of
commercially available, technically reproducible antibo-
dies for immunofluorescent staining of paraffin-
embedded specimens) and four clinico-pathological
markers. ER, PR and HER2 were assessed by IHC. Many
of these variables were univariately prognostic as shown
in Table 3. We assessed the prognostic ability of this
model and other models presented below by average
time-dependent AUCROC. The mean cross-validated
average time-dependent AUCROC of this 18-covariate
model is 0.746 at 15 years. We compared this 18-covari-
ate model with a 14-covariate Cox proportional hazards
model consisting of the same protein markers (including
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Figure 1 Performance, model size distribution and variable stability of reduced models for predicting 15-year breast cancer-specific
survival. Upper row: The average time-dependent area under the receiver operator characteristic curve (ATD-AUCROC) performances of the full
Cox models (FM) and reduced models (RM) derived utilizing 14 of the proteins included in the Oncotype DX assay (left column), the 18-variable
full model that incorporates these 14 markers with four additional clinico-pathological variables (middle column) and seven standard clinico-
pathological variables (right column) are denoted by circles. The corresponding performances on the training sets are denoted by plus signs.
Error bars span + 1 standard deviation from the average performance of the models. Combining protein plus clinico-pathological variables
improved model performance, and variable reduction shown in the reduced models resulted in further improvement. Middle row: The sizes of
the 15-year survival reduced Cox models were derived from the expected model size distributions. Bottom row: The variables incorporated in
these reduced models were chosen according to their stability (frequency) in the nested cross-validation procedure. Distribution of model sizes
and frequency-based stability were derived from the reduced models trained on the outer training set. For example, the average size distribution
of the reduced models derived from the protein only variables (left column) is four, and thus the final reduced model includes AURKA, BCL2,
CD68 and MYBL2. ER, estrogen receptor; HER, human epidermal growth factor receptor; PR, progesterone receptor.
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Table 3 Univariate analysis for each of the 18 markers
included in the full model of Figure 1

Variable 95% ClI P value
[Pathology]

Tumor size 1.064 1.200 0.0003
Age <50 years 0.959 2.075 0.0719
Nuclear grade 1.017 1.676 0.0353
Nodal status 1717 3456 23 x 107
ER (IHO) 0.709 0.926 0.0017
PR (IHO) 0.751 0.986 0.0281
HER2 (IHO) 1.018 1.379 0.0337
[AQUA]

AURKA 1.008 1.019 0.0001
BAGI1 0.986 1.008 0.5826
BCL2 0.988 0.999 0.0084
BIRC5 0.999 1.023 0.0642
CCNB1 0.968 1.060 0.5854
CD68 0.975 1.017 0.6866
GRB7 1.006 1.019 0.0008
GSTM1 0.996 1.030 0.1412
Ki67 0.994 1.041 0.1722
MMP11 0.996 1.018 0.2349
MYBL2 0.984 1.016 0.9950

For each marker a univariate Cox proportional hazards model is fit to the data
using the entire cohort. The 95% confidence interval (Cl) is shown together
with the log-likelihood test P value. Estrogen receptor (ER), progesterone
receptor (PR) and human epidermal growth factor receptor (HER) 2 were
measured by immunohistochemistry (IHC).

ER, PR and HER2), but excluding nodal status, size,
nuclear grade and patient age. The average time-depen-
dent AUCROC of this protein-based model is 0.627.
The mean of the distribution of average time-dependent
AUCROC:s of the 18-covariate models obtained by 100
10-fold cross-validations is significantly higher than the
corresponding distribution mean of the 14-covariate
protein-based model (P < 107'°). The performances of
the full models are shown in Figure 1, upper row (FMs).
We then derived a Cox proportional hazards model
with the seven standard clinico-pathological variables
only (ER, PR and HER2 by IHC, plus nodal status, size,
grade and age). The mean average time-dependent
AUCROC of the seven-covariate clinico-pathological
model is 0.712. This is significantly lower than the mean
of the composite 18-covariate model (P < 10™°) and sig-
nificantly higher than the mean of the 14-covariate pro-
tein model (P < 10719).

Variable reduction

We sought to simplify the three models (proteins with
clinico-pathological and either group alone). We
employed stability-based backward feature selection
(described above) to derive compact Cox proportional
hazards models nested within each of these three
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models. The cross-validated performances of the
18-variable (protein and clinico-pathological) full models
and reduced models selected from these 18-variables
were assessed by the average time-dependent AUCROC
measure, denoted by circles (upper row, Figure 1). The
corresponding performances of the training sets are
denoted by plus signs.

Application of the robust backward feature selection
described above eliminated on average eight of the least
robust features. The reduced models selected were
assessed employing the average time-dependent
AUCROC score to the external validation sets. The
mean average time-dependent AUCROC distribution of
these reduced models is 0.757, significantly higher than
the corresponding distribution of the 18-variable full
models (P = 0.0021606, Mann-Whitney U-test). The
nested cross-validated procedure culminates in a final
model that excludes BAG1, PR, GRB7, ER, BIRCS5,
nuclear grade, MMP11 and KI67. The variables retained
in this model include the 10 variables with highest stabi-
lity score (bottom row, middle column, Figure 1).
Furthermore, the average time-dependent AUCROC
score distribution of reduced models derived from the
18 clinico-pathological and protein variables, is signifi-
cantly higher than the corresponding distribution of
reduced models derived from clinico-pathological vari-
ables alone (P < 107'°).

We similarly analyzed the same 14 proteins, but
excluded the clinico-pathological variables (nodal status,
tumor size, age, nuclear grade). The average size of the
15-year survival Cox proportional hazards model (mid-
dle row, left column, Figure 1) indicates that for an
assay based on these protein covariates, it is optimal to
keep only the four most robust variables, AURKA,
BCL2, CD68 and MYBL2, in a simplified survival model.
The average time-dependent AUCROC of these reduced
models is 0.651, significantly higher than the corre-
sponding average of the full models (P = 7.32 x 107°).
The reduced protein-based models, although superior to
the full protein-models, significantly underperform with
respect to the combined protein and clinico-pathological
models. These protein-only models also underperform
relative to models based on standard clinico-pathological
variables alone (average time-dependent AUCROC =
0.711) and its nested reduced models (average time-
dependent AUCROC = 0.713), right column, Figure 1.

Prognosis for low and high NPI populations

We next sought to determine whether in each NPI cate-
gory the panel of 18 markers can be reduced and
whether sets of survival predictors for different NPI sub-
populations vary. The number of cases with no missing
values in the low, intermediate and high NPI groups
was 124, 265, and 120, respectively. Due to the small
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sample size of the low and high NPI groups, we did not
use the standard NPI cut-points of 3.4 and 5.4, but
binarized the population at the midpoint of this NPI
range (4.4). We applied robust backward elimination for
lower and higher NPI groups (Figures 2a and 2b, respec-
tively). Simplification of the models results in higher
assessment scores in both groups and an expected
model size of 7 and 11 variables, respectively. The dif-
ference between the means of the average time-depen-
dent AUCROC distributions of full models (0.625) and
reduced models (0.675) in the lower NPI group reached
significance (P < 107'%). These distributions are indistin-
guishable in the higher NPI group (P = 0.49). Some
markers such as CCNB1, KI67 and MYBL2 are not
included in the lower NPI reduced model but are pre-
sent in the reduced model of the higher NPI group.
This indicates that one could tailor simpler/cheaper
multi-protein predictors to populations stratified by
clinico-pathological variables.

Prognosis for node-negative, hormone receptor-positive
population

We questioned whether we can compress the full 18-
variable model for the subpopulation of node(-), hor-
mone receptor (+) breast cancers, as many of these
patients in the USA are tested using the Oncotype DX™
screen. The full model in this case consists of 17 vari-
ables, because the nodal status variable is fixed, but ER
and PR variables are either positive or negative, as long
as at least one of the two hormone receptors is positive.
Applying robust backward selection in a nested cross-
validated fashion resulted in a highly compact model
consisting of five variables: AURKA, tumor size, HER2,
CD68 and nuclear grade (Figure 3). The mean of the
average time-dependent AUCROC distribution (0.71) is
significantly higher than the mean of the full 17-variable
model (0.63, P < 10'°). The full and reduced models of
the clinico-pathological variables alone applied to this
sub-population held inferior performances (Figure 3,
right column).

Discussion

We measured protein expression levels of 14 of the 16
oncotype markers in primary tumors from 638 breast
cancer patients with 15-year follow-up, using AQUA.
This method has now been well established and is used
by many laboratories [24-32]. Measurements can be
conducted on whole specimens or TMAs. Many of the
oncotype markers were independently prognostic
[14-16]. We assessed the added value of each oncotype
marker in combination with standard clinical and patho-
logical variables, including ER, PR and HER2 evaluated
by eye using routine IHC. Our studies indicate that a
multivariable survival model including both molecular
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markers and standard clinical/pathological markers is
significantly superior to a model based on either group
of variables alone. Moreover, with judicious subset selec-
tion of the combined set of clinico-pathologic variables
and oncotype markers, we derived a more compact test
with better cross-validated prognostic value. We also
showed that when splitting the patient cohort into two
groups of NPI of 4.4 or less and more than 4.4, we
obtain different marker subsets in these groups. Finally,
we showed that for the node-negative, hormone recep-
tor-positive subpopulation, a compact model consisting
of only three proteins of the panel of 14 (AURKA,
HER2, CD68), tumor size and nuclear grade is superior
to a full model consisting of these 14 variables with the
additional standard clinico-pathological variables.

Optimal staging of breast cancer patients is primarily
necessary for identifying individuals in need of adjuvant
chemotherapy. The seven clinico-pathological variables
included in our model are typically readily available on all
patients, and can be incorporated into molecular assays at
no additional cost. The performance of our reduced
nested models converges at a value close to 0.757 if we
include both molecular and clinico-pathological covariates
and drops to 0.651 if we exclude the clinico-pathological
variables. Oncotype assays by RT-PCR of the 16 molecular
variables in other patient cohorts are reportedly associated
with AUCROC: in the same range. For example, using the
oncotype RS, Goldstein et al. found that for recurrence at
five-years, ROC analysis results in an AUCROC of 0.69
[33]. Direct comparisons between oncotype results and
our findings are not possible given the differences in
patient cohorts, treatment patterns, available clinical end-
points and differences in model evaluation methods. For
example, the oncotype assay was developed for a hormone
receptor-positive population treated with tamoxifen and
progression-free survival was the primary endpoint. The
primary endpoint in our studies was overall survival and
the cohort included hormone receptor positive and nega-
tive patients. Our purpose was not to conduct a head to
head comparison of our method to the oncotype method,
and it is unclear how the protein-based AQUA scores
relate to the RT-PCR measures of mRNA obtained by
oncotype. However, our work further validates the use of
oncotype markers by confirming their prognostic value by
studying them at the protein level using different technol-
ogy. A limitation of this study is that we were unable to
obtain a cohort in which the Oncotype Dx test was per-
formed to facilitate head to head comparison, and further
validation of our protein-based models in an independent
cohort is warranted.

The performance of our reduced models suggests that
we can considerably simplify our original models of 18
variables. The expected model size with the highest
performance level consists of 10 of the most robust
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Figure 2 Performance, model size distribution and variable stability of reduced models as described in Figure 1 for lower NPI and
higher NPI risk groups. Left column: Patients with an Nottingham Prognostic Index (NPI) of more than 4.4. Right column: NPI of 4.4 or less.
The final reduced model (RM) for the lower NPI group consists of 7 variables, whereas the final reduced model for the higher NPI group consists
of 11 partially overlapping variables. For example, CCNB1 is one of the most robust variables in the higher NPI group, but is the least robust
variable in the lower NPI group. ATD-AUCROC, average time-dependent area under the receiver operator characteristic curve; ER, estrogen
receptor; FM, full models; HER, human epidermal growth factor receptor; PR, progesterone receptor.
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predictive variables and is comprised of four clinico-
pathological variables and six additional proteins: nodal
status, tumor size, AURKA, BCL2, age, CD68, HER2,
MYBL2, CCNB1 and GSTM1. Thus, use of a smaller
subset of variables can further decrease the cost of
molecular testing.

Further extension of this approach by sub-setting the
cohort into low- and high-risk groups using an NPI
score of 4.4, which is readily available after standard sur-
gery at no additional cost, revealed that the marker sub-
set with optimal performance in the lower NPI group
was different than the subset in the higher NPI group.
The seven variables in the reduced model for the lower
NPI overlap only in part with the 11 variables in the
reduced model of the higher NPI group. The reduced
model of the node(-) and hormone receptor (+) subpo-
pulation consists of only five variables, of which three
are proteins (AURKA, HER2, CD68).

Conclusions

In our cohort, addition of clinico-pathological variables
to the proteins associated with quantitative RT-PCR
Oncotype test added significant prognostic value to the
proteins alone. A compact model based on a subset of
these proteins and clinical variables is superior to the
entire model. Marker subsets with the highest prognos-
tic ability in high- and low-risk NPI categories are not
identical, therefore personalization of this type of assay
based on readily available clinico-pathological variables
can result in cost reduction without compromising
accuracy.
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