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Structured abstract
Purpose of review—To discuss recent HIV epidemic models examining the transmission of
antiretroviral (ARV) drug resistance.

Recent findings—A relatively small number of recent transmission models have investigated
ARV resistance in the context of therapeutic, combined ART (cART); ARV-vaginal microbicides
(ARV-VMB); and oral pre-exposure prophylaxis (PrEP). Models of cART use have highlighted
potential concerns about future resistance transmission, particularly in resource-constrained
settings, and have emphasized the benefits of viral load monitoring in limiting resistance spread.
PrEP models have concluded that inadvertent use by HIV-infected individuals could increase
resistance prevalence, and that risk compensation by PrEP users could limit their beneficial effects
on HIV transmission. ARV-VMB models have demonstrated that while resistance can reduce
prophylactic effectiveness in preventing HIV acquisition of female ARV-VMB users, it may
concomitantly benefit users' male partners if the resistant strains that female users acquire are less
transmissible than wild-type strains. The models have examined the balance between these two
factors at the population level.

Summary—Recent HIV transmission models have adopted a wide assortment of structures and
assumptions to explore drug resistance in the context of different ARV interventions in various
settings. There is a need for future work emphasizing the simultaneous effects of multiple ARV
interventions, as well as the public health impact of resistance, not just its prevalence.
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Introduction
As scale-up of combined antiretroviral therapy (cART) in developing countries continues,
more attention is being given to the possible consequences of antiretroviral (ARV) use on
HIV transmission. Of particular interest are rates of drug resistance emergence and
transmission in resource-constrained settings. Acquired (or secondary) resistance may
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emerge within an individual treated with cART due to treatment pressure. The transmission
of such resistant strains to others is referred to as transmitted (or primary) resistance (TDR).

Various mathematical models with different assumptions, parameter values and complexity
levels have been used to try to predict the population-level impact of various forms of ARV
use (1): for therapeutic benefit (cART (2-9)), prevention of mother-to-child transmission
(PMTCT (10)) and pre-exposure prophylaxis (PrEP) (administered either orally (11, 12) or
as topical vaginal microbicides (ARV-VMB) (13, 14)). Early models generally focused on
the public health benefits of ARV interventions, ignoring the risk of resistance emergence
and transmission. More recently, ARV resistance has become a focus in itself (8, 11), as its
potential to jeopardize the scale-up of cART in resource-limited settings with few treatment
options has become of increasing concern (15).

The earliest models of cART focused on men who have sex with men (MSM) and
intravenous drug user populations in industrialized settings (3, 4, 16, 17), generally
predicting high levels of resistance in the long-term (as high as 26%-83% with high
coverage and/or under pessimistic scenarios (4, 16)), at least partly due to relatively early
treatment initiation (the “hit early, hit hard” approach). Later, increased cART usage in
resource-limited settings was paralleled by greater numbers of models predicting its impact
in these regions (2, 18). These models tended to predict relatively low levels of TDR in the
short-term, often due to assumptions that cART coverage would remain low because of
resource constraints and treatment guidelines advising relatively late treatment initiation (2,
18). However, longer-term predictions were more varied due to differences in parameter
assumptions and model structure, such as the infectiousness of resistant strains, how quickly
resistance emerged, and whether resistant strains could revert to wild-type.

This review focuses on recent modeling work involving ARV TDR using population-based
HIV transmission models. We do not cover within-host models (19-21) or linear (Markov,
cohort or decision-analysis) models because they do not explicitly model HIV transmission
(22-25). We also exclude ARV resistance in the context of PMTCT and post-exposure
prophylaxis because, while several cohort models have been published (10, 23, 26, 27), we
know of no published HIV transmission models.

Therapeutic, combination ART (cART)
While resistance has been of concern in high-income countries since the introduction of
cART (4, 16, 17), the large number of treatment options for patients in these settings means
that drug resistance is generally a lesser threat to patients' prognoses. In contrast, the limited
treatment options for cART patients in low-income countries mean that regimens must be
preserved, and therefore resistance is a bigger concern. Additionally, recent modeling work
exploring universal test and treat for HIV prevention (28, 29) raises new questions regarding
cART-related resistance.

cART-based HIV prevention works on the assumption that ARVs decrease HIV
infectiousness by decreasing viral load (29-31). How transmissibility (sometimes described
as “viral fitness”) would change for resistant strains is unclear and challenging to measure.
Recent models have generally assumed that resistant strains are not as infectious as wild-
type (7-9, 11, 14), but it is unclear if this is a reasonable assumption. The extensive literature
on resistance in industrialized countries may not be readily generalizable to resource-poor
settings, where cART usage follows different patterns, absolute numbers on treatment are
generally larger and monitoring is less intense. For modeling wild-type as well as resistant
infectiousness, many models (e.g. (9)) have relied on the relationship between viral load and
infectiousness estimated in Rakai, Uganda (30, 32). However, transmissibility of resistant
strains may not have a predictable association with patients' viral load, and viral fitness may
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change rapidly, as the fast turnover of virus and lack of HIV proof-reading mechanism may
result in compensatory mutations that restore transmissibility over time (33), producing a
“transmissibility spectrum” at the population-level. For present cART coverage levels and
potential future increases, there is a need to examine the extent to which resistance could
undermine a) the effectiveness of cART in delaying HIV disease progression (an assessment
of which is beyond the scope of this article); and b) its use for preventing HIV spread.

Recent cART models incorporating resistance transmission have been of two basic types: a)
theoretical (examining the impact of model structure and assumptions on different resistance
outcomes) (6, 8); and b) setting-specific (7, 9). We briefly describe characteristics of recent
ARV-resistance transmission models in table 1 and summarize key resistance assumptions
of each in Figure 1.

Marks et al conducted a “thought experiment” to explore variabilities in TDR expected due
to stochasticity (chance events) alone (8). They found that stochasticity can produce
substantial variability within an epidemic (i.e. over time) when HIV incidence is low (<200
new infections annually) but this stochastic variability reduces as the number of incident
cases grows. Across epidemics, TDR again showed substantial variability for small but not
large numbers of incident cases if treatment was introduced after endemic equilibrium was
established, but stochastic variation could persist in settings with earlier treatment
introduction even with more than 10,000 incident cases annually. These results suggest that
sound interpretation of temporal trends in TDR prevalence within a given setting require
repeated surveys including hundreds of new infections, and that stochastic models can also
help explain differences in TDR across settings.

Bhunu et al also conducted a theoretical analysis, examining conditions under which wild-
type and resistant HIV strains can co-exist in settings with cART (6). As expected
intuitively, they showed that either or both strains will die out if their respective
reproductive numbers (R0, the average number of infections that each infected individual
transmits to others over their entire infectious lifespan) are less than the threshold value of 1,
and that both strains will co-exist if both reproductive numbers are above 1. They also report
that increasing treatment rates increases the prevalence of both wild-type and resistant HIV
(due to increased life expectancy in treated individuals), but that AIDS cases will decrease.
While this study helps our theoretical understanding, its basic assumptions are markedly
different from other models (Figure 1), making comparisons difficult. For example, Bhunu
et al do not seem to adopt the common assumption that HIV infectiousness decreases with
cART.

A recent model of the HIV epidemic among MSM in San Francisco explicitly modeled
seven strains with single, double or triple class resistance to the three principal ARV classes
(9). The authors calibrated the model to HIV prevalence in 1987 before making future
predictions. Their results suggested that 60% of resistant strains currently circulating can
cause self-sustaining epidemics, presenting a significant challenge to universal test and treat
approaches. In particular, they predicted that NNRTI-resistant strains are likely to increase
in prevalence substantially over the next 5 years, a finding that could have serious
implications for cART in low-income countries, where most first-line regimens have an
NNRTI backbone.

Modeling of the heterosexual HIV epidemic in Thailand involved a simpler resistance
scheme, assuming that a single triple-ARV regimen is the only feasible option for Southeast
Asian heterosexual populations (7). Universal cART access resulted in ∼24% of new
infections being ARV-resistant after 10 years if patients were not monitored for treatment
failure. However, only a minority of treatment-naïve individuals (≤1%) were expected to
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have detectable resistant virus, as it was assumed that transient reversion of resistant strains
(where individuals continue to carry a minority resistant strain in absence of treatment) was
possible for individuals with TDR. This suggests that resistance could remain hidden, only
to re-emerge when the selective pressure of cART is applied. Finally, the authors found that
viral load testing every two years, followed by switches to permanently effective, second-
line therapy among those with virologic failure, reduced prevalence of TDR by more than
50% compared to no testing. The benefits of viral load monitoring increased with more
frequent testing.

Antiretroviral vaginal microbicides (ARV-VMB) and pre-exposure
prophylaxis (PrEP)

Preliminary studies suggesting that PrEP with ARVs could prevent transmission (34, 35)
have been supported by a recent study reporting a 44% reduction in HIV incidence using a
dual ARV drug PrEP regimen (36). However, the population-level impact of resistance due
to PrEP is difficult to predict and concerns have been expressed regarding resistance
emergence among PrEP users with undiagnosed acute HIV infection (37). Inadvertent PrEP/
ARV-VMB use by HIV-positive individuals and the risk of systemic absorption of ARV-
VMB may be key drivers in resistance development. While prophylactic effectiveness
against HIV strains resistant to a particular PrEP drug will be limited, these drug-resistant
strains will likely have reduced fitness relative to wild-type HIV, resulting in lower viral
loads and/or infectiousness (38, 39). That is, the risk of HIV acquisition by PrEP users may
increase in the context of circulating resistance, but the risk of subsequent transmission may
decrease. The net result of drug resistance in the context of PrEP/ARV-VMB interventions
will depend on the balance between these factors.

Topical ARV-VMB
In a recent modeling study of ARV-VMB use, Dimitrov et al (14) analyzed a wide range of
scenarios (related to coverage and speed of scale-up, proportions of HIV-positive women
ceasing ARV-VMB use due to control measures, and risk of systemic ARV absorption)
under various epidemic conditions for developing countries. Assuming rapid roll-out and no
control measures, the median fraction of infections averted (males and females combined)
over 10 years varied between 16-23% and 22-28%, and resistance prevalence varied
between 2%-3% and 17-20% for low- and high-risk (of systemic absorption of ARV-VMB)
products, respectively. Scenarios involving high-risk ARV-VMB and low levels of HIV-
positive females ceasing ARV-VMB use prevented the largest number of new HIV
infections and produced the highest resistance prevalence. Limiting ARV-VMB use by HIV-
positive women drastically reduced resistance levels, by up to 60% in some scenarios.

In comparison, an earlier model by Wilson et al predicted median levels of resistance among
women of 5% and 22% for low-risk and high-risk ARV-VMB respectively and somewhat
lower fractions of new infections prevented over 10 years (median 7% and 8% in females
and males respectively for low-risk ARV-VMB, with corresponding values of 11% and 14%
for high-risk ARV-VMB) (13). Despite these differences, the results of both studies
highlight the importance of establishing surveillance systems for regular management and
monitoring of ARV-VMB users.

Oral Pre-exposure prophylaxis (PrEP)
Two recent modeling studies have examined PrEP-related resistance transmission (11, 12).
A model of HIV transmission among MSM in San Francisco concluded that PrEP
interventions could prevent 20%-75% of new cases over 10 years (depending on PrEP
efficacy and coverage), but that risk compensation could substantially compromise these
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reductions (11). Additionally, the model predicted that TDR prevalence could increase to
levels exceeding 60% if coverage and efficacy are high. Another model focusing on sub-
Saharan Africa (for which only a conference abstract is available) produced rather different
estimates: overall resistance prevalence (transmitted plus acquired) was 40% under low
coverage and efficacy (scenario 1), with substantially lower resistance prevalence (2.5%) at
higher levels of efficacy and coverage (scenario 2) (12). As increasing coverage is expected
to increase resistance, we hypothesize from the limited information provided in the abstract
that their findings of an opposite trend may largely be due to confounding introduced by the
choice of scenarios investigated. More specifically, the fraction of HIV-positive individuals
who inadvertently used PrEP (one of the most important drivers of resistance prevalence in
their study) was set to 25% in scenario 1 and only 5% in scenario 2. Nevertheless, these
apparent discrepancies suggest that further work is needed to understand PrEP-related
resistance in carefully selected scenarios.

Levels of model complexity
The resistance transmission models discussed above exhibit different levels of complexity
(Figure 2). While theoretical papers, which aim to gain analytical insights (6) or identify the
sensitivity of results to model structure (8) remain simple, studies predicting quantitative
effects have tended to adopt more complexity, with more careful parameterization (7, 9, 11,
14). While the theoretical papers do not provide specific, quantitative predictions, they
provide a necessary understanding of how model structure and assumptions affect results.
The majority of resistance transmission models have assumed homogeneous risk behavior
within populations (e.g. (7, 9, 11)), yet behavioral heterogeneity increases realism and is
likely to influence model predictions (40).

The required degree of model complexity depends on the context of a given research
question. Figures 2a and 2b demonstrate that only models that explicitly separate individuals
with TDR and acquired resistance can specify different rates of reversion to wild-type. This
distinction can be important, as those with acquired resistance have mixed infections of
resistant and wild-type strains, and thus if treatment pressure is removed, reversion is likely
to occur more quickly than in those with TDR. This level of realism may be particularly
important for models allowing cART uptake at earlier stages of infection or high rates of
treatment withdrawal, because there is more opportunity for reversion.

While separating individuals with TDR from those with acquired resistance seems relatively
straightforward, complexity increases and calculations can become unwieldy when stages of
infection or other types of heterogeneity are also included. Figure 2c shows the structure of a
recent model which stratifies resistance by individual ARV drug classes and resistance type
(9). Incorporation of treatment withdrawal and reversion to wild-type within such a
framework would substantially increase the computational complexity. The model was used
for a retrospective analysis of the epidemic in San Francisco where, aside from the very
early days when a “hit early, hit hard” approach was adopted, cART has generally been
administered relatively late in infection. Therefore, levels of treatment withdrawal are likely
to have been low (and patients would progress rapidly to AIDS upon cessation) and thus
reversion may not be relevant enough to necessitate the additional complexity. In contrast,
models of universal test and treat probably require treatment withdrawal categories and
differential reversion rates by resistance type (TDR and acquired) because individuals will
frequently stop cART earlier in infection, and would therefore be at substantial risk of
transmitting HIV.
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The public health impact of resistance
Predictions of the potential severity of drug resistance vary between studies, not only due to
different model assumptions, but also because of different time horizons and different
choices of outcome: for example, only a few studies chose the percentage of infections
averted as an outcome, and while some studies report the overall prevalence of resistance
(12, 14), others distinguish between acquired and transmitted resistance (7, 8, 11). Supervie
et al point out that there may be a “paradox” when exploring different outcomes; for
example, the proportion of new infections that are resistant increased over time in their
study, but the actual number of new resistant infections (and all new infections) decreased
(11). Comparing Figures 3a and 3b highlights the conundrum that interventions generating
higher levels of resistance also tend to prevent more infections (13, 14). This tension
between outcomes raises the question whether meaningful benefits from ARV prevention
interventions will inevitably lead to high resistance amongst those infections which are not
averted. These findings also highlight the need to identify which combination of outcomes
give the fullest epidemiological picture and which ones are most relevant for public health
officials and policy makers, particularly as more models exploring ARV resistance become
available.

Ultimately, we wish to maximize the health gains provided by ARV drugs, which may
include their use in preventing further HIV spread, but not at the risk of jeopardizing HIV
patients' prognoses. Specifically, we need improved understanding of how TDR prevalence
will affect the incidence-reducing potential of different ARV-based HIV prevention
interventions, as well as the therapeutic efficacy of cART. Monitoring of cART program
performance is crucial to help identify resistance emergence and transmission, through
initiatives such as WHO HIVResNet (41). Transmission models can help in designing the
most appropriate monitoring strategies, looking at monitoring frequency (7) and type
(clinical or laboratory testing; CD4 count and viral load testing) (2) for cART and
monitoring HIV acquisition among ARV-VMB and PrEP users (14). Models can also allow
us to understand other issues which will be crucial for designing HIV treatment and
prevention programs, such as the prevalence of minority resistance and its likely rate of
emergence as majority resistance under cART (7).

HIVResNet was designed to determine when newly acquired TDR reaches 5% and 15%
thresholds within a population, and yet we do not know how these levels relate to
performance of first-line cART regimens. At what level of TDR must we think about
changing first-line cART regimens, and over what timeframe? As the public health impact
of resistance involves both HIV treatment and prevention, we require models which are
larger in scope, incorporating multiple ARV interventions simultaneously (particularly
cART and PrEP/ARV-VMB) in order to explore the potential synergies of these initiatives
and the role that resistance plays amongst them.

Conclusion
A relatively small number of recent ARV resistance transmission models have examined
different ARV interventions in different settings, using different assumptions and model
structures (Figure 1). Model results have varied quite substantially with respect to predicted
levels of resistance and effects on HIV incidence, suggesting that a solid understanding of
feasible coverage and effectiveness levels, likely degrees of risk compensation, and other
major forces are needed to refine model predictions and meaningfully interpret results for a
given setting. As the momentum behind newer prevention strategies such as universal test-
and-treat grows, there should be more exploration of the ways in which resistance
transmission may jeopardize their clinical and public-health benefits. Future studies should
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look, in particular, at the synergies and redundancies (42) in ARV interventions (cART,
PrEP, ARV-VMB, PMTCT), especially where the same ARV drugs are used or there is
substantial cross-resistance between drugs. We need more exploration of multiple lines of
cART and ARV resistance in order to identify when it is most appropriate to switch an
individual to second-line therapy in terms of outcomes relevant to public health, and when a
change in first-line regimen is warranted.

Above and beyond the modelers' remit, we need more empirical data from surveillance
initiatives such as HIVResNet, particularly from settings where cART use is in its infancy,
as patterns of ARV resistance may differ from those observed in high-income countries.
These data will feed into models to predict future ARV use and how best to preserve their
lifespan, especially because alternative ARVs are still prohibitively expensive for most
resource-constrained settings. We therefore need more confidence in what level of TDR
constitutes a real concern and could begin to reverse the benefits that ARVs have provided
over the last 15 years. In conclusion, all model results suggest that in order to preserve the
positive benefits of current and future ARV-based prevention tools, the potential risk
associated with their wide scale use cannot be overlooked.
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Figure 1.
Categorization tree for recently published (2009 onwards) HIV transmission models
incorporating ARV resistance. All included models involve transmission of resistant and
wild-type HIV strains, with all models but Bhunu et al following the structure of Figure 2a
(6).) “Treatment” refers to all forms of ARV therapy or prophylaxis: cART, PrEP or ARV-
VMB. “Transmitted resistance tracked” refers to tracking TDR and acquired resistance
separately. Model assumptions and/or details: * there is a cost of resistance, in terms of
reduced infectiousness of resistant strains; ** investigation of the potential effect of risk
compensation. Abbas et al is not included in this figure as full details of their model are not
available from the conference abstract (12).
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Figure 2.
a) Basic structure of deterministic HIV transmission models in the context of drug
resistance. The main compartments are: susceptible (S), infected with wild-type virus and
untreated (Iw), infected with drug-resistant virus and untreated (IR), infected with wild-type
virus and receiving ARVs (Tw), and infected with drug-resistant virus (TR) and receiving
ARVs. Not included in the diagram are stages of infection, specific resistance categories to
particular drug classes, and other modifications included in some models. (For simplicity,
model entry and exit rates are omitted. Figure adapted from Marks et al (8) but a similar
structure for resistance transmission has been used for many cART models (4, 11).) b)
Change to model structure to separate individuals infected with HIV with primary
(transmitted, R1) resistance and those initially infected with wild-type HIV who acquire
resistance as a result of treatment: secondary (acquired, R2) ARV resistance. Similar
structure to that used by Hoare et al (7). c) Structure of recent model of HIV transmission
among MSM in San Francisco, US, with 33 compartments: schematic taken from Smith? et
al (9). Compartments are: susceptible (S), HIV-infected with primary infection (P), infected
not eligible for cART (H), cART eligible but not yet treated (Y) and treated (T). Strains are
grouped into eight categories (subscripts) based upon resistance to ARV drug classes
(further details in publication). PrEP models will differ because ARVs will be taken by
susceptible (S) individuals, but the issues and concepts discussed here are similar.
Figure 2a adapted from Marks et al [8], 2b is adapted from Hoare et al [7] and figure 2c is
reproduced with permission from Smith et al [9].

Baggaley et al. Page 11

Curr Opin HIV AIDS. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
a) Model-estimated prevalence of resistance ten years after intervention implementation.
Estimates represent TDR (resistance prevalence of new infections 10 years after intervention
implementation (7, 8, 11); Wilson et al's estimates represent cumulative proportion of new
infections resistant over 10 years (13)); except * studies (12, 14) which estimate prevalence
of resistance for all HIV infections. Hoare et al (Southeast Asia, heterosexual population)
give a point estimate (in main text (7)); Marks et al (men who have sex with men, high-
income settings) give a range ∼5%-20% (shown as error bars, taken from their Figures 2b-c
simulation results of mean outcomes plus one standard deviation) from a stochastic model
assuming treatment commencement 20 years and 30 years into the epidemic, respectively
(8); Supervie et al (men who have sex with men, San Francisco, US) give a range of values
in their Figure 3c (shown as error bars) based on varying levels of PrEP coverage (40-100%)
and efficacy against wild-type strains (30-90%), in the absence of risk compensation (11);
Abbas et al (sub-Saharan Africa heterosexual population) give resistance prevalence
estimates assuming optimistic (40%) and pessimistic (2.5%) values, shown as error bars, for
model parameters (with limited information available from the conference abstract –
outcome is stated as drug resistance prevalence rather than explicitly stated as TDR (12)).
Wilson et al (heterosexual population, setting not specified) give ranges stratified by gender
(error bars represent interquartile ranges); shown on graph are estimates for ARV-VMB
with high risk of systemic absorption; low-risk ARV-VMB give lower resistance estimates
(data not shown) (13). Dimitrov et al (heterosexual population, developing countries) give
resistance prevalence estimates (Figure 5c) (14). b) Model estimates of percentage of
cumulative infections averted 10 years after intervention implementation, where available.
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